
Wine User Guide

Wine User Guide

Table of Contents
1. Introduction ..1

1.1. Overview / About..1
1.1.1. Purpose of this document and intended audience...1
1.1.2. Further questions and comments..1
1.1.3. Content overview / Steps to take..1

1.2. What is Wine?...1
1.2.1. Windows and Linux..1
1.2.2. What is Wine, and how can it help me?...2
1.2.3. Wine features..2

1.3. Versions of Wine...3
1.3.1. Wine from Wine HQ...3
1.3.2. Other Versions of Wine..3

1.4. Alternatives to Wine you might want to consider...4
1.4.1. Native Applications..4
1.4.2. Another Operating System...4
1.4.3. Virtual Machines..5

2. Getting Wine ..6

2.1. Wine Installation Methods..6
2.1.1. Installation from a package..6
2.1.2. Installation from a source archive..6
2.1.3. Installation from a cvs snapshot...6

2.2. Installing Wine from a package..7
2.2.1. Installing a fresh package...7
2.2.2. Different Distributions..7

2.3. Installing Wine from source..7
2.3.1. Getting the Build Dependencies...8
2.3.2. Compiling Wine...8
2.3.3. Uninstalling Wine from Source..8

3. Configuring Wine...10

3.1. What are the requirements of a fully working Windows environment?....................................10
3.2. Easy configuration helper programs...10

3.2.1. wineinstall...11
3.3. Verification of correct configuration...11
3.4. The Wine Configuration File...11

3.4.1. Configuration File Introduction..11
3.4.2. Creating Or Modifying The Configuration File...12
3.4.3. What Does It Contain?...12
3.4.4. What If It Doesn’t Work?...20

3.5. Disc Drives, Serial and Parallel Ports...20
3.5.1. Extremely Important Prerequisites...20
3.5.2. Short Introduction...21
3.5.3. Windows Directory Structure...21
3.5.4. The dosdevices Directory...22
3.5.5. File system settings in the [wine] section...23
3.5.6. More detailed explanation about file system differences...23

iii

3.5.7. Installing Wine Without Windows...24
3.5.8. Installing Wine Using An Existing Windows Partition As Base..................................25
3.5.9. Dealing With FAT/VFAT Partitions..26
3.5.10. Drive labels and serial numbers..29

3.6. The Registry..30
3.6.1. The default registry...30
3.6.2. Using a Windows registry...30
3.6.3. The Registry...31
3.6.4. Registry structure..31
3.6.5. Wine registry data files...31
3.6.6. System administration..32
3.6.7. The [registry] section..33

3.7. DLL configuration...34
3.7.1. Introduction..34
3.7.2. Introduction To DLL Sections..34
3.7.3. DLL Overrides..35
3.7.4. System DLLs..39
3.7.5. Missing DLLs...39
3.7.6. Fetching native DLLs from a Windows CD...40

3.8. Configuring the graphics driver (x11drv, ttydrv etc.)..40
3.8.1. Configuring the x11drv graphics driver..40
3.8.2. Configuring the ttydrv graphics driver...42

3.9. Setting the Windows and DOS version value...42
3.9.1. How to configure the Windows and DOS version value Wine should return..............43

3.10. Dealing with Fonts..43
3.10.1. Fonts...43
3.10.2. Setting up a TrueType Font Server...47

3.11. Printing in Wine..48
3.11.1. Printing...48
3.11.2. The Wine PostScript Driver..49

3.12. SCSI Support...51
3.12.1. Windows requirements...51
3.12.2. Linux requirements...52
3.12.3. Notes...52

3.13. Using ODBC...53
3.13.1. Using a Unix ODBC system with Wine...53
3.13.2. Using Windows ODBC drivers..54

4. Running Wine ..55

4.1. Basic usage: applications and control panel applets...55
4.2. How to run Wine...55
4.3. Explorer-like graphical Wine environments...56
4.4. Wine Command Line Options...56

4.4.1. --help...57
4.4.2. --version..57

4.5. Environment variables...57
4.5.1. WINEDEBUG=[channels]...57

4.6. wineserver Command Line Options..59

iv

4.6.1. -d<n>...59
4.6.2. -h...59
4.6.3. -k[n]..60
4.6.4. -p[n]..60
4.6.5. -w..60

4.7. Setting Windows/DOS environment variables..60
4.8. Text mode programs (CUI: Console User Interface)..61

4.8.1. Configuration of CUI executables..62

5. Troubleshooting / Reporting bugs..65

5.1. What to do if some program still doesn’t work?...65
5.1.1. Verify your wine configuration...65
5.1.2. Use different windows version settings..65
5.1.3. Use different startup paths..65
5.1.4. Fiddle with DLL configuration...65
5.1.5. Check your system environment !..65
5.1.6. Use different GUI (Window Manager) modes...65
5.1.7. Check your app !..66
5.1.8. Check your Wine environment !...66
5.1.9. Reconfigure Wine...66
5.1.10. Check out further information..66
5.1.11. Debug it!...67

5.2. How To Report A Bug..67
5.2.1. All Bug Reports..67
5.2.2. Crashes...68

Glossary..71

v

List of Tables
1-1. Various Wine offerings...3
4-1. Debug Channels...58
4-2. Basic differences in consoles..62
4-3. Wineconsole configuration options..63

vi

Chapter 1. Introduction

1.1. Overview / About

1.1.1. Purpose of this document and intended audience

This document, called the Wine User Guide, is both an easy installation guide and an extensive reference
guide. This guide is for both the new Wine user and the experienced Wine user, offering full step-by-step
installation and configuration instructions, as well as featuring extensive reference material by
documenting all configuration features and support areas.

1.1.2. Further questions and comments

If, after examining this guide, the FAQ, and other relevant documentation there is still something you
cannot figure out, we would love to hear from you. The mailing lists
(http://www.winehq.org/site/forums) section contains several mailing lists and an IRC channel, all of
which are great places to seek help and offer suggestions. If you are particularly savvy, and believe that
something can be explained better, you can file a bug report (http://bugs.winehq.org/) or post a patch
(http://www.winehq.org/site/sending_patches) on Wine’s documentation itself.

1.1.3. Content overview / Steps to take

In order to be able to use Wine, you must first have a working installation. This guide will help you to
move your system from an empty, Wineless void to one boasting a fresh, up to date Wine install. The first
step,Getting Wine, illustrates the various methods of getting Wine’s files onto your computer. The
second step,Configuring Wine, shows how to customize a Wine installation depending on your
individual needs. The final step,Running Wine, covers the specific steps you can take to get a particular
application to run better under Wine, and provides useful links in case you need further help.

1.2. What is Wine?

1.2.1. Windows and Linux

Different software programs are designed for different operating systems, and most won’t work on
systems that they weren’t designed for. Windows programs, for example, won’t run in Linux because
they contain instructions that the system can’t understand until they’re translated by the Windows

1

Chapter 1. Introduction

environment. Linux programs, likewise, won’t run under the Windows operating system because
Windows is unable to interpret all of their instructions.

This situation presents a fundamental problem for anyone who wants to run software for both Windows
and Linux. A common solution to this problem is to install both operating systems on the same
computer, known as "dual booting." When a Windows program is needed, the user boots the machine
into Windows to run it; when a Linux program is then needed, the user then reboots the machine into
Linux. This option presents great difficulty: not only must the user endure the frustration of frequent
rebooting, but programs for both platforms can’t be run simultaneously. Having Windows on a system
also creates an added burden: the software is expensive, requires a separate disk partition, and is unable
to read most filesystem formats, making the sharing of data between operating systems difficult.

1.2.2. What is Wine, and how can it help me?

Wine makes it possible to run Windows programs alongside any Unix-like operating system, particularly
Linux. At its heart, Wine is an implementation of the Windows Application Programing Interface (API)
library, acting as a bridge between the Windows program and Linux. Think of Wine as a compatibility
layer, when a Windows program tries to perform a function that Linux doesn’t normally understand,
Wine will translate that program’s instruction into one supported by the system. For example, if a
program asks the system to create a Windows pushbutton or text-edit field, Wine will convert that
instruction into its Linux equivalent in the form of a command to the window manager using the standard
X11 protocol.

If you have access to the Windows program’s source code, Wine can also be used to recompile a program
into a format that Linux can understand more easily. Wine is still needed to launch the program in its
recompiled form, however there are many advantages to compiling a Windows program natively within
Linux. For more information, see the Winelib User Guide.

1.2.3. Wine features

Throughout the course of its development, Wine has continually grown in the features it carries and the
programs it can run. A partial list of these features follows:

• Support for running Win32 (Win 95/98, NT/2000/XP), Win16 (Win 3.1) and DOS programs

• Optional use of external vendor DLL files (such as those included with Windows)

• X11-based graphics display, allowing remote display to any X terminal, as well as a text mode console

• Desktop-in-a-box or mixable windows

• DirectX support for games

• Good support for various sound drivers including OSS and ALSA

• Support for alternative input devices

2

Chapter 1. Introduction

• Printing: PostScript interface driver (psdrv) to standard Unix PostScript print services

• Modem, serial device support

• Winsock TCP/IP networking support

• ASPI interface (SCSI) support for scanners, CD writers, and other devices

• Advanced unicode and foreign language support

• Full-featured Wine debugger and configurable trace logging messages for easier troubleshooting

1.3. Versions of Wine

1.3.1. Wine from Wine HQ

Wine is an open source project, and there are accordingly many different versions of Wine for you to
choose from. The standard version of Wine comes in intermittant releases (roughly once a month), and
can be downloaded over the internet in both prepackaged binary form and ready to compile source code
form. Alternatively, you can install a development version of Wine by using the latest available source
code on the CVS server. See the next chapter,Getting Wine, for further details.

1.3.2. Other Versions of Wine

There are a number of programs that are derived from the standard Wine codebase in some way or
another. Some of these are commercial products from companies that actively contribute to the Wine
project.

These products try to stand out or distinguish themselves from the standard version of Wine by offering
greater compatibility, easier configuration, and commercial support. If you require such things, it is a
good idea to consider purchasing these products.

Table 1-1. Various Wine offerings

Product Description Distribution Form

3

Chapter 1. Introduction

Product Description Distribution Form

CodeWeavers CrossOver Office
(http://www.codeweavers.com/products/office)

CrossOver Office allows you to
install your favorite Windows
productivity applications in Linux,
without needing a Microsoft
Operating System license.
CrossOver includes an easy to use,
single click interface, which
makes installing a Windows
application simple and fast.

Commercial; 30-day
fully-functional demo available.

CodeWeavers CrossOver Office
Server Edition
(http://www.codeweavers.com/products/cxofficeserver)

CrossOver Office Server Edition
allows you to run your favorite
Windows productivity applications
in a distributed thin-client
environment under Linux, without
needing Microsoft Operating
System licenses for each client
machine. CrossOver Office Server
Edition allows you to satisfy the
needs of literally hundreds of
concurrent users, all from a single
server.

1.4. Alternatives to Wine you might want to consider

There are many ways to run software other than through Wine. If you are considering using Wine to run
an application you might want to think about the viability of these approaches if you encounter difficulty.

1.4.1. Native Applications

Instead of running a particular Windows application with Wine, one frequently viable alternative is to
simply run a different application. Many Windows applications, particularly more commonly used ones
such as media players, instant messengers, and filesharing programs have very good open source
equivalents. Furthermore, a sizable number of Windows programs have been ported to Linux directly,
eliminating the need for Wine (or Windows) entirely.

1.4.2. Another Operating System

Probably the most obvious method of getting a Windows application to run is to simply run it on
Windows. However, security, license cost, backward-compatibility, and machine efficiency issues can

4

Chapter 1. Introduction

make this a difficult proposition, which is why Wine is so useful in the first place.

Another alternative is to use ReactOS (http://www.reactos.com), which is a fully open source alternative
to Windows. ReactOS shares code heavily with the Wine project, but rather than running Windows
applications on top of Linux they are instead run on top of the ReactOS kernel. ReactOS also offers
compatibility with Windows driver files, allowing the use of hardware without functional Linux drivers.

1.4.3. Virtual Machines

Rather than installing an entirely new operating system on your machine, you can instead run a virtual
machine at the software level and install a different operating system on it. Thus, you could run a Linux
system and at the same time run Windows along with your application in a virtual machine
simultaneously on the same hardware. Virtual machines allow you to install and run not only different
versions of Windows on the same hardware, but also other operating systems, including ReactOS.

There are several different virtual machine offerings out there, and some are also able to emulate x86
hardware on different platforms. The open source Bochs (http://bochs.sourceforge.net/) and QEMU
(http://fabrice.bellard.free.fr/qemu/) can run both Windows and ReactOS virtually. Other, commercial
virtual machine offerings include VMware (http://www.vmware.com/) and Microsoft’s VirtualPC
(http://www.microsoft.com/windowsxp/virtualpc/).

There are significant drawbacks to using virtual machines, however. Unlike Wine, such programsare
emulators, so there is an inevitable speed decrease which can be quite substantial. Furthermore, running
an application inside a virtual machine prevents fully integrating the application within the current
environment. You won’t, for example, be able to have windows system tray icons or program shortcuts
sitting alongside your desktop Linux ones, since instead the Windows applications must reside
completely within the virtual machine.

5

Chapter 2. Getting Wine

2.1. Wine Installation Methods

Once you’ve decided that Wine is right for your needs, the next step is to decide how you want to install
it. There are three methods for installing Wine from WineHQ, each with their own advantages and
disadvantages.

2.1.1. Installation from a package

By far the easiest method for installing Wine is to use a prepackaged version of Wine. These packages
contain ready-to-run Wine binary files specifically compiled for your distribution, and they are tested
regularly by the packagers for both functionality and completeness.

Packages are the recommended method for installing Wine. We make them easily available at the
WineHQ downloads page (http://www.winehq.org/site/download), and these are always the latest
packages available. Being popular, Wine packages can also be found elsewhere in official distribution
repositories. These can, however, sometimes be out of date, depending on the distribution. Packages are
easily upgradable as well, and many distributions can upgrade Wine seamlessly with a few clicks.
Building your own installable binary package from a source package is also possible, although it is
beyond the scope of this guide.

2.1.2. Installation from a source archive

Sometimes the Wine packages don’t fit your needs exactly. Perhaps they’re not available for your
architecture or distribution, or perhaps you want to build wine using your own compiler optimizations or
with some options disabled, or perhaps you need to modify a specific part of the source code before
compilation. Being an open source project, you are free to do all of these things with Wine’s source code,
which is provided with every Wine release. This method of installation can be done by downloading a
Wine source archive and compiling from the command line. If you are comfortable with such things and
have special needs, this option may be for you.

Getting Wine source archives is simple. Every release, we put a source package in compressed tar.gz
format at the WineHQ downloads page (http://www.winehq.org/site/download). Compiling and
installing Wine from source is slightly more difficult than using a package, however we will cover it in
depth and attempt to hold your hand along the way.

6

Chapter 2. Getting Wine

2.1.3. Installation from a cvs snapshot

If you wish to try out the bleeding edge of Wine development, or would even like to help develop Wine
yourself, you can download the very latest source code from our CVS server. Instructions for
downloading from the Wine cvs repository are available at http://www.winehq.org/site/cvs
(http://www.winehq.org/site/cvs).

Please take note that the usual warnings for using a developmental version still apply. The source code
on the CVS server is largely untested and may not even compile properly. It is, however, the best way to
test out how Wine will work in the next version, and if you’re modifying source code it’s best to get the
latest copy. The CVS repository is also useful for application maintainers interested in testing if an
application will still work right for the next release, or if a recent patch actually improves things. If
you’re interested in helping us to get an application working in Wine, see the guide to helping
applications work (http://www.winehq.org/site/helping-applications).

2.2. Installing Wine from a package

2.2.1. Installing a fresh package

Installing a package on a fresh system is remarkably straightforward. Simply download and install the
package using whatever utility your distribution provides. There is usually no need to explicitly remove
old packages before installing, as modern Linux distributions should upgrade and replace them
automatically. If you installed Wine from source code, however, you should remove it before installing a
Wine package. See the section onuninstalling Wine from sourcefor proper instructions.

2.2.2. Different Distributions

Wine works on a huge amount of different Linux distributions, as well other Unix-like systems such as
Solaris and FreeBSD, each with their own specific way of installing and managing packages.
Fortunately, however, the same general ideas apply to all of them, and installing Wine should be no more
difficult than installing any other software, no matter what distribution you use. Uninstalling Wine
packages is simple as well, and in modern Linux distributions is usually done through the same easy
interface as package installation.

We won’t cover the specifics of installing or uninstalling Wine packages among the various systems’
methods of packaging and package management in this guide, however, up to date installation notes for
particular distributions can be found at the WineHQ website in the HowTo
(http://www.winehq.org/site/howto). If you need further help figuring out how to simply install a Wine
package, we suggest consulting your distribution’s documentation, support forums, or IRC channels.

7

Chapter 2. Getting Wine

2.3. Installing Wine from source

Before installing Wine from source, make sure you uninstall any Wine binary packages you may have on
your system. Installing from source requires use of the terminal window as well as a full copy of the
Wine source code. Once having downloaded the source from CVS or extracted it from an archive,
navigate to it using the terminal and then follow the remaining steps.

2.3.1. Getting the Build Dependencies

Wine makes use of many open source libraries during its operation. While Wine is not strictly dependent
on these libraries and will compile without most of them, much of Wine’s functionality is improved by
having them available at compile time. In the past, many user problems were caused by people not
having the necessary development libraries when they built Wine from source; because of this reason and
others, we highly recommend installing via binary packages or by building source packages which can
automatically satisfy their build dependencies.

If you wish to install build dependencies by hand, there are several ways to see if you’re missing some
useful development libraries. The most straightforward approach is to watch the configure program’s
output before you compile Wine and see if anything important is missing; if it is, simply install what’s
missing and rerun configure before compiling. You can also check the file configure generates,
(include/config.h.in) and see if what files configure is looking for but not finding.

2.3.2. Compiling Wine

Once you’ve installed the build dependencies you need, you’re ready to compile the package. In the
terminal window, after having navigated to the Wine source tree, run the following commands:

$./configure

make depend

make

make install

The last command requires root privileges. Although you should never run Wine as root, you will need to
install it this way.

2.3.3. Uninstalling Wine from Source

To uninstall Wine from source, once again navigate to the same source folder that you used to install
Wine using the terminal. Then, run the following command:

make uninstall

8

Chapter 2. Getting Wine

This command will require root privileges, and should remove all of the Wine binary files from your
system. It will not, however, remove your Wine configuration and applications located in your user’s
home directory, so you are free to install another version of Wine or delete that configuration by hand.

9

Chapter 3. Configuring Wine

Now that you hopefully managed to successfully install the Wine program files, this chapter will tell you
how to configure the Wine environment properly to run your Windows programs.

First, we’ll give you an overview about which kinds of configuration and program execution aspects a
fully configured Windows environment has to fulfill in order to ensure that many Windows programs run
successfully without encountering any misconfigured or missing items. Next, we’ll show you which easy
helper programs exist to enable even novice users to complete the Wine environment configuration in a
fast and easy way. The next section will explain the purpose of the Wine configuration file, and we’ll list
all of its settings. After that, the next section will detail the most important and unfortunately most
difficult configuration part: how to configure the file system and DOS drive environment that Windows
programs need. In the last step we’ll tell you how to establish a working Windows registry base. Finally,
the remaining parts of this chapter contain descriptions of specific Wine configuration items that might
also be of interest to you.

3.1. What are the requirements of a fully working
Windows environment?

A Windows installation is a very complex structure. It consists of many different parts with very different
functionality. We’ll try to outline the most important aspects of it.

• Registry. Many keys are supposed to exist and contain meaningful data, even in a newly-installed
Windows.

• Directory structure. Applications expect to find and/or install things in specific predetermined
locations. Most of these directories are expected to exist. But unlike Unix directory structures, most of
these locations are not hardcoded, and can be queried via the Windows API and the registry. This
places additional requirements on a Wine installation.

• System DLLs. In Windows, these usually reside in thesystem (or system32) directory. Some
Windows programs check for their existence in these directories before attempting to load them.
While Wine is able to load its own internal DLLs (.so files) when the program asks for a DLL, Wine
does not simulate the presence of nonexistent files.

While the users are of course free to set up everything themselves, the Wine team will make the
automated Wine source installation script,tools/wineinstall , do everything we find necessary to
do; running the conventionalconfigure && make depend && make && make install cycle is
thus not recommended, unless you know what you’re doing. At the moment,tools/wineinstall is
able to create a configuration file, install the registry, and create the directory structure itself.

10

Chapter 3. Configuring Wine

3.2. Easy configuration helper programs

Managing the Wine configuration file settings can be a difficult task, sometimes too difficult for some
people. That’s why there are some helper applications for easily setting up an initial wine configuration
file with useful default settings.

3.2.1. wineinstall

wineinstall is a small configuration tool residing astools/wineinstall in a Wine source code tree. It
has been written to allow for an easy and complete compilation/installation of Wine source code for
people who don’t bother with reading heaps of very valuable and informative documentation ;-)

Once you have successfully extracted the Wine source code tree, change to the main directory of it and
then run (as user):

$./tools/wineinstall

Doing so will compile Wine, install Wine and configure the Wine environment (either by providing
access to a Windows partition or by creating a properly configured no-windows directory environment).

3.3. Verification of correct configuration

TODO: After you have finished configuring Wine you can verify your Wine configuration by running
winecfg. This functionality will be added to winecfg in the near future.

Please check out the configuration documentation below to find out more about Wine’s configuration, or
proceed to theTroubleshooting chapter.

3.4. The Wine Configuration File

This section is meant to contain both an easy step-by-step introduction to the Wine configuration file (for
new Wine users) and a complete reference to all Wine configuration file settings (for advanced users).

3.4.1. Configuration File Introduction

The Wine configuration file is the central file to store configuration settings for Wine. This file (which is
calledconfig) can be found in the sub directory.wine/ of your user’s home directory (directory

11

Chapter 3. Configuring Wine

/home/user/). In other words, the Wine configuration file is~/.wine/config . Note that since the
Wine configuration file is a part of the Wine registry file system, this file alsorequiresa correct "WINE
REGISTRY Version 2" header line to be recognized properly, just like all other Wine registry text files
(just in case you decided to write your own registry file from scratch and wonder why Wine keeps
rejecting it).

The settings available in the configuration file include:

• Directory settings

• Port settings

• The Wine look and feel

• Wine’s DLL usage

• Wine’s multimedia drivers and DLL configuration

3.4.2. Creating Or Modifying The Configuration File

If you just installed Wine for the first time and want to finish Wine installation by configuring it now,
then you could use our sample configuration fileconfig (which can be found in the directory
documentation/samples/ of the Wine source code directory) as a base for adapting the Wine
configuration file to the settings you want. First, I should mention that you should not forget to make sure
that any previous configuration file at~/.wine/config has been safely moved out of the way instead
of simply overwriting it when you will now copy over the sample configuration file.

If you don’t have a pre-existing configuration file and thus need to copy over our sample configuration
file to the standard Wine configuration file location, do in aterminal:

$ mkdir ~/.wine/

$ cp dir_to_wine_source_code /documentation/samples/config ~/.wine/config

Otherwise, simply use the already existing configuration file at~/.wine/config .

Now you can start adapting the configuration file’s settings with aneditor according to the
documentation below. Note that you shouldonlychange configuration file settings if wineserver is not
running (in other words: if your user doesn’t have a Wine session running), otherwise Wine won’t use
them - and even worse, wineserver will overwrite them with the old settings once wineserver quits!!

3.4.3. What Does It Contain?

Let’s start by giving an overview of which sections a configuration file may contain, and whether the
inclusion of the respective section isneededor only recommended("recmd").

12

Chapter 3. Configuring Wine

Section Name Needed? What it Does

[wine] yes General settings for Wine

[DllOverrides] recmd Overrides defaults for DLL
loading

[x11drv] recmd Graphics driver settings

[fonts] yes Font appearance and recognition

[ppdev] no Parallelport emulation

[spooler] no Print spooling

[ports] no Direct port access

[Debug] no What to do with certain debug
messages

[Registry] no Specifies locations of windows
registry files

[programs] no Programs to be run automatically

[Console] no Console settings

[Clipboard] no Interaction for Wine and X11
clipboard

[afmdirs] no Postscript driver settings

[WinMM] yes Multimedia settings

[AppDefaults] no Overwrite the settings of previous
sections for special programs

Now let’s explain the configuration file sections in a detailed way.

3.4.3.1. The [wine] Section

The [wine] section of the configuration file contains basic settings for Wine.

"Windows" = "c:\\windows"
"ShowDirSymlinks" = "1"
"ShowDotFiles" = "1"

For a detailed description of drive layer configuration and the meaning of these parameters, please look
at theDisc Drives, Serial and Parallel Ports section.

"GraphicsDriver" = "x11drv|ttydrv"

Sets the graphics driver to use for Wine output. x11drv is for X11 output, ttydrv is for text console
output. WARNING: if you use ttydrv here, then you won’t be able to run a lot of Windows GUI
programs (ttydrv is still pretty "broken" at running graphical apps). Thus this option is mainly interesting

13

Chapter 3. Configuring Wine

for e.g. embedded use of Wine in web server scripts. Note that ttydrv is still very lacking, so if it doesn’t
work, resort to using "xvfb", a virtual X11 server. Another way to run Wine without display would be to
run X11 via Xvnc, then connect to that VNC display using xvncviewer (that way you’re still able to
connect to your app and configure it if need be).

"Printer" = "off|on"

Tells wine whether to allow printing via printer drivers to work. This option isn’t needed for our built-in
psdrv printer driver at all. Using these things are pretty alpha, so you might want to watch out. Some
people might find it useful, however. If you’re not planning to work on printing via windows printer
drivers, don’t even add this to your wine configuration file (It probably isn’t already in it). Check out the
[spooler] and [parallelports] sections too.

"ShellLinker" = "wineshelllink"

This setting specifies the shell linker script to use for setting up Windows icons in e.g. KDE or Gnome
that are given by programs making use of appropriate shell32.dll functionality to create icons on the
desktop/start menu during installation.

"SymbolTableFile" = "wine.sym"

Sets up the symbol table file for the wine debugger. You probably don’t need to fiddle with this. May be
useful if your wine is stripped.

3.4.3.2. The [DllOverrides] Section

The format for this section is the same for each line:

<DLL>{, <DLL>, <DLL>...} = <FORM>{,<FORM>,<FORM>...}

For example, to load built-in KERNEL pair (case doesn’t matter here):

"kernel,kernel32" = "builtin"

To load the native COMMDLG pair, but if that doesn’t work try built-in:

"commdlg,comdlg32" = "native, builtin"

To load the native COMCTL32:

"comctl32" = "native"

Here is a good generic setup (As it is defined in config that was included with your wine package):

[DllOverrides]
"rpcrt4" = "builtin, native"

14

Chapter 3. Configuring Wine

"oleaut32" = "builtin, native"
"ole32" = "builtin, native"
"commdlg" = "builtin, native"
"comdlg32" = "builtin, native"
"ver" = "builtin, native"
"version" = "builtin, native"
"shell" = "builtin, native"
"shell32" = "builtin, native"
"shfolder" = "builtin, native"
"shlwapi" = "builtin, native"
"shdocvw" = "builtin, native"
"lzexpand" = "builtin, native"
"lz32" = "builtin, native"
"comctl32" = "builtin, native"
"commctrl" = "builtin, native"
"advapi32" = "builtin, native"
"crtdll" = "builtin, native"
"mpr" = "builtin, native"
"winspool.drv" = "builtin, native"
"ddraw" = "builtin, native"
"dinput" = "builtin, native"
"dsound" = "builtin, native"
"opengl32" = "builtin, native"
"msvcrt" = "native, builtin"
"msvideo" = "builtin, native"
"msvfw32" = "builtin, native"
"mcicda.drv" = "builtin, native"
"mciseq.drv" = "builtin, native"
"mciwave.drv" = "builtin, native"
"mciavi.drv" = "native, builtin"
"mcianim.drv" = "native, builtin"
"msacm.drv" = "builtin, native"
"msacm" = "builtin, native"
"msacm32" = "builtin, native"
"midimap.drv" = "builtin, native"
; you can specify programs too
"notepad.exe" = "native, builtin"
; default for all other DLLs
"*" = "native, builtin"

Note: If loading of the libraries that are listed first fails, wine will just go on by using the second or
third option.

15

Chapter 3. Configuring Wine

3.4.3.3. The [fonts] Section

This section sets up wine’s font handling.

"Resolution" = "96"

Since the way X handles fonts is different from the way Windows does, wine uses a special mechanism
to deal with them. It must scale them using the number defined in the "Resolution" setting. 60-120 are
reasonable values, 96 is a nice in the middle one. If you have the real windows fonts available , this
parameter will not be as important. Of course, it’s always good to get your X fonts working acceptably in
wine.

"Default" = "-adobe-times-"

The default font wine uses. Fool around with it if you’d like.

OPTIONAL:

TheAlias setting allows you to map an X font to a font used in wine. This is good for apps that need a
special font you don’t have, but a good replacement exists. The syntax is like so:

"AliasX" = "[Fake windows name],[Real X name]" <,optional "masking" section>

Pretty straightforward. Replace "AliasX" with "Alias0", then "Alias1" and so on. The fake windows
name is the name that the font will be under a windows app in wine. The real X name is the font name as
seen by X (Run "xfontsel"). The optional "masking" section allows you to utilize the fake windows name
you define. If it is not used, then wine will just try to extract the fake windows name itself and not use the
value you enter.

Here is an example of an alias without masking. The font will show up in windows apps as "Google".

"Alias0" = "Foo,--google-"

Here is an example with masking enabled. The font will show up as "Foo" in windows apps.

"Alias1" = "Foo,--google-,subst"

For more information check out theFontschapter.

3.4.3.4. The [spooler] and [ports] Sections

The [spooler] section will inform wine where to spool print jobs. Use this if you want to try printing.
Wine docs claim that spooling is "rather primitive" at this time, so it won’t work perfectly.It is optional.

16

Chapter 3. Configuring Wine

The only setting you use in this section works to map a port (LPT1, for example) to a file or a command.
Here is an example, mapping LPT1 to the fileout.ps :

"LPT1:" = "out.ps"

The following command maps printing jobs to LPT1 to the commandlpr . Notice the |:

"LPT1:" = "|lpr"

The [ports] section is usually useful only for people who need direct port access for programs requiring
dongles or scanners.If you don’t need it, don’t use it!

"read" = "0x779,0x379,0x280-0x2a0"

Gives direct read access to those IO’s.

"write" = "0x779,0x379,0x280-0x2a0"

Gives direct write access to those IO’s. It’s probably a good idea to keep the values of theread and
write settings the same. This stuff will only work when you’re root.

3.4.3.5. The [Debug], [Registry], and [programs] Sections

[Debug] is used to include or exclude debug messages, and to output them to a file. The latter is rarely
used.These are all optional and you probably don’t need to add or remove anything in this section to
your config.(In extreme cases you may want to use these options to manage the amount of information
generated byWINEDEBUG=+relay)

"File" = "/blanco"

Sets the logfile for wine. Set to CON to log to standard out.This is rarely used.

"SpyExclude" = "WM_SIZE;WM_TIMER;"

Excludes debug messages aboutWM_SIZEandWM_TIMERin the logfile.

"SpyInclude" = "WM_SIZE;WM_TIMER;"

Includes debug messages aboutWM_SIZEandWM_TIMERin the logfile.

"RelayInclude" = "user32.CreateWindowA;comctl32.*"

17

Chapter 3. Configuring Wine

Include only the listed functions in aWINEDEBUG=+relay trace. This entry is ignored if there is a
RelayExclude entry.

"RelayExclude" = "RtlEnterCriticalSection;RtlLeaveCriticalSection"

Exclude the listed functions in aWINEDEBUG=+relay trace. This entry overrides any settings in a
RelayInclude entry. If neither entry is present then the trace includes everything.

In both entries the functions may be specified either as a function name or as a module and function. In
this latter case specify an asterisk for the function name to include/exclude all functions in the module.

[Registry] can be used to tell wine where your old windows registry files exist. This section is completely
optional and useless to people using wine without an existing windows installation.

"UserFileName" = "/dirs/to/user.reg"

The location of your olduser.reg file.

[programs] can be used to say what programs run under special conditions.

"Default" = "/program/to/execute.exe"

Sets the program to be run if wine is started without specifying a program.

"Startup" = "/program/to/execute.exe"

Sets the program to automatically be run at startup every time.

3.4.3.6. The [WinMM] Section

[WinMM] is used to define which multimedia drivers have to be loaded. Since those drivers may depend
on the multimedia interfaces available on your system (OSS, ALSA... to name a few), it’s needed to be
able to configure which driver has to be loaded.

The content of the section looks like:

[WinMM]
"Drivers" = "wineoss.drv"
"WaveMapper" = "msacm.drv"
"MidiMapper" = "midimap.drv"

18

Chapter 3. Configuring Wine

All the keys must be defined:

• The "Drivers" key is a ’;’ separated list of modules name, each of them containing a low level driver.
All those drivers will be loaded when MMSYSTEM/WINMM is started and will provide their inner
features.

• The "WaveMapper" represents the name of the module containing the Wave Mapper driver. Only one
wave mapper can be defined in the system.

• The "MidiMapper" represents the name of the module containing the MIDI Mapper driver. Only one
MIDI mapper can be defined in the system.

3.4.3.7. The [Network] Section

[Network] contains settings related to networking. Currently there is only one value that can be set.

UseDnsComputerName

A boolean setting (default:Y) that affects the way Wine sets the computer name. The computer
name in the Win-
dows world is the so-calledNetBIOS name. It is contained in theComputerName in the registry entry
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ComputerName\ComputerName .

If this option is set to "Y" or missing, Wine will set the NetBIOS name to the Unix host name of
your computer, if necessary truncated to 31 characters. The Unix hostname is the output of the shell
commandhostname, up to but not including the first dot (’.’). Among other things, this means that
Windows programs running under Wine cannot change the NetBIOS computer name.

If this option is set to "N", Wine will use the registry value above to set the NetBIOS name. Only if
the registry entry doesn’t exist (usually only during the first wine startup) it will use the Unix
hostname as usual. Windows programs can change the NetBIOS name. The change will be effective
after a "reboot", i.e. after restarting Wine.

3.4.3.8. The [AppDefaults] Section

The section is used to overwrite certain settings of this file for a special program with different settings.
[AppDefaults] is not the real name of the section. The real name consists of the leading word
AppDefaults followed by the name of the executable the section is valid for. The end of the section name
is the name of the corresponding "standard" section of the configuration file that should have some of its
settings overwritten with the program specific settings you define. The three parts of the section name are
separated by two backslashes.

19

Chapter 3. Configuring Wine

Currently wine supports overriding selected settings within the sections [DllOverrides], [x11drv],
[version] and [dsound] only.

Here is an example that overrides the normal settings for a program:

;; default settings
[x11drv]
"Managed" = "Y"
"Desktop" = "N"

;; run install in desktop mode
[AppDefaults\\install.exe\\x11drv]
"Managed" = "N"
"Desktop" = "800x600"

3.4.4. What If It Doesn’t Work?

There is always a chance that things will go wrong. If the unthinkable happens, report the problem to
Wine Bugzilla (http://bugs.winehq.org/), try the newsgroup comp.emulators.ms-windows.wine, or the
IRC channel #WineHQ found on irc.freenode.net, or connected servers. Make sure that you have looked
over this document thoroughly, and have also read:

• README

• http://www.winehq.org/trouble/

If indeed it looks like you’ve done your research, be prepared for helpful suggestions. If you haven’t,
brace yourself for heaving flaming.

3.5. Disc Drives, Serial and Parallel Ports

3.5.1. Extremely Important Prerequisites

If you’re planning to include access to a CD-ROM drive in your Wine configuration on Linux, thenmake
sureto add the “unhide” mount option to the CD-ROM file system entry in/etc/fstab , e.g.:

/dev/cdrom /cdrom iso9660 ro,noauto,users,unhide 0 0

Several Windows program setup CD-ROMs or other CD-ROMs chose to do such braindamaged things as
marking very important setup helper files on the CD-ROM as “hidden”. That’s no problem on Windows,

20

Chapter 3. Configuring Wine

since the Windows CD-ROM driver by default displays even files that are supposed to be “hidden”. But
on Linux, which chose tohide“hidden” files on CD by default, this isFATAL! (the programs will simply
abort with an “installation file not found” or similar error) Thus you should never forget to add this
setting.

3.5.2. Short Introduction

Windows applications refer to disc drives by letters such asA: , B: andC: , and to serial and parallel ports
by names such asCOM1: andLPT1: .

You need to tell Wine how to interpret these. You do so by specifying the Unix file system nodes and
devices that Wine should map them onto, as described later in this section.

You can map a Windows fixed disc drive onto any node in your Unix file system - this need not be the
root node of a drive. For example, you could map your Windows driveC: onto your Unix directory
/usr/share/wine-C . Then the Windows folderC:\Windows\Fonts would be at
/usr/share/wine-C/Windows/Fonts in your Unix file system.

Make sure that you have assigned drive letters for directories that will cover all the items Wine needs to
access. These include the programs that you run, the data files they need and the Wine debugger (in case
anything goes wrong).

It is best to use a number of drive letters, and map them onto directories that cover small sections of the
file system containing the files that Wine will need to access. This is safer than simply assigning a single
drive letter to the Unix root directory /, which would allow Windows applications to access the whole of
your Unix file system (subject, of course, to Unix permissions). If one of them misbehaved, or if you
accidentally installed a virus, this might leave you vulnerable.

For replaceable media, such as floppy discs and CD-ROMs, you should map Windows drive letters onto
the mount points for these drives in your Unix file system - for example/mnt/floppy or /mnt/cdrom .

If your applications access serial and parallel ports directly, you should map these onto the corresponding
Unix devices - for example/dev/ttyS0 and/dev/lp0 .

3.5.3. Windows Directory Structure

Here’s the fundamental layout that Windows programs and installers expect and that we thus need to
configure properly in Wine. Without it, they seldomly operate correctly. If you intend to use a
no-windows environment (not using an existing Windows partition), then it is recommended to use either
WineSetupTk’s or wineinstall’s capabilities to create an initial windows directory tree, since creating a
directory structure manually is tiresome and error-prone.

21

Chapter 3. Configuring Wine

C:\ Root directory of primary disk drive
Windows\ Windows directory, containing .INI files,

accessories, etc.
System\ Win3.x/95/98/ME directory for common DLLs

WinNT/2000 directory for common 16-bit DLLs
System32\ WinNT/2000 directory for common 32-bit DLLs
Start Menu\ Program launcher directory structure

Programs\ Program launcher links (.LNK files) to programs
Program Files\ Application binaries (.EXE and .DLL files)

3.5.4. The dosdevices Directory

Thedosdevices directory contains the entries that tell Wine how to map Windows disc drive letters
onto Unix file system nodes, and how to map Windows serial and parallel ports onto Unix devices. It is
located in the.wine sub-directory of your home directory, i.e.~/.wine/dosdevices .

The entries in thedosdevices directory are symbolic links to Unix file system nodes and devices. You
can create them by using theln command in a Unix terminal. Alternatively, many File Managers have
the capability of creating symbolic links.

For example, if you have decided to map your WindowsC: drive onto/usr/share/wine-c , you could
type the following (after changing to yourdosdevices directory):

ln -s /usr/share/wine-c c:

Replaceable media are a little more complicated. In addition to creating a link for the file system on the
medium, for example:

ln -s /mnt/floppy a:

you also need to create a link for the device itself. Notice that this has a double colon after the drive letter:

ln -s /dev/fd0 a::

For serial and parallel ports, you simply create a link to the device; notice that no colon is required after
the Windows device name:

ln -s /dev/ttyS0 com1
ln -s /dev/lp0 lpt1

22

Chapter 3. Configuring Wine

Windows shares can are mapped into theunc/ directory so anything trying to access
\\machinename\some\dir\and\file will look in
~/.wine/dosdevices/unc/machinename/some/dir/and/file . For example, if you used Samba
to mount\\machinename\some on /mnt/smb/machinename/some then you can do

ln -s /mnt/smb/machinename/some unc/machinename/some

to make it available in wine (don’t forget to create the unc directory if it doesn’t alrady exist).

3.5.5. File system settings in the [wine] section

"Windows" = "c:\\windows"

This tells Wine and Windows programs where theWindows directory is. It is recommended to have this
directory somewhere on your configuredC drive, and it’s also recommended to just call the directory
"windows" (this is the default setup on Windows, and some stupid programs might rely on this). So in
case you chose a "Windows" setting of "c:\\windows" and you chose to set up a drive C e.g. at
/usr/local/wine_c , the corresponding directory would be/usr/local/wine_c/windows . Make
one if you don’t already have one.No trailing slash(not C:\\windows\)! Write access strongly
recommended, as Windows programs always assume write access to the Windows directory!

"ShowDirSymlinks" = "1"

Wine doesn’t pass directory symlinks to Windows programs by default, as doing so may crash some
programs that do recursive lookups of whole subdirectory trees whenever a directory symlink points
back to itself or one of its parent directories. That’s why we disallowed the use of directory symlinks and
added this setting to reenable ("1") this functionality. If youreally need Wine to take into account
symlinked directories, then reenable it, butbe prepared for crashesin certain Windows programs when
using the above method! (in other words: enabling it is certainly not recommended)

Old Path, Temp, System configuration are now moved into the registry. See theEnvironment Variables
paragraph.

3.5.6. More detailed explanation about file system differences

Windows uses a different (and inferior) way than Unix to describe the location of files in a computer.
Thus Windows programs also expect to find this different way supported by the system. Since we intend
to run Windows programs on a Unix system, we’re in trouble, as we need to translate between these
different file access techniques.

23

Chapter 3. Configuring Wine

Windows uses drive letters to describe drives or any other form of storage media and to access files on
them. For example, common drive names areC: for the main Windows system partition on the first
harddisk andA: for the first floppy drive. Also, Windows uses\ (backslash) as the directory separator
sign, whereas Unix uses/ (slash). Thus, an example document on the first data partition in Windows
might be accessed by the name ofD:\mywork\mydocument.txt .

So much for the Windows way of doing things.

Well, the problem is, in Unix there is no such thing as “drive letters”. Instead, Unix chose to go the much
better way of having one single uniform directory tree (starting with the root directory/), which has
various storage devices such as e.g. harddisk partitions appended at various directory locations within the
tree (an example would be/data1/mywork , which is the first data partition mounted/attached to a
directory called data1 in the root directory/ ; mywork is a sub directory of the data partition file system
that’s mounted under/data1). In Unix, the Windows example document mentioned above could e.g. be
accessed by the name of/data1/mywork/mydocument.txt , provided that the administrator decided
to mount (attach) the first data partition at the directory /data1 inside the Unix directory tree. Note that in
Unix, the administrator canchooseany custom partition location he wants (here,/data1), whereas in
Windows the systemselectsany drive letter it deems suitable for the first data partition (here,D:), and,
even worse, if there is some change in partition order, Windows automaticallychangesthe drive letter,
and you might suddenly find yourself with a first data partition at drive letterE: , with all the file naming
and referencing confusion that entails. Thus, the Windows way of using ever-changing drive letters is
clearly inferior to the Unix way of assigningfixeddirectory tree locations for every data storage medium.
As we’ll see soon, fortunately this Windows limitation of changing drive letters doesn’t affect us in Wine
at all, since we can properly mapnever-changingdrive letters tofixedlocations inside the Unix directory
tree (and even if the location of the respective Unix directory changes, we can still simply update the
Wine drive mapping to reflect the updated location and at the same time keep the original drive letter).

OK, now that we know some theory about Windows and Unix drive and filename mapping, it’s probably
time to ask how Wine achieves the magic of mapping a Unix directory location to a Windows drive...

Wine chose to do the following: In Wine, you don’t assign some real physical storage medium (such as a
harddisk partition or similar) to each drive letter mapping entry. Instead, you choose certain sub directory
trees inside the Unix directory tree (that starts with/) that you would like to assign a drive letter to.

Note that for every Unix sub directory tree that you intend to start Windows programs in, it isabsolutely
requiredto have a Wine drive mapping entry:

For example, if you had a publicly writable “Windows directory space” under/usr/mywine , then in
order to be able to access this sub directory tree from Wine, you should have a drive mapping entry that
maps a certain drive letter (for example, let’s take drive letterP:) either to/usr/mywine or /usr (to
also access any directories belonging to the parent directory) or/ (to also access any directory
whatsoever on this system by this drive letter mapping). The DOS drive/directory location to access files
in /usr/mywine in Winein these configuration cases would then beP:\ or P:\mywine or
P:\usr\mywine , respectively.

24

Chapter 3. Configuring Wine

3.5.7. Installing Wine Without Windows

A major goal of Wine is to allow users to run Windows programs without having to install Windows on
their machine. Wine implements the functionality of the main DLLs usually provided with Windows.
Therefore, once Wine is finished, you will not need to have Windows installed to use Wine.

Wine has already made enough progress that it may be possible to run your target programs without
Windows installed. If you want to try it, follow these steps:

1. Make a symbolic link in~/.wine/dosdevices to the directory where you wantC: to be. Refer to
the wine man page for more information. The directory to be used for emulating aC: drive will be
the base directory for some Windows specific directories created below.

2. Within the directory to be used for C:, create emptywindows , windows/system , windows/Start

Menu, andwindows/Start Menu/Programs directories. Do not point Wine to aWindows

directory full of old installations and a messy registry. (Wine creates a special registry in yourhome

directory, in$HOME/.wine/*.reg . Perhaps you have to remove these files). In one line: mkdir -p
windows windows/system windows/Start\ Menu windows/Start\ Menu/Programs

3. Run and/or install your programs.

Because Wine is not yet complete, some programs will work better with native Windows DLLs than with
Wine’s replacements. Wine has been designed to make this possible. Here are some tips by Juergen
Schmied (and others) on how to proceed. This assumes that yourC:\windows directory in the
configuration file does not point to a native Windows installation but is in a separate Unix file system.
(For instance, “C:\windows” is really subdirectory “windows” located in “/home/ego/wine/drives/c”).

• Run the program withWINEDEBUG=+loaddll to find out which files are needed. Copy the required
DLLs one by one to theC:\windows\system directory. Do not copy KERNEL/KERNEL32,
GDI/GDI32, USER/USER32 or NTDLL. These implement the core functionality of the Windows
API, and the Wine internal versions must be used.

• Edit the “[DllOverrides]” section of~/.wine/config to specify “native” before “builtin” for the
Windows DLLs you want to use. For more information about this, see the Wine manpage.

• Note that some network DLLs are not needed even though Wine is looking for them. The Windows
MPR.DLLcurrently does not work; you must use the internal implementation.

• Copy SHELL.DLL/SHELL32.DLL, COMMDLG.DLL/COMDLG32.DLL and
COMMCTRL.DLL/COMCTL32.DLL only as pairs to your Wine directory (these DLLs are “clean”
to use). Make sure you have these specified in the “[DllPairs]” section of~/.wine/config .

• Be consistent: Use only DLLs from the same Windows version together.

• Putregedit.exe in theC:\windows directory. (Office 95 imports a*.reg file when it runs with an
empty registry, don’t know about Office 97). As of now, it might not be necessary any more to use
regedit.exe, since Wine has its own regedit Winelib application now.

• Also addwinhelp.exe andwinhlp32.exe if you want to be able to browse through your programs’
help function (or in case Wine’s winhelp implementation in programs/winhelp/ is not good enough,
for example).

25

Chapter 3. Configuring Wine

3.5.8. Installing Wine Using An Existing Windows Partition As
Base

Some people intend to use the data of an existing Windows partition with Wine in order to gain some
better compatibility or to run already installed programs in a setup as original as possible. Note that
many Windows programs assume that they have full write access to all windows directories. This means
that you either have to configure the Windows partition mount point for write permission by your Wine
user (seeDealing with FAT/VFAT partitionson how to do that), or you’ll have to copy over (some parts
of) the Windows partition content to a directory of a Unix partition and make sure this directory structure
is writable by your user. WeHIGHLY DISCOURAGEpeople from directly using a Windows partition
with write access as a base for Wine!! (some programs, notably Explorer, corrupt large parts of the
Windows partition in case of an incorrect setup; you’ve been warned). Not to mention that NTFS write
support in Linux is still very experimental anddangerous(in case you’re using an NT-based Windows
version using the NTFS file system). Thus we advise you to go the Unix directory way.

3.5.9. Dealing With FAT/VFAT Partitions

This document describes how FAT and VFAT file system permissions work in Linux with a focus on
configuring them for Wine.

3.5.9.1. Introduction

Linux is able to access DOS and Windows file systems using either the FAT (older 8.3 DOS filesystems)
or VFAT (newer Windows 95 or later long filename filesystems) modules. Mounted FAT or VFAT
filesystems provide the primary means for which existing programs and their data are accessed through
Wine for dual boot (Linux + Windows) systems.

Wine maps mounted FAT file systems, such as/c , to drive letters, such as “c:”, by means of symbolic
links in thedosdevices directory. Thus, in your dosdevices directory, you could type the command:

ln -s /c c:

Although VFAT filesystems are preferable to FAT filesystems for their long filename support, the term
“FAT” will be used throughout the remainder of this document to refer to FAT filesystems and their
derivatives. Also, “/c” will be used as the FAT mount point in examples throughout this document.

Most modern Linux distributions either detect or allow existing FAT file systems to be configured so that
they can be mounted, in a location such as/c , either persistently (on bootup) or on an as needed basis. In
either case, by default, the permissions will probably be configured so that they look like:

26

Chapter 3. Configuring Wine

~>cd /c

/c> ls -l

-rwxr-xr-x 1 root root 91 Oct 10 17:58 autoexec.bat

-rwxr-xr-x 1 root root 245 Oct 10 17:58 config.sys

drwxr-xr-x 41 root root 16384 Dec 30 1998 windows

where all the files are owned by "root", are in the "root" group and are only writable by "root" (755

permissions). This is restrictive in that it requires that Wine be run as root in order for programs to be
able to write to any part of the filesystem.

There are three major approaches to overcoming the restrictive permissions mentioned in the previous
paragraph:

1. Run Wine as root

2. Mount the FAT filesystem with less restrictive permissions

3. Shadow the FAT filesystem by completely or partially copying it

Each approach will be discussed in the following sections.

3.5.9.2. Running Wine as root

Running Wine as root is the easiest and most thorough way of giving programs that Wine runs
unrestricted access to FAT files systems. Running wine as root also allows programs to do things
unrelated to FAT filesystems, such as listening to ports that are less than 1024. Running Wine as root is
dangerous since there is no limit to what the program can do to the system, so it’sHIGHLY
DISCOURAGED.

3.5.9.3. Mounting FAT filesystems

The FAT filesystem can be mounted with permissions less restrictive than the default. This can be done
by either changing the user that mounts the FAT filesystem or by explicitly changing the permissions that
the FAT filesystem is mounted with. The permissions are inherited from the process that mounts the FAT
filesystem. Since the process that mounts the FAT filesystem is usually a startup script running as root the
FAT filesystem inherits root’s permissions. This results in the files on the FAT filesystem having
permissions similar to files created by root. For example:

~>whoami

root

~>touch root_file

~>ls -l root_file

-rw-r--r-- 1 root root 0 Dec 10 00:20 root_file

27

Chapter 3. Configuring Wine

which matches the owner, group and permissions of files seen on the FAT filesystem except for the
missing ’x’s. The permissions on the FAT filesystem can be changed by changing root’s umask (unset
permissions bits). For example:

~>umount /c

~>umask

022

~>umask 073

~>mount /c

~>cd /c

/c> ls -l

-rwx---r-- 1 root root 91 Oct 10 17:58 autoexec.bat

-rwx---r-- 1 root root 245 Oct 10 17:58 config.sys

drwx---r-- 41 root root 16384 Dec 30 1998 windows

Mounting the FAT filesystem with a umask of000 gives all users complete control over it. Explicitly
specifying the permissions of the FAT filesystem when it is mounted provides additional control. There
are three mount options that are relevant to FAT permissions:uid , gid andumask. They can each be
specified when the filesystem is manually mounted. For example:

~>umount /c

~>mount -o uid=500 -o gid=500 -o umask=002 /c

~>cd /c

/c> ls -l

-rwxrwxr-x 1 sle sle 91 Oct 10 17:58 autoexec.bat

-rwxrwxr-x 1 sle sle 245 Oct 10 17:58 config.sys

drwxrwxr-x 41 sle sle 16384 Dec 30 1998 windows

which gives "sle" complete control over/c . The options listed above can be made permanent by adding
them to the/etc/fstab file:

~>grep /c /etc/fstab

/dev/hda1 /c vfat uid=500,gid=500,umask=002,exec,dev,suid,rw 1 1

Note that the umask of002 is common in the user private group file permission scheme. On FAT file
systems this umask assures that all files are fully accessible by all users in the specified user group (gid).

3.5.9.4. Shadowing FAT filesystems

Shadowing provides a finer granularity of control. Parts of the original FAT filesystem can be copied so
that the program can safely work with those copied parts while the program continues to directly read the
remaining parts. This is done with symbolic links. For example, consider a system where a program
named AnApp must be able to read and write to thec:\windows andc:\AnApp directories as well as
have read access to the entire FAT filesystem. On this system the FAT filesystem has default permissions

28

Chapter 3. Configuring Wine

which should not be changed for security reasons or cannot be changed due to lack of root access. On
this system a shadow directory might be set up in the following manner:

~>cd /

/> mkdir c_shadow

/> cd c_shadow

/c_shadow> ln -s /c_/* .

/c_shadow> rm windows AnApp

/c_shadow> cp -R /c_/{windows,AnApp} .

/c_shadow> chmod -R 777 windows AnApp

/c_shadow> perl -p -i -e ’s|/c$|/c_shadow|g’ ~/.wine/config

The above gives everyone complete read and write access to thewindows andAnApp directories while
only root has write access to all other directories.

3.5.10. Drive labels and serial numbers

Wine can read drive volume labels and serial numbers directly from the device. This may be useful for
many Win 9x games or for setup programs distributed on CD-ROMs that check for volume label.

3.5.10.1. What’s Supported?

File System Types Comment

FAT systems hd, floppy reads labels and serial numbers

ISO9660 cdrom reads labels and serial numbers
(not mixed-mode CDs yet!)

3.5.10.2. How To Set Up?

Reading labels and serial numbers just works automatically if you specify the correct symbolic links for
the devices (with double colons after the drive letters) in yourdosdevices directory. Note that the
device has to exist and must be accessible by the user running Wine if you do this, though.

If you don’t want to read labels and serial numbers directly from the device, you can create files at the
root of the drive named.windows-label and.windows-serial respectively. These are simple
ASCII files that you can create with any text editor; the label can be set to any string you like, the serial
number should be expressed as an hexadecimal number.

29

Chapter 3. Configuring Wine

3.5.10.3. Examples

Here’s a simple example of CD-ROM and floppy:

cd ~/.wine/dosdevices

ln -s /mnt/floppy a:
ln -s /dev/fd0 a::

ln -s /mnt/cdrom r:
ln -s /dev/hda1 r::

3.5.10.4. Todo / Open Issues

• The CD-ROM label can be read only if the data track of the disk resides in the first track and the
cdrom is iso9660.

• Support for labels/serial nums WRITING.

• What about reading ext2 volume label?

3.6. The Registry

After Win3.x, the registry became a fundamental part of Windows. It is the place where both Windows
itself, and all Win95/98/NT/2000/XP/etc.-compliant applications, store configuration and state data.
While most sane system administrators (and Wine developers) curse badly at the twisted nature of the
Windows registry, it is still necessary for Wine to support it somehow.

3.6.1. The default registry

A Windows registry contains many keys by default, and some of them are necessary for even installers to
operate correctly. The keys that the Wine developers have found necessary to install applications are
distributed in a file calledwine.inf . It is automatically installed for you if you use the
tools/wineinstall script in the Wine source, but if you want to install it manually, you can do so by
using theregedit tool to be found in theprograms/regedit/ directory in Wine source.wine.inf is
applied even if you plan to use a native Windows registry, since Wine needs some specific registry
settings in its registry (for special workarounds for certain programs etc.). This is done automatically by
wine the first time you run it.

30

Chapter 3. Configuring Wine

3.6.2. Using a Windows registry

If you point Wine at an existing Windows installation (by setting the appropriate directories in
~/.wine/config , then Wine is able to load registry data from it. However, Wine will not save anything
to the real Windows registry, but rather to its own registry files (see below). Of course, if a particular
registry value exists in both the Windows registry and in the Wine registry, then Wine will use the latter.
In the Wine config file, there are a number of configuration settings in the [registry] section (see below)
specific to the handling of Windows registry content by Wine.

3.6.3. The Registry

The initial default registry content to be used by the Wine registry files is in the filewine.inf . It
contains directory paths, class IDs, and more; it must be installed before mostINSTALL.EXE or
SETUP.EXEapplications will work.

3.6.4. Registry structure

The Windows registry is an elaborate tree structure, and not even most Windows programmers are fully
aware of how the registry is laid out, with its different "hives" and numerous links between them; a full
coverage is out of the scope of this document. But here are the basic registry keys you might need to
know about for now.

HKEY_LOCAL_MACHINE

This fundamental root key (in win9x it’s stored in the hidden filesystem.dat) contains everything
pertaining to the current Windows installation.

HKEY_USERS

This fundamental root key (in win9x it’s stored in the hidden fileuser.dat) contains configuration
data for every user of the installation.

HKEY_CLASSES_ROOT

This is a link to HKEY_LOCAL_MACHINE\Software\Classes. It contains data describing things
like file associations, OLE document handlers, and COM classes.

HKEY_CURRENT_USER

This is a link to HKEY_USERS\your_username, i.e., your personal configuration.

3.6.5. Wine registry data files

In the user’s home directory, there is a subdirectory named.wine , where Wine will try to save its
registry by default. It saves into four files, which are:

31

Chapter 3. Configuring Wine

system.reg

This file contains HKEY_LOCAL_MACHINE.

user.reg

This file contains HKEY_CURRENT_USER.

userdef.reg

This file contains HKEY_USERS\.Default (i.e. the default user settings).

wine.userreg

Wine saves HKEY_USERS to this file (both current and default user), but does not load from it,
unlessuserdef.reg is missing.

All of these files are human-readable text files, so unlike Windows, you can actually use an ordinary text
editor on them if you want (make sure you don’t have Wine running when modifying them, otherwise
your changes will be discarded).

FIXME: global configuration currently not implemented. In addition to these files, Wine can also
optionally load from global registry files residing in the same directory as the globalwine.conf (i.e.
/usr/local/etc if you compiled from source). These are:

wine.systemreg

Contains HKEY_LOCAL_MACHINE.

wine.userreg

Contains HKEY_USERS.

3.6.6. System administration

With the above file structure, it is possible for a system administrator to configure the system so that a
system Wine installation (and applications) can be shared by all the users, and still let the users all have
their own personalized configuration. An administrator can, after having installed Wine and any
Windows application software he wants the users to have access to, copy the resultingsystem.reg and
user.reg over to the global registry files (which we assume will reside in/usr/local/etc here),
with:

cd ~/.wine
cp system.reg /usr/local/etc/wine.systemreg
cp user.reg /usr/local/etc/wine.userreg

and perhaps even symlink these back to the administrator’s account, to make it easier to install apps
system-wide later:

32

Chapter 3. Configuring Wine

ln -sf /usr/local/etc/wine.systemreg system.reg
ln -sf /usr/local/etc/wine.userreg user.reg

Note that thetools/wineinstall script already does all of this for you, if you install Wine source as
root. If you then install Windows applications while logged in as root, all your users will automatically
be able to use them. While the application setup will be taken from the global registry, the users’
personalized configurations will be saved in their own home directories.

But be careful with what you do with the administrator account - if you do copy or link the
administrator’s registry to the global registry, any user might be able to read the administrator’s
preferences, which might not be good if sensitive information (passwords, personal information, etc) is
stored there. Only use the administrator account to install software, not for daily work; use an ordinary
user account for that.

3.6.7. The [registry] section

Now let’s look at theWine configuration fileoptions for handling the registry.

GlobalRegistryDir

Optional. Sets the path to look for the Global Registry.

LoadGlobalRegistryFiles

Controls whether to try to load the global registry files, if they exist.

LoadHomeRegistryFiles

Controls whether to try to load the user’s registry files (in the.wine subdirectory of the user’s
home directory).

LoadWindowsRegistryFiles

Controls whether Wine will attempt to load registry data from a real Windows registry in an existing
MS Windows installation.

WritetoHomeRegistryFiles

Controls whether registry data will be written to the user’s registry files. (Currently, there is no
alternative, so if you turn this off, Wine cannot save the registry on disk at all; after you exit Wine,
your changes will be lost.)

SaveOnlyUpdatedKeys

Controls whether the entire registry is saved to the user’s registry files, or only subkeys the user
have actually changed. Considering that the user’s registry will override any global registry files and
Windows registry files, it usually makes sense to only save user-modified subkeys; that way,
changes to the rest of the global or Windows registries will still affect the user.

33

Chapter 3. Configuring Wine

PeriodicSave

If this option is set to a nonzero value, it specifies that you want the registry to be saved to disk at the
given interval. If it is not set, the registry will only be saved to disk when the wineserver terminates.

UseNewFormat

This option is obsolete. Wine now always uses the new format; support for the old format was
removed a while ago.

3.7. DLL configuration

3.7.1. Introduction

If your programs don’t work as expected, then it’s often because one DLL or another is failing. This can
often be resolved by changing certain DLLs from Wine built-in to native Windows DLL file and vice
versa.

A very useful help to find out which DLLs are loaded as built-in and which are loaded as native Windows
file can be the debug channel loaddll, activated via the environment variableWINEDEBUG=+loaddll .

3.7.2. Introduction To DLL Sections

There are a few things you will need to know before configuring the DLL sections in your wine
configuration file.

3.7.2.1. Windows DLL Pairs

Most windows DLLs have a win16 (Windows 3.x) and win32 (Windows 9x/NT) form. The combination
of the win16 and win32 DLL versions are called the "DLL pair". This is a list of the most common pairs:

Win16 Win32 Native a

KERNEL KERNEL32 No!

USER USER32 No!

SHELL SHELL32 Yes

GDI GDI32 No!

COMMDLG COMDLG32 Yes

VER VERSION Yes

Notes: a. Is it possible to use native DLL with wine? (See next section)

34

Chapter 3. Configuring Wine

3.7.2.2. Different Forms Of DLLs

There are a few different forms of DLLs wine can load:

native

The DLLs that are included with windows. Many windows DLLs can be loaded in their native form.
Many times these native versions work better than their non-Microsoft equivalent -- other times they
don’t.

builtin

The most common form of DLL loading. This is what you will use if the DLL is too system-specific
or error-prone in native form (KERNEL for example), you don’t have the native DLL, or you just
want to be Microsoft-free.

so

Native ELF libraries. Has became obsolete, ignored.

elfdll

ELF encapsulated windows DLLs. No longer used, ignored.

3.7.3. DLL Overrides

The wine configuration file directives [DllDefaults] and [DllOverrides] are the subject of some
confusion. The overall purpose of most of these directives are clear enough, though - given a choice,
should Wine use its own built-in DLLs, or should it use.DLL files found in an existing Windows
installation? This document explains how this feature works.

3.7.3.1. DLL types

native

A "native" DLL is a .DLL file written for the real Microsoft Windows.

builtin

A "built-in" DLL is a Wine DLL. These can either be a part oflibwine.so , or more recently, in a
special.so file that Wine is able to load on demand.

35

Chapter 3. Configuring Wine

3.7.3.2. The [DllDefaults] section

DefaultLoadOrder

This specifies in what order Wine should search for available DLL types, if the DLL in question
was not found in the [DllOverrides] section.

3.7.3.3. The [DllPairs] section

At one time, there was a section called [DllPairs] in the default configuration file, but this has been
obsoleted because the pairing information has now been embedded into Wine itself. (The purpose of this
section was merely to be able to issue warnings if the user attempted to pair codependent 16-bit/32-bit
DLLs of different types.) If you still have this in your~/.wine/config or wine.conf , you may safely
delete it.

3.7.3.4. The [DllOverrides] section

This section specifies how you want specific DLLs to be handled, in particular whether you want to use
"native" DLLs or not, if you have some from a real Windows configuration. Because built-ins do not mix
seamlessly with native DLLs yet, certain DLL dependencies may be problematic, but workarounds exist
in Wine for many popular DLL configurations. Also see WWN’s [16]Status Page to figure out how well
your favorite DLL is implemented in Wine.

It is of course also possible to override these settings by explicitly using Wine’s--dll command-line
option (see the man page for details). Some hints for choosing your optimal configuration (listed by
16/32-bit DLL pair):

krnl386, kernel32

Native versions of these will never work, so don’t try. Leave atbuiltin .

gdi, gdi32

Graphics Device Interface. No effort has been made at trying to run native GDI. Leave atbuiltin .

user, user32

Window management and standard controls. It was possible to use Win95’snative versions at
some point (if all other DLLs that depend on it, such as comctl32 and comdlg32, were also run
native). However, this is no longer possible after the Address Space Separation, so leave at
builtin .

ntdll

NT kernel API. Although badly documented, thenative version of this will never work. Leave at
builtin .

36

Chapter 3. Configuring Wine

w32skrnl

Win32s (for Win3.x). Thenative version will probably never work. Leave atbuiltin .

wow32

Win16 support library for NT. Thenative version will probably never work. Leave atbuiltin .

system

Win16 kernel stuff. Will never worknative . Leave atbuiltin .

display

Display driver. Definitely leave atbuiltin .

toolhelp

Tool helper routines. This is rarely a source of problems. Leave atbuiltin .

ver, version

Versioning. Seldom useful to mess with.

advapi32

Registry and security features. Trying thenative version of this may or may not work.

commdlg, comdlg32

Common Dialogs, such as color picker, font dialog, print dialog, open/save dialog, etc. It is safe to
try native .

commctrl, comctl32

Common Controls. This is toolbars, status bars, list controls, the works. It is safe to trynative .

shell, shell32

Shell interface (desktop, filesystem, etc). Being one of the most undocumented pieces of Windows,
you may have luck with thenative version, should you need it.

winsock, wsock32

Windows Sockets. Thenative version will not work under Wine, so leave atbuiltin .

icmp

ICMP routines for wsock32. As with wsock32, leave atbuiltin .

mpr

Thenative version may not work due to thunking issues. Leave atbuiltin .

lzexpand, lz32

Lempel-Ziv decompression. Wine’sbuiltin version ought to work fine.

37

Chapter 3. Configuring Wine

winaspi, wnaspi32

Advanced SCSI Peripheral Interface. Thenative version will probably never work. Leave at
builtin .

crtdll

C Runtime library. Thenative version will easily work better than Wine’s on this one.

winspool.drv

Printer spooler. You are not likely to have more luck with thenative version.

ddraw

DirectDraw/Direct3D. Since Wine does not implement the DirectX HAL, thenative version will
not work at this time.

dinput

DirectInput. Running thisnative may or may not work.

dsound

DirectSound. It may be possible to run thisnative , but don’t count on it.

dplay/dplayx

DirectPlay. Thenative version ought to work best on this, if at all.

mmsystem, winmm

Multimedia system. Thenative version is not likely to work. Leave atbuiltin .

msacm, msacm32

Audio Compression Manager. Thebuiltin version works best, if you set msacm.drv to the same.

msvideo, msvfw32

Video for Windows. It is safe (and recommended) to trynative .

mcicda.drv

CD Audio MCI driver.

mciseq.drv

MIDI Sequencer MCI driver (.MID playback).

mciwave.drv

Wave audio MCI driver (.WAVplayback).

mciavi.drv

AVI MCI driver (.AVI video playback). Best to usenative .

38

Chapter 3. Configuring Wine

mcianim.drv

Animation MCI driver.

msacm.drv

Audio Compression Manager. Set to same as msacm32.

midimap.drv

MIDI Mapper.

wprocs

This is a pseudo-DLL used by Wine for thunking purposes. Anative version of this doesn’t exist.

3.7.4. System DLLs

The Wine team has determined that it is necessary to create fake DLL files to trick many programs that
check for file existence to determine whether a particular feature (such as Winsock and its TCP/IP
networking) is available. If this is a problem for you, you can create empty files in the configured
c:\windows\system directory to make the program think it’s there, and Wine’s built-in DLL will be
loaded when the program actually asks for it. (Unfortunately,tools/wineinstall does not create
such empty files itself.)

Applications sometimes also try to inspect the version resources from the physical files (for example, to
determine the DirectX version). Empty files will not do in this case, it is rather necessary to install files
with complete version resources. This problem is currently being worked on. In the meantime, you may
still need to grab some real DLL files to fool these apps with.

And there are of course DLLs that wine does not currently implement very well (or at all). If you do not
have a real Windows you can steal necessary DLLs from, you can always get some from one of the
Windows DLL archive sites that can be found via internet search engine. Please make sure to obey any
licenses on the DLLs you fetch... (some are redistributable, some aren’t).

3.7.5. Missing DLLs

In case Wine complains about a missing DLL, you should check whether this file is a publicly available
DLL or a custom DLL belonging to your program (by searching for its name on the internet). If you
managed to get hold of the DLL, then you should make sure that Wine is able to find and load it. DLLs
usually get loaded according to the mechanism of the SearchPath() function. This function searches
directories in the following order:

1. The directory the program was started from.

2. The current directory.

39

Chapter 3. Configuring Wine

3. The Windows system directory.

4. The Windows directory.

5. The PATH variable directories.

In short: either put the required DLL into your program directory (might be ugly), or usually put it into
the Windows system directory. Just find out its directory by having a look at the Wine configuration file
variable "System" (which indicates the location of the Windows system directory) and the associated
drive entry. Note that you probably shouldn’t use NT-based native DLLs, since Wine’s NT API support is
somewhat weaker than its Win9x API support (thus leading to even worse compatibility with NT DLLs
than with a no-windows setup!), so better use Win9x native DLLs instead or no native DLLs at all.

3.7.6. Fetching native DLLs from a Windows CD

The Linuxcabextractutility can be used to extract native Windows .dll files from .cab files that are to be
found on many Windows installation CDs.

3.8. Configuring the graphics driver (x11drv, ttydrv etc.)

Wine currently supports several different display subsystems (graphics / text) that are available on
various operating systems today. For each of these, Wine implements its own interfacing driver. This
section explains how to select one of these drivers and how to further configure the respective driver.
Once you’re finished with that, you can consider your Wine installation to be finished.

The display drivers currently implemented in Wine are: x11drv, which is used for interfacing to X11
graphics (the one you’ll most likely want to use) and ttydrv (used for text mode console apps mainly that
don’t really need any graphics output). Once you have decided which display driver to use, it is chosen
with theGraphicsDriver option in the [wine] section of~/.wine/config .

3.8.1. Configuring the x11drv graphics driver

3.8.1.1. x11drv modes of operation

The x11drv driver consists of two conceptually distinct pieces, the graphics driver (GDI part), and the
windowing driver (USER part). Both of these are linked into thelibx11drv.so module, though (which
you load with theGraphicsDriver option). In Wine, running on X11, the graphics driver must draw on
drawables (window interiors) provided by the windowing driver. This differs a bit from the Windows
model, where the windowing system creates and configures device contexts controlled by the graphics
driver, and programs are allowed to hook into this relationship anywhere they like. Thus, to provide any
reasonable tradeoff between compatibility and usability, the x11drv has three different modes of
operation.

40

Chapter 3. Configuring Wine

Managed

The default. Specified by using theManaged wine configuration file option (see below). Ordinary
top-level frame windows with thick borders, title bars, and system menus will be managed by your
window manager. This lets these programs integrate better with the rest of your desktop, but may
not always work perfectly (a rewrite of this mode of operation, to make it more robust and less
patchy, is currently being done, though, and it’s planned to be finished before the Wine 1.0 release).

Unmanaged / Normal

Window manager independent (any running window manager is ignored completely). Window
decorations (title bars, borders, etc) are drawn by Wine to look and feel like the real Windows. This
is compatible with programs that depend on being able to compute the exact sizes of any such
decorations, or that want to draw their own. Unmanaged mode is only used if both Managed and
Desktop are set to disabled.

Desktop-in-a-Box

Specified by using theDesktop wine configuration file option (see below). (adding a geometry, e.g.
800x600 for a such-sized desktop, or even800x600+0+0 to automatically position the desktop at
the upper-left corner of the display). This is the mode most compatible with the Windows model.
All program windows will just be Wine-drawn windows inside the Wine-provided desktop window
(which will itself be managed by your window manager), and Windows programs can roam freely
within this virtual workspace and think they own it all, without disturbing your other X apps. Note:
currently there’s one desktop window for every program; this will be fixed at some time.

3.8.1.2. The [x11drv] section

Managed

Wine can let frame windows be managed by your window manager. This option specifies whether
you want that by default.

Desktop

Creates a main desktop window of a specified size to display all Windows programs in. The size
argument could e.g. be "800x600".

DXGrab

If you don’t use DGA, you may want an alternative means to convince the mouse cursor to stay
within the game window. This option does that. Of course, as with DGA, if Wine crashes, you’re in
trouble (although not as badly as in the DGA case, since you can still use the keyboard to get out of
X).

UseDGA

This specifies whether you want DirectDraw to use XFree86’sDirect Graphics Architecture(DGA),
which is able to take over the entire display and run the game full-screen at maximum speed. (With
DGA1 (XFree86 3.x), you still have to configure the X server to the game’s requested bpp first, but
with DGA2 (XFree86 4.x), runtime depth-switching may be possible, depending on your driver’s
capabilities.) But be aware that if Wine crashes while in DGA mode, it may not be possible to

41

Chapter 3. Configuring Wine

regain control over your computer without rebooting. DGA normally requires either root privileges
or read/write access to/dev/mem .

DesktopDoubleBuffered

Applies only if you use the--desktop command-line option to run in a desktop window. Specifies
whether to create the desktop window with a double-buffered visual, something most OpenGL
games need to run correctly.

AllocSystemColors

Applies only if you have a palette-based display, i.e. if your X server is set to a depth of 8bpp, and if
you haven’t requested a private color map. It specifies the maximum number of shared colormap
cells (palette entries) Wine should occupy. The higher this value, the less colors will be available to
other programs.

PrivateColorMap

Applies only if you have a palette-based display, i.e. if your X server is set to a depth of 8bpp. It
specifies that you don’t want to use the shared color map, but a private color map, where all 256
colors are available. The disadvantage is that Wine’s private color map is only seen while the mouse
pointer is inside a Wine window, so psychedelic flashing and funky colors will become routine if
you use the mouse a lot.

Synchronous

To be used for debugging X11 operations. If Wine crashes with an X11 error, then you should
enable Synchronous mode to disable X11 request caching in order to make sure that the X11 error
happens directly after the corresponding X11 call in the log file appears. Will slow down X11
output!

ScreenDepth

Applies only to multi-depth displays. It specifies which of the available depths Wine should use
(and tell Windows apps about).

Display

This specifies which X11 display to use, and if specified, will override the DISPLAY environment
variable.

PerfectGraphics

This option only determines whether fast X11 routines or exact Wine routines will be used for
certain ROP codes in blit operations. Most users won’t notice any difference.

3.8.2. Configuring the ttydrv graphics driver

Currently, the ttydrv doesn’t have any special configuration options to set in the configuration file.

42

Chapter 3. Configuring Wine

3.9. Setting the Windows and DOS version value

The windows and DOS version value a program gets e.g. by calling the Windows function GetVersion()
plays a very important role: If your Wine installation for whatever reason fails to provide to your
program the correct version value that it expects, then the program might assume some very bad things
and fail (in the worst case even silently!). Fortunately Wine contains some more or less intelligent
Windows version guessing algorithm that will try to guess the Windows version a program might expect
and pass that one on to the program. Thus you shouldnot lightly configure a version value, as this will be
a "forced" value and thus turn out to be rather harmful to proper operation. In other words: only
explicitly set a Windows version value in case Wine’s own version detection was unable to provide the
correct Windows version and the program fails.

3.9.1. How to configure the Windows and DOS version value
Wine should return

The version values can be configured in the wine configuration file in the [Version] section.

"Windows" = "<version string>"

default: none; chosen by semi-intelligent detection mechanism based on DLL environment. Used to
specify which Windows version to return to programs (forced value, overrides standard detection
mechanism!). Valid settings are e.g. "win31", "win95", "win98", "win2k", "winxp". Also valid as an
AppDefaultssetting (recommended/preferred use).

"DOS"="<version string>"

Used to specify the DOS version that should be returned to programs. Only takes effect in case
Wine acts as "win31" Windows version! Common DOS version settings include 6.22, 6.20, 6.00,
5.00, 4.00, 3.30, 3.10. Also valid as anAppDefaultssetting (recommended/preferred use).

3.10. Dealing with Fonts

3.10.1. Fonts

Note: The fnt2bdf utility is included with Wine. It can be found in the tools directory. Links to the
other tools mentioned in this document can be found in the Wine Developer’s Guide:
http://www.winehq.org/site/docs/wine-devel/index

43

Chapter 3. Configuring Wine

3.10.1.1. How To Convert Windows Fonts

If you have access to a Windows installation you should use thefnt2bdf utility (found in thetools

directory) to convert bitmap fonts (VGASYS.FON, SSERIFE.FON, andSERIFE.FON) into the format that
the X Window System can recognize.

1. Extract bitmap fonts withfnt2bdf .

2. Convert.bdf files produced by Step 1 into.pcf files withbdftopcf.

3. Copy .pcf files to the font server directory which is usually/usr/lib/X11/fonts/misc (you
will probably need superuser privileges). If you want to create a new font directory you will need to
add it to the font path.

4. Runmkfontdir for the directory you copied fonts to. If you are already in X you should runxset fp
rehashto make X server aware of the new fonts. You may also or instead have to restart the font
server (using e.g./etc/init.d/xfs restart under Red Hat 7.1)

5. Edit the~/.wine/config file to remove aliases for the fonts you’ve just installed.

Wine can get by without these fonts but ’the look and feel’ may be quite different. Also, some
applications try to load their custom fonts on the fly (WinWord 6.0) and since Wine does not implement
this yet it instead prints out something like;

STUB: AddFontResource(SOMEFILE.FON)

You can convert this file too. Note that.FON file may not hold any bitmap fonts andfnt2bdf will fail if
this is the case. Also note that although the above message will not disappear Wine will work around the
problem by using the font you extracted from theSOMEFILE.FON. fnt2bdf will only work for Windows
3.1 fonts. It will not work for TrueType fonts.

What to do with TrueType fonts? There are several commercial font tools that can convert them to the
Type1 format but the quality of the resulting fonts is far from stellar. The other way to use them is to get
a font server capable of rendering TrueType (Caldera has one, there also is the freexfstt in
Linux/X11/fonts on sunsite and mirrors, if you’re on FreeBSD you can use the port in
/usr/ports/x11-servers/Xfstt . And there isxfsft which uses the freetype library, seefreetype
description).

However, there is a possibility of the native TrueType support via FreeType renderer in the future (hint,
hint :-)

3.10.1.2. How To Add Font Aliases To ~/.wine/config

Many Windows applications assume that fonts included in original Windows 3.1 distribution are always
present. By default Wine creates a number of aliases that map them on the existing X fonts:

44

Chapter 3. Configuring Wine

Windows font ...is mapped to... X font

"MS Sans Serif" -> "-adobe-helvetica-"

"MS Serif" -> "-bitstream-charter-"

"Times New Roman" -> "-adobe-times-"

"Arial" -> "-adobe-helvetica-"

There is no default alias for the "System" font. Also, no aliases are created for the fonts that applications
install at runtime. The recommended way to deal with this problem is to convert the missing font (see
above). If it proves impossible, like in the case with TrueType fonts, you can force the font mapper to
choose a closely related X font by adding an alias to the [fonts] section. Make sure that the X font
actually exists (withxfontsel tool).

AliasN = [Windows font], [X font] <, optional "mask X font" flag >

Example:

Alias0 = System, --international-, subst
Alias1 = ...
...

Comments:

• There must be no gaps in the sequence{0, ..., N} otherwise all aliases after the first gap won’t be
read.

• Usually font mapper translates X font names into font names visible to Windows programs in the
following fashion:

X font ...will show up as... Extracted name

--international-... -> "International"

-adobe-helvetica-... -> "Helvetica"

-adobe-utopia-... -> "Utopia"

-misc-fixed-... -> "Fixed"

-... ->

-sony-fixed-... -> "Sony Fixed"

-... ->

Note that since-misc-fixed- and-sony-fixed- are different fonts Wine modified the second
extracted name to make sure Windows programs can distinguish them because only extracted names
appear in the font selection dialogs.

• "Masking" alias replaces the original extracted name so that in the example case we will have the
following mapping:

45

Chapter 3. Configuring Wine

X font ...is masked to... Extracted name

--international-... -> "System"

"Nonmasking" aliases are transparent to the user and they do not replace extracted names.

Wine discards an alias when it sees that the native X font is available.

• If you do not have access to Windows fonts mentioned in the first paragraph you should try to
substitute the "System" font with nonmasking alias. Thexfontselapplication will show you the fonts
available to X.

Alias.. = System, ...bold font without serifs

Also, some Windows applications request fonts without specifying the typeface name of the font. Font
table starts with Arial in most Windows installations, however X font table starts with whatever is the first
line in thefonts.dir . Therefore Wine uses the following entry to determine which font to check first.

Example:

Default = -adobe-times-

Comments:

It is better to have a scalable font family (bolds and italics included) as the default choice because
mapper checks all available fonts until requested height and other attributes match perfectly or the end of
the font table is reached. Typical X installations have scalable fonts in the../fonts/Type1 and
../fonts/Speedo directories.

3.10.1.3. How To Manage Cached Font Metrics

Wine stores detailed information about available fonts in the~/.wine/cachedmetrics.[display]

file. You can copy it elsewhere and add this entry to the [fonts] section in your~/.wine/config :

FontMetrics = <file with metrics >

If Wine detects changes in the X font configuration it will rebuild font metrics from scratch and then it
will overwrite ~/.wine/cachedmetrics.[display] with the new information. This process can take
a while.

46

Chapter 3. Configuring Wine

3.10.1.4. Too Small Or Too Large Fonts

Windows programs may ask Wine to render a font with the height specified in points. However,
point-to-pixel ratio depends on the real physical size of your display (15", 17", etc...). X tries to provide
an estimate of that but it can be quite different from the actual size. You can change this ratio by adding
the following entry to the [fonts] section:

Resolution = <integer value >

In general, higher numbers give you larger fonts. Try to experiment with values in the 60 - 120 range. 96
is a good starting point.

3.10.1.5. "FONT_Init: failed to load ..." Messages On Startup

The most likely cause is a brokenfonts.dir file in one of your font directories. You need to rerun
mkfontdir to rebuild this file. Read its manpage for more information. If you can’t runmkfontdir on
this machine as you are not root, usexset -fp xxx to remove the broken font path.

3.10.2. Setting up a TrueType Font Server

Follow these instructions to set up a TrueType font server on your system.

1. Get a freetype source archive (freetype-X.Y.tar.gz ?).

2. Read docs, unpack, configure and install

3. Test the library, e.g.ftview 20 /dosc/win95/fonts/times

4. Getxfsft-beta1e.linux-i586

5. Install it and start it when booting, e.g. in an rc-script. The manpage forxfs applies.

6. Follow the hints given by <williamc@dai.ed.ac.uk >

7. I got xfsft from http://www.dcs.ed.ac.uk/home/jec/progindex.html. I have it running all the time.
Here is/usr/X11R6/lib/X11/fs/config :

clone-self = on
use-syslog = off
catalogue = /c/windows/fonts
error-file = /usr/X11R6/lib/X11/fs/fs-errors
default-point-size = 120
default-resolutions = 75,75,100,100

Obviously/c/windows/fonts is where my Windows fonts on my Win95C: drive live; could be
e.g./mnt/dosC/windows/system for Win31.

47

Chapter 3. Configuring Wine

In /c/windows/fonts/fonts.scale I have:

14
arial.ttf -monotype-arial-medium-r-normal--0-0-0-0-p-0-iso8859-1
arialbd.ttf -monotype-arial-bold-r-normal--0-0-0-0-p-0-iso8859-1
arialbi.ttf -monotype-arial-bold-o-normal--0-0-0-0-p-0-iso8859-1
ariali.ttf -monotype-arial-medium-o-normal--0-0-0-0-p-0-iso8859-1
cour.ttf -monotype-courier-medium-r-normal--0-0-0-0-p-0-iso8859-1
courbd.ttf -monotype-courier-bold-r-normal--0-0-0-0-p-0-iso8859-1
courbi.ttf -monotype-courier-bold-o-normal--0-0-0-0-p-0-iso8859-1
couri.ttf -monotype-courier-medium-o-normal--0-0-0-0-p-0-iso8859-1
times.ttf -monotype-times-medium-r-normal--0-0-0-0-p-0-iso8859-1
timesbd.ttf -monotype-times-bold-r-normal--0-0-0-0-p-0-iso8859-1
timesbi.ttf -monotype-times-bold-i-normal--0-0-0-0-p-0-iso8859-1
timesi.ttf -monotype-times-medium-i-normal--0-0-0-0-p-0-iso8859-1
symbol.ttf -monotype-symbol-medium-r-normal--0-0-0-0-p-0-microsoft-symbol
wingding.ttf -microsoft-wingdings-medium-r-normal--0-0-0-0-p-0-microsoft-symbol

In /c/windows/fonts/fonts.dir I have exactly the same.

In /usr/X11R6/lib/X11/XF86Config I have

FontPath "tcp/localhost:7100"

in front of the otherFontPath lines. That’s it! As an interesting by-product of course, all those web
pages which specify Arial come up in Arial in Netscape ...

8. Shut down X and restart (and debug errors you did while setting up everything).

9. Test with e.g.xlsfont | grep arial

3.11. Printing in Wine

How to print documents in Wine...

3.11.1. Printing

Printing in Wine can be done using the built-in Wine PostScript driver (+ ghostscript to produce output
for non-PostScript printers).

Note that at the moment WinPrinters (cheap, dumb printers that require the host computer to explicitly
control the head) will not work with their Windows printer drivers. It is unclear whether they ever will.

48

Chapter 3. Configuring Wine

3.11.1.1. Built-in Wine PostScript driver

Enables printing of PostScript files via a driver built into Wine. See below for installation instructions.
The code for the PostScript driver is indlls/wineps/ .

The driver behaves as if it were a DRV file calledwineps.drv which at the moment is built into Wine.
Although it mimics a 16 bit driver, it will work with both 16 and 32 bit apps, just as win9x drivers do.

3.11.1.2. Spooling

Spooling is rather primitive. The [spooler] section of the wine config file maps a port (e.g. LPT1:) to a
file or a command via a pipe. For example the following lines

"LPT1:" = "foo.ps"
"LPT2:" = "|lpr"

map LPT1: to filefoo.ps and LPT2: to thelpr command. If a job is sent to an unlisted port, then a file
is created with that port’s name; e.g. for LPT3: a file called LPT3: would be created.

There are now also virtual spool queues called LPR:printername, which send the data tolpr
-Pprintername. You do not need to specify those in the config file, they are handled automatically by
dlls/gdi/printdrv.c .

3.11.2. The Wine PostScript Driver

This allows Wine to generate PostScript files without needing an external printer driver. Wine in this case
uses the system provided PostScript printer filters, which almost all use ghostscript if necessary. Those
should be configured during the original system installation or by your system administrator.

3.11.2.1. Installation

3.11.2.1.1. Installation of CUPS printers

If you are using CUPS, you do not need to configure .ini or registry entries, everything is autodetected.

3.11.2.1.2. Installation of LPR /etc/printcap based printers

If your system is not yet using CUPS, it probably uses LPRng or a LPR based system with configuration
based on/etc/printcap .

49

Chapter 3. Configuring Wine

If it does, your printers in/etc/printcap are scanned with a heuristic whether they are PostScript
capable printers and also configured mostly automatic.

Since Wine cannot find out what type of printer this is, you need to specify a PPD file in the [ppd]
section of~/.wine/config . Either use the shortcut name and make the entry look like:

[ppd]
"ps1" = "/usr/lib/wine/ps1.ppd"

Or you can specify a generic PPD file that is to match for all of the remaining printers. A generic PPD
file can be found indocumentation/samples/generic.ppd .

3.11.2.1.3. Installation of other printers

You do not need to do this if the above 2 sections apply, only if you have a special printer.

Wine PostScript Driver=WINEPS,LPT1:

to the [devices] section and

Wine PostScript Driver=WINEPS,LPT1:,15,45

to the [PrinterPorts] section ofwin.ini , and to set it as the default printer also add

device = Wine PostScript Driver,WINEPS,LPT1:

to the [windows] section ofwin.ini .

You also need to add certain entries to the registry. The easiest way to do this is to customize the
PostScript driver contents ofwine.inf (see below) and use the Winelib program
programs/regedit/regedit. For example, if you have installed the Wine source tree in/usr/src/wine ,
you could use the following series of commands:

• #vi /usr/share/wine/wine.inf

• Edit the copy ofwine.inf to suit your PostScript printing requirements. At a minimum, you must
specify a PPD file for each printer.

• $wineprefixcreate

50

Chapter 3. Configuring Wine

3.11.2.1.4. Required configuration for all printer types

You won’t need Adobe Font Metric (AFM) files for the (type 1 PostScript) fonts that you wish to use any
more. Wine now has this information built-in.

You’ll need a PPD file for your printer. This describes certain characteristics of the printer such as which
fonts are installed, how to select manual feed etc. Adobe has many of these on its website, have a look in
ftp://ftp.adobe.com/pub/adobe/printerdrivers/win/all/
(ftp://ftp.adobe.com/pub/adobe/printerdrivers/win/all/). See above for information on configuring the
driver to use this file.

To enable colour printing you need to have the*ColorDevice entry in the PPD set totrue , otherwise
the driver will generate greyscale.

Note that you need not setprinter=on in the [wine] section of the wine config file, this enables
printing via external printer drivers and does not affect the built-in PostScript driver.

If you’re lucky you should now be able to produce PS files from Wine!

I’ve tested it with win3.1 notepad/write, Winword6 and Origin4.0 and 32 bit apps such as win98
wordpad, Winword97, Powerpoint2000 with some degree of success - you should be able to get
something out, it may not be in the right place.

3.12. SCSI Support

This file describes setting up the Windows ASPI interface. ASPI is a direct link to SCSI devices from
windows programs. ASPI just forwards the SCSI commands that programs send to it to the SCSI bus.

If you use the wrong SCSI device in your setup file, you can send completely bogus commands to the
wrong device - An example would be formatting your hard drives (assuming the device gave you
permission - if you’re running as root, all bets are off).

So please make sure thatall SCSI devices not needed by the program have their permissions set as
restricted as possible!

3.12.1. Windows requirements

1. The software needs to use the "Adaptec" compatible drivers (ASPI). At least with Mustek, they

51

Chapter 3. Configuring Wine

allow you the choice of using the built-in card or the "Adaptec (AHA)" compatible drivers. This will
not work any other way. Software that accesses the scanner via a DOS ASPI driver (e.g.
ASPI2DOS) is supported, too.

2. You probably need a real windows install of the software to set the LUN’s/SCSI id’s up correctly.
I’m not exactly sure.

3.12.2. Linux requirements

1. Your SCSI card must be supported under Linux. This will not work with an unknown SCSI card.
Even for cheap’n crappy "scanner only" controllers some special Linux drivers exist on the net. If
you intend to use your IDE device, you need to use the ide-scsi emulation. Read
http://www.linuxdoc.org/HOWTO/CD-Writing-HOWTO.html
(http://www.linuxdoc.org/HOWTO/CD-Writing-HOWTO.html) for ide-scsi setup instructions.

2. Compile generic SCSI drivers into your kernel.

3. This seems to be not required any more for newer (2.2.x) kernels: Linux by default uses smaller
SCSI buffers than Windows. There is a kernel build defineSG_BIG_BUFF(in sg.h) that is by
default set too low. The SANE project recommends130560 and this seems to work just fine. This
does require a kernel rebuild.

4. Make the devices for the scanner (generic SCSI devices) - look at the SCSI programming HOWTO
at http://www.linuxdoc.org/HOWTO/SCSI-Programming-HOWTO.html
(http://www.linuxdoc.org/HOWTO/SCSI-Programming-HOWTO.html) for device numbering.

5. I would recommend making the scanner device writable by a group. I made a group calledscanner

and added myself to it. Running as root increases your risk of sending bad SCSI commands to the
wrong device. With a regular user, you are better protected.

6. For Win32 software (WNASPI32), Wine has auto-detection in place. For Win16 software
(WINASPI), you need to add a SCSI device entry for your particular scanner to ~/.wine/config. The
format is[scsi cCtTdD] where"C" = "controller" , "T" = "target" , D=LUN

For example, I set mine up as controller0, Target6, LUN 0.

[scsi c0t6d0]
"Device" = "/dev/sgi"

Yours will vary with your particular SCSI setup.

3.12.3. Notes

The biggest drawback is that it only works under Linux at the moment. The ASPI code has only been
tested with:

• a Mustek 800SP with a Buslogic controller under Linux [BM]

52

Chapter 3. Configuring Wine

• a Siemens Nixdorf 9036 with Adaptec AVA-1505 under Linux accessed via DOSASPI. Note that I had
color problems, though (barely readable result) [AM]

• a Fujitsu M2513A MO drive (640MB) using generic SCSI drivers. Formatting and ejecting worked
perfectly. Thanks to Uwe Bonnes for access to the hardware! [AM]

3.13. Using ODBC

This section describes how ODBC works within Wine and how to configure it.

The ODBC system within Wine, as with the printing system, is designed to hook across to the Unix
system at a high level. Rather than ensuring that all the windows code works under wine it uses a suitable
Unix ODBC provider, such as UnixODBC. Thus if you configure Wine to use the built-in odbc32.dll,
that Wine DLL will interface to your Unix ODBC package and let that do the work, whereas if you
configure Wine to use the native odbc32.dll it will try to use the native ODBC32 drivers etc.

3.13.1. Using a Unix ODBC system with Wine

The first step in using a Unix ODBC system with Wine is, of course, to get the Unix ODBC system
working itself. This may involve downloading code or RPMs etc. There are several Unix ODBC systems
available; the one the author is used to is unixODBC (with the IBM DB2 driver). Typically such systems
will include a tool, such asisql, which will allow you to access the data from the command line so that
you can check that the system is working.

The next step is to hook the Unix ODBC library to the wine built-in odbc32 DLL. The built-in odbc32
(currently) looks to the environment variableLIB_ODBC_DRIVER_MANAGERfor the name of the
ODBC library. For example in the author’s .bashrc file is the line:

export LIB_ODBC_DRIVER_MANAGER=/usr/lib/libodbc.so.1.0.0

If that environment variable is not set then it looks for a library called libodbc.so and so you can add a
symbolic link to equate that to your own library. For example as root you could run the commands:

ln -s libodbc.so.1.0.0 /usr/lib/libodbc.so

/sbin/ldconfig

The last step in configuring this is to ensure that Wine is set up to run the built-in version of odbc32.dll,
by modifying the DLL configuration. This built-in DLL merely acts as a stub between the calling code
and the Unix ODBC library.

53

Chapter 3. Configuring Wine

If you have any problems then you can use WINEDEBUG=+odbc32 command before running wine to
trace what is happening. One word of warning. Some programs actually cheat a little and bypass the
ODBC library. For example the Crystal Reports engine goes to the registry to check on the DSN. The fix
for this is documented at unixODBC’s site where there is a section on using unixODBC with Wine.

3.13.2. Using Windows ODBC drivers

Native ODBC drivers have been reported to work for many types of databases including MSSQL and
Oracle. In fact, some like MSSQL can only be accessed on Linux through a Winelib app. Rather than just
copying DLL files, most ODBC drivers require a Windows-based installer to run to properly configure
things such as registry keys.

In order to set up MSSQL support you will first need to download and run the mdac_typ.exe installer
from microsoft.com. In order to configure your ODBC connections you must then run CLICONFG.EXE
and ODBCAD32.EXE under Wine. You can find them in the windows\system directory after mdac_typ
runs. Compare the output of these programs with the output on a native Windows machine. Some things,
such as protocols, may be missing because they rely on being installed along with the operating system.
If so, you may be able to copy missing functionality from an existing Windows installation as well as any
registry values required. A native Windows installation configured to be used by Wine should work the
same way it did when run natively.

Types successfully tested under wine:

DB Type Usefulness

MS SQL 100%

Please report any other successes to the wine-devel (mailto:wine-devel@winehq.org) mailing list.

54

Chapter 4. Running Wine

This chapter will describe all aspects of running Wine, like e.g. basic Wine invocation, command line
parameters of various Wine support programs etc.

4.1. Basic usage: applications and control panel applets

Assuming you are using a fake Windows installation, you install applications into Wine in the same way
you would in Windows: by running the installer. You can just accept the defaults for where to install,
most installers will default to "C:\Program Files", which is fine. If the application installer requests it,
you may find that Wine creates icons on your desktop and in your app menu. If that happens, you can
start the app by clicking on them.

The standard way to uninstall things is for the application to provide an uninstaller, usually registered
with the "Add/Remove Programs" control panel applet. To access the Wine equivalent, run the
uninstaller program (it is located in theprograms/uninstaller/ directory in a Wine source
directory) in aterminal:

$ uninstaller

Some programs install associated control panel applets, examples of this would be Internet Explorer and
QuickTime. You can access the Wine control panel by running in aterminal:

$ wine control

which will open a window with the installed control panel applets in it, as in Windows.

If the application doesn’t install menu or desktop items, you’ll need to run the app from the command
line. Remembering where you installed to, something like:

$ wine "c:\program files\appname\appname.exe"

will probably do the trick. The path isn’t case sensitive, but remember to include the double quotes.
Some programs don’t always use obvious naming for their directories and EXE files, so you might have
to look inside the program files directory to see what was put where.

55

Chapter 4. Running Wine

4.2. How to run Wine

You can simply invoke thewine command to get a small help message:

Wine 20040405
Usage: wine PROGRAM [ARGUMENTS...] Run the specified program

wine --help Display this help and exit
wine --version Output version information and exit

The first argument should be the name of the file you wantwine to execute. If the executable is in the
Path environment variable, you can simply give the executable file name. However, if the executable is
not in Path , you must give the full path to the executable (in Windows format, not UNIX format!). For
example, given aPath of the following:

Path="c:\windows;c:\windows\system;e:\;e:\test;f:\"

You could run the filec:\windows\system\foo.exe with:

$ wine foo.exe

However, you would have to run the filec:\myapps\foo.exe with this command:

$ wine c:\\myapps\\foo.exe

(note the backslash-escaped "\" !)

For details on running text mode (CUI) executables, read thesectionbelow.

4.3. Explorer-like graphical Wine environments

If you prefer using a graphical interface to manage your files you might want to consider using Winefile.
This Winelib application comes with Wine and can be found with the other Wine programs. It is a useful
way to view your drive configuration and locate files, plus you can execute programs directly from
Winefile. Please note, many functions are not yet implemented.

56

Chapter 4. Running Wine

4.4. Wine Command Line Options

4.4.1. --help

Shows a small command line help page.

4.4.2. --version

Shows the Wine version string. Useful to verify your installation.

4.5. Environment variables

4.5.1. WINEDEBUG=[channels]

Wine isn’t perfect, and many Windows applications still don’t run without bugs under Wine (but then, a
lot of programs don’t run without bugs under native Windows either!). To make it easier for people to
track down the causes behind each bug, Wine provides a number ofdebug channelsthat you can tap into.

Each debug channel, when activated, will trigger logging messages to be displayed to the console where
you invokedwine. From there you can redirect the messages to a file and examine it at your leisure. But
be forewarned! Some debug channels can generate incredible volumes of log messages. Among the most
prolific offenders arerelay which spits out a log message every time a win32 function is called,win

which tracks windows message passing, and of courseall which is an alias for every single debug
channel that exists. For a complex application, your debug logs can easily top 1 MB and higher. Arelay

trace can often generate more than 10 MB of log messages, depending on how long you run the
application. (As described in theDebugsection of configuring wine you can modify what therelay

trace reports). Logging does slow down Wine quite a bit, so don’t useWINEDEBUGunless you really do
want log files.

Within each debug channel, you can further specify amessage class, to filter out the different severities
of errors. The four message classes are:trace , fixme , warn , err .

To turn on a debug channel, use the formclass+channel . To turn it off, useclass-channel . To list
more than one channel in the sameWINEDEBUGoption, separate them with commas. For example, to
requestwarn class messages in theheap debug channel, you could invokewine like this:

$ WINEDEBUG=warn+heap wine program_name

57

Chapter 4. Running Wine

If you leave off the message class,wine will display messages from all four classes for that channel:

$ WINEDEBUG=heap wine program_name

If you wanted to see log messages for everything except the relay channel, you might do something like
this:

$ WINEDEBUG=+all,-relay wine program_name

Here is a list of the debug channels and classes in Wine. More channels will be added to (or subtracted
from) later versions.

Table 4-1. Debug Channels

accel adpcm advapi animate aspi

atom avicap avifile bidi bitblt

bitmap cabinet capi caret cdrom

cfgmgr32 class clipboard clipping combo

comboex comm commctrl commdlg computername

console crtdll crypt curses cursor

d3d d3d_shader d3d_surface datetime dc

ddeml ddraw ddraw_fps ddraw_geom ddraw_tex

debugstr devenum dialog dinput dll

dma dmband dmcompos dmfile dmfiledat

dmime dmloader dmscript dmstyle dmsynth

dmusic dosfs dosmem dplay dplayx

dpnhpast driver dsound dsound3d edit

enhmetafile environ event eventlog exec

file fixup font fps g711

gdi global glu graphics header

heap hook hotkey icmp icon

imagehlp imagelist imm int int21

int31 io ipaddress iphlpapi jack

joystick key keyboard listbox listview

loaddll local mapi mci mcianim

mciavi mcicda mcimidi mciwave mdi

menu menubuilder message metafile midi

mmaux mmio mmsys mmtime module

monthcal mpeg3 mpr msacm msdmo

msg mshtml msi msimg32 msisys

msrle32 msvcrt msvideo mswsock nativefont

58

Chapter 4. Running Wine

netapi32 netbios nls nonclient ntdll

odbc ole oledlg olerelay opengl

pager palette pidl powermgnt print

process profile progress propsheet psapi

psdrv qcap quartz ras rebar

reg region relay resource richedit

rundll32 sblaster scroll seh selector

server setupapi shdocvw shell shlctrl

snmpapi snoop sound static statusbar

storage stress string syscolor system

tab tape tapi task text

thread thunk tid timer toolbar

toolhelp tooltips trackbar treeview ttydrv

twain typelib uninstaller updown urlmon

uxtheme ver virtual vxd wave

wc_font win win32 wineboot winecfg

wineconsole wine_d3d winevdm wing winhelp

wininet winmm winsock winspool wintab

wintab32 wnet x11drv x11settings xdnd

xrandr xrender xvidmode

For more details about debug channels, check out the The Wine Developer’s Guide
(http://wine.codeweavers.com/docs/wine-devel/).

4.6. wineserver Command Line Options

wineserver usually gets started automatically by Wine whenever the first wine process gets started.
However, wineserver has some useful command line options that you can add if you start it up manually,
e.g. via a user login script or so.

4.6.1. -d<n>

Sets the debug level for debug output in the terminal that wineserver got started in at level<n>. In other
words: everything greater than 0 will enable wineserver specific debugging output.

59

Chapter 4. Running Wine

4.6.2. -h

Display wineserver command line options help message.

4.6.3. -k[n]

Kill the current wineserver, optionally with signal n.

4.6.4. -p[n]

This parameter makes wineserver persistent, optionally for n seconds. It will prevent wineserver from
shutting down immediately.

Usually, wineserver quits almost immediately after the last wine process using this wineserver
terminated. However, since wineserver loads a lot of things on startup (such as the whole Windows
registry data), its startup might be so slow that it’s very useful to keep it from exiting after the end of all
Wine sessions, by making it persistent.

4.6.5. -w

This parameter makes a newly started wineserver wait until the currently active wineserver instance
terminates.

4.7. Setting Windows/DOS environment variables

Your program might require some environment variable to be set properly in order to run successfully. In
this case you need to set this environment variable in the Linux shell, since Wine will pass on the entire
shell environment variable settings to the Windows environment variable space. Example for the bash
shell (other shells may have a different syntax !):

export MYENVIRONMENTVAR=myenvironmentvarsetting

This will make sure your Windows program can access the MYENVIRONMENTVAR environment
variable once you start your program using Wine. If you want to have MYENVIRONMENTVAR set
permanently, then you can place the setting into /etc/profile, or also ~/.bashrc in the case of bash.

Note however that there are some exceptions to the rule: If you want to change the PATH, SYSTEM or
TEMP variables, the of course you can’t modify it that way, since this will alter the Unix environment

60

Chapter 4. Running Wine

settings. Instead, you should set them into the registry. To set them you should launchwine regedit

and then go to the

HKEY_CURRENT_USER/Environment

key. Now you can create or modify the values of the variables you need

"System" = "c:\\windows\\system"

This sets up where the windows system files are. The Windows system directory should reside below the
directory used for theWindows setting. Thus when using /usr/local/wine_c_windows as Windows path,
the system directory would be/usr/local/wine_c/windows/system . It must be set with no trailing
slash, and you must be sure that you have write access to it.

"Temp" = "c:\\temp"

This should be the directory you want your temp files stored in, /usr/local/wine_c/temp in our previous
example. Again, no trailing slash, andwrite access!!

"Path" = "c:\\windows;c:\\windows\\system;c:\\blanco"

Behaves like the PATH setting on UNIX boxes. When wine is run likewine sol.exe , if sol.exe

resides in a directory specified in thePath setting, wine will run it (Of course, ifsol.exe resides in the
current directory, wine will run that one). Make sure it always has yourwindows directory and system
directory (For this setup, it must have"c:\\windows;c:\\windows\\system").

4.8. Text mode programs (CUI: Console User Interface)

Text mode programs are program which output is only made out of text (surprise!). In Windows
terminology, they are called CUI (Console User Interface) executables, by opposition to GUI (Graphical
User Interface) executables. Win32 API provide a complete set of APIs to handle this situation, which
goes from basic features like text printing, up to high level functionalities (like full screen editing, color
support, cursor motion, mouse support), going through features like line editing or raw/cooked input
stream support

Given the wide scope of features above, and the current usage in Un*x world, Wine comes out with three
different ways for running a console program (aka a CUI executable):

• bare streams

• wineconsole with user backend

• wineconsole with curses backend

61

Chapter 4. Running Wine

The names here are a bit obscure. "bare streams" means that no extra support of wine is provide to map
between the unix console access and Windows console access. The two other ways require the use of a
specific Wine program (wineconsole) which provide extended facilities. The following table describes
what you can do (and cannot do) with those three ways.

Table 4-2. Basic differences in consoles

Function Bare streams Wineconsole & user
backend

Wineconsole &
curses backend

How to run (assuming
executable is called
foo.exe)

$ wine foo.exe $ wineconsole -- --backend=user foo.exe$ wineconsole foo.exe

You can also use
--backend=curses as an
option

Good support for line
oriented CUI applications
(which print information
line after line)

Yes Yes Yes

Good support for full
screen CUI applications
(including but not limited
to color support, mouse
support...)

No Yes Yes

Can be run even if X11 is
not running

Yes No Yes

Implementation Maps the standard
Windows streams to the
standard Unix streams
(stdin/stdout/stderr)

Wineconsole will create
a new Window (hence
requiring the USER32
DLL is available) where
all information will be
displayed

Wineconsole will use
existing unix console
(from which the program
is run) and with the help
of the (n)curses library
take control of all the
terminal surface for
interacting with the user

Known limitations Will produce strange
behavior if two (or more)
Windows consoles are
used on the same Un*x
terminal.

4.8.1. Configuration of CUI executables

When wineconsole is used, several configuration options are available. Wine (as Windows do) stores, on
a per application basis, several options in the registry. This let a user, for example, define the default
screen-buffer size he would like to have for a given application.

62

Chapter 4. Running Wine

As of today, only the USER backend allows you to edit those options (we don’t recommend editing by
hand the registry contents). This edition is fired when a user right click in the console (this popups a
menu), where you can either choose from:

• Default: this will edit the settings shared by all applications which haven’t been configured yet. So,
when an application is first run (on your machine, under your account) in wineconsole, wineconsole
will inherit this default settings for the application. Afterwards, the application will have its own
settings, that you’ll be able to modify at your will.

Properties: this will edit the application’s settings. When you’re done, with the edition, you’ll be
prompted whether you want to:

1. Keep these modified settings only for this session (next time you run the application, you will not
see the modification you’ve just made).

2. Use the settings for this session and save them as well, so that next you run your application,
you’ll use these new settings again.

Here’s the list of the items you can configure, and their meanings:

Table 4-3. Wineconsole configuration options

Configuration option Meaning

Cursor’s size Defines the size of the cursor. Three options are
available: small (33% of character height), medium
(66%) and large (100%)

Popup menu It’s been said earlier that wineconsole configuration
popup was triggered using a right click in the
console’s window. However, this can be an issue
when the application you run inside wineconsole
expects the right click events to be sent to it. By
ticking control or shift you select additional
modifiers on the right click for opening the popup.
For example, ticking shift will send events to the
application when you right click the window
without shift being hold down, and open the window
when you right-click while shift being hold down.

Quick edit This tick box lets you decide whether left-click
mouse events shall be interpreted as events to be
sent to the underlying application (tick off) or as a
selection of rectangular part of the screen to be later
on copied onto the clipboard (tick on).

63

Chapter 4. Running Wine

Configuration option Meaning

History This lets you pick up how many commands you
want the console to recall. You can also drive
whether you want, when entering several times the
same command - potentially intertwined with others
- whether you want to store all of them (tick off) or
only the last one (tick on).

Police The Police property sheet allows you to pick the
default font for the console (font file, size,
background and foreground color).

Screenbuffer & window size The console as you see it is made of two different
parts. On one hand there’s the screenbuffer which
contains all the information your application puts on
the screen, and the window which displays a given
area of this screen buffer. Note that the window is
always smaller or of the same size than the screen
buffer. Having a strictly smaller window size will
put on scrollbars on the window so that you can see
the whole screenbuffer’s content.

Close on exit If it’s ticked, then the wineconsole will exit when
the application within terminates. Otherwise, it’ll
remain opened until the user manually closes it: this
allows seeing the latest information of a program
after it has terminated.

Edition mode When the user enter commands, he or she can
choose between several edition modes:• Emacs:
the same keybindings as under emacs are available.
For example, Ctrl-A will bring the cursor to the
beginning of the edition line. See your emacs
manual for the details of the commands.

• Win32: these are the standard Windows
console key-bindings (mainly using arrows).

64

Chapter 5. Troubleshooting / Reporting bugs

5.1. What to do if some program still doesn’t work?

There are times when you’ve been trying everything, you even killed a cat at full moon and ate it with
rotten garlic and foul fish while doing the Devil’s Dance, yet nothing helped to make some damn
program work on some Wine version. Don’t despair, we’re here to help you... (in other words: how much
do you want to pay ?)

5.1.1. Verify your wine configuration

Refer to theConfiguration verification section

5.1.2. Use different windows version settings

In several cases usingdifferent windows version settingscan help.

5.1.3. Use different startup paths

This sometimes helps, too: Try to use bothwine prg.exeandwine x:\\full\\path\\to\\prg.exe

5.1.4. Fiddle with DLL configuration

Run with WINEDEBUG=+loaddll to figure out which DLLs are being used, and whether they’re being
loaded as native or built-in. Then make sure you have proper native DLL files in your configured
C:\windows\system directory and fiddle with DLL load order settings at command line or in config file.

5.1.5. Check your system environment !

Just an idea: could it be that your Wine build/execution environment is broken ? Make sure that there are
no problems whatsoever with the packages that Wine depends on (gcc, glibc, X libraries, OpenGL (!), ...)
E.g. some people have strange failures to find stuff when using "wrong" header files for the "right"
libraries !!! (which results in days of debugging to desperately try to find out why that lowlevel function
fails in a way that is completely beyond imagination... ARGH !)

65

Chapter 5. Troubleshooting / Reporting bugs

5.1.6. Use different GUI (Window Manager) modes

Instruct Wine via config file to use either desktop mode, managed mode or plain ugly "normal" mode.
That can make one hell of a difference, too.

5.1.7. Check your app !

Maybe your app is using some kind of copy protection ? Many copy protections currently don’t work on
Wine. Some might work in the future, though. (the CD-ROM layer isn’t really full-featured yet).

Go to GameCopyWorld (http://www.gamecopyworld.com) and try to find a decent crack for your game
that gets rid of that ugly copy protection. I hope you do have a legal copy of the program, though... :-)

5.1.8. Check your Wine environment !

Running with or without a Windows partition can have a dramatic impact. Configure Wine to do the
opposite of what you used to have. Also, install DCOM98 or DCOM95. This can be very beneficial.

5.1.9. Reconfigure Wine

Sometimes wine installation process changes and new versions of Wine account on these changes. This
is especially true if your setup was created long time ago. Rename your existing~/.wine directory for
backup purposes. Use the setup process that’s recommended for your Wine distribution to create new
configuration. Use information in old~/.wine directory as a reference. For source wine distribution to
configure Wine run tools/wineinstall script as a user you want to do the configuration for. This is a pretty
safe operation. Later you can remove the new~/.wine directory and rename your old one back.

5.1.10. Check out further information

There is a really good chance that someone has already tried to do the same thing as you. You may find
the following resources helpful:

• Search WineHQ’s Application Database (http://appdb.winehq.org) to check for any tips relating to the
program. If your specific version of the program isn’t listed you may find a different one contains
enough information to help you out.

• Frank’s Corner (http://www.frankscorner.org) contains a list of applications and detailed instructions
for setting them up. Further help can be found in the user forums.

66

Chapter 5. Troubleshooting / Reporting bugs

• Google (http://www.google.com) can be useful depending on how you use it. You may find it helpful
to search Google Groups (http://groups.google.com), in particular the
comp.emulators.ms-windows.wine
(http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=comp.emulators.ms-windows.wine)
group.

• Freenode.net (http://www.freenode.net) hosts an IRC channel for Wine. You can access it by using any
IRC client such as Xchat. The settings you’ll need are: server = irc.freenode.net, port = 6667, and
channel = #winehq

• If you have a program that needs the Visual Basic Runtime Environment, you can download it from
this Microsoft site (http://www.microsoft.com/downloads/details.aspx?FamilyID=bf9a24f9-b5c5-
48f4-8edd-cdf2d29a79d5&DisplayLang=en/)

• If you know you are missing a DLL, such as mfc42, you may be able to find it at www.dll-files.com
(http://www.dll-files.com/)

• Wine’s mailing lists (http://www.winehq.org/site/forums#ml) may also help, especially wine-users.
The wine-devel list may be appropriate depending on the type of problem you are experiencing. If you
post to wine-devel you should be prepared to do a little work to help diagnose the problem. Read the
section below to find out how to debug the source of your problem.

• If all else fails, you may wish to investigate commercial versions of Wine to see if your application is
supported.

5.1.11. Debug it!

Finding the source of your problem is the next step to take. There is a wide spectrum of possible
problems ranging from simple configurations issues to completely unimplemented functionality in Wine.
The next section will describe how to file a bug report and how to begin debugging a crash. For more
information on using Wine’s debugging facilities be sure to read the Wine Developers Guide.

5.2. How To Report A Bug

Please report all bugs along any relevant information to Wine Bugzilla (http://bugs.winehq.org/). Please,
search the Bugzilla database to check whether your problem is already reported. If it is already reported
please add any relevant information to the original bug report.

5.2.1. All Bug Reports

Some simple advice on making your bug report more useful (and thus more likely to get answered and
fixed):

1. Post as much relevant information as possible.

67

Chapter 5. Troubleshooting / Reporting bugs

This means we need more information than a simple "MS Word crashes whenever I run it. Do you
know why?" Include at least the following information:

• Which version of Wine you’re using (runwine --version)
• The name of the Operating system you’re using, what distribution (if any), and what version. (i.e.,

Linux Red Hat 7.2)
• Which compiler and version, (rungcc -v). If you didn’t compile wine then the name of the

package and where you got it from.
• Windows version, if used with Wine. Mention if you don’t use Windows.
• The name of the program you’re trying to run, its version number, and a URL for where the

program can be obtained (if available).
• The exact command line you used to start wine. (i.e.,wine "C:\Program

Files\Test\program.exe").
• The exact steps required to reproduce the bug.
• Any other information you think may be relevant or helpful, such as X server version in case of X

problems, libc version etc.

2. Re-run the program with the WINEDEBUG environment variableWINEDEBUG=+relay option
(i.e.,WINEDEBUG=+relay wine sol.exe).

This will output additional information at the console that may be helpful in debugging the program.
It also slows the execution of program. There are some cases where the bug seems to disappear
when +relay is used. Please mention that in the bug report.

5.2.2. Crashes

If Wine crashes while running your program, it is important that we have this information to have a
chance at figuring out what is causing the crash. This can put out quite a lot (several MB) of information,
though, so it’s best to output it to a file. When theWine-dbg> prompt appears, typequit .

You might want to try+relay,+snoop instead of+relay , but please note that+snoop is pretty
unstable and often will crash earlier than a simple+relay ! If this is the case, then please useonly
+relay !! A bug report with a crash in+snoop code is useless in most cases! You can also turn on other
parameters, depending on the nature of the problem you are researching. See wine man page for full list
of the parameters.

To get the trace output, use one of the following methods:

5.2.2.1. The Easy Way

1. This method is meant to allow even a total novice to submit a relevant trace log in the event of a
crash.

68

Chapter 5. Troubleshooting / Reporting bugs

Your computermusthave perl on it for this method to work. To find out if you have perl, runwhich
perl. If it returns something like/usr/bin/perl , you’re in business. Otherwise, skip on down to
"The Hard Way". If you aren’t sure, just keep on going. When you try to run the script, it will
becomeveryapparent if you don’t have perl.

2. Change directory to<dirs to wine>/tools

3. Type in./bug_report.pl and follow the directions.

4. Post the bug to Wine Bugzilla (http://bugs.winehq.org/). Please, search Bugzilla database to check
whether your problem is already found before posting a bug report. Include your own detailed
description of the problem with relevant information. Attach the "Nice Formatted Report" to the
submitted bug. Do not cut and paste the report in the bug description - it is pretty big. Keep the full
debug output in case it will be needed by Wine developers.

5.2.2.2. The Hard Way

It is likely that only the last 100 or so lines of the trace are necessary to find out where the program
crashes. In order to get those last 100 lines we need to do the following

1. Redirect all the output ofWINEDEBUG to a file.

2. Separate the last 100 lines to another file usingtail .

This can be done using one of the following methods.

all shells:

$ echo quit | WINEDEBUG=+relay wine [other_options] program_name >& filename.out;
$ tail -n 100 filename.out > report_file

(This will print wine’s debug messages only to the file and then auto-quit. It’s probably a good idea
to use this command, since wine prints out so many debug msgs that they flood the terminal, eating
CPU cycles.)

tcsh and other csh-like shells:

$ WINEDEBUG=+relay wine [other_options] program_name |& tee filename.out;
$ tail -n 100 filename.out > report_file

bash and other sh-like shells:

$ WINEDEBUG=+relay wine [other_options] program_name 2>&1 | tee filename.out;
$ tail -n 100 filename.out > report_file

report_file will now contain the last hundred lines of the debugging output, including the register
dump and backtrace, which are the most important pieces of information. Please do not delete this part,
even if you don’t understand what it means.

69

Chapter 5. Troubleshooting / Reporting bugs

Post the bug to Wine Bugzilla (http://bugs.winehq.org/). You need to attach the output filereport_file

from part 2). Along with the the relevant information used to create it. Do not cut and paste the report in
the bug description - it is pretty big and it will make a mess of the bug report. If you do this, your
chances of receiving some sort of helpful response should be very good.

Please, search the Bugzilla database to check whether your problem is already reported. If it is already
reported attach the output filereport_file to the original bug report and add any other relevant
information.

70

Glossary

Binary

A file which is in machine executable, compiled form: hex data (as opposed to a source code file).

CVS

Concurrent Versions System, a software package to manage software development done by several
people. See the CVS chapter in the Wine Developers Guide for detailed usage information.

Distribution

A distribution is usually the way in which some "vendor" ships operating system CDs (usually
mentioned in the context of Linux). A Linux environment can be shipped in lots of different
configurations: e.g. distributions could be built to be suitable for games, scientific applications,
server operation, desktop systems, etc.

DLL

A DLL (Dynamic Link Library) is a file that can be loaded and executed by programs dynamically.
Basically it’s an external code repository for programs. Since usually several different programs
reuse the same DLL instead of having that code in their own file, this dramatically reduces required
storage space. A synonym for a DLL would be library.

Editor

An editor is usually a program to create or modify text files. There are various graphical and text
mode editors available on Linux.

Examples of graphical editors are: nedit, gedit, kedit, xemacs, gxedit.

Examples of text mode editors are: joe, ae, emacs, vim, vi. In aterminal, simply run them via:

$ editorname

filename

71

Glossary

Environment variable

Environment variables are text definitions used in aShellto store important system settings. In a
bashshell (the most commonly used one in Linux), you can view all environment variables by
executing:

set

If you want to change an environment variable, you could run:

export MYVARIABLE=mycontent

For deleting an environment variable, use:

unset MYVARIABLE

Package

A package is a compressed file in adistributionspecific format. It contains the files for a particular
program you want to install. Packages are usually installed via thedpkg or rpm package managers.

root

root is the account name of the system administrator. In order to run programs as root, simply open
aTerminalwindow, then run:

$ su -

This will prompt you for the password of the root user of your system, and after that you will be
able to system administration tasks that require special root privileges. The root account is indicated
by the

#

prompt, whereas ’$’ indicates a normal user account.

72

Glossary

Shell

A shell is a tool to enable users to interact with the system. Usually shells are text based and
command line oriented. Examples of popular shells includebash, tcshandksh. Wine assumes that
for Wine installation tasks, you usebash, since this is the most popular shell on Linux. Shells are
usually run in aTerminalwindow.

Source code

Source code is the code that a program consists of before the program is being compiled, i.e. it’s the
original building instructions of a program that tell a compiler what the program should look like
once it’s been compiled to aBinary.

Terminal

A terminal window is usually a graphical window that one uses to execute aShell. If Wine asks you
to open a terminal, then you usually need to click on an icon on your desktop that shows a big black
window (or, in other cases, an icon displaying a maritime shell). Wine assumes you’re using the
bashshell in a terminal window, so if your terminal happens to use a different shell program,
simply type:

bash

in the terminal window.

73

