
Knit User’s Manual and Tutorial
Version 1.0.0

Flux Research Group
School of Computing

University of Utah

http://www.cs.utah.edu/flux/

February 2001

Copyright c© 2000, 2001 The University of Utah. Permission is granted to make and distribute verbatim copies of
this document provided the copyright notice and this permission notice are preserved on all copies. Modified versions
of this document may be copied and distributed with the additional condition that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

http://www.cs.utah.edu/flux/

ii

Contents

1 Introduction 1

2 Compiling and Installing Knit 3
2.1 Acquiring Knit . 3
2.2 Building the Knit Programs. 4

2.2.1 Compilinglibelf . 5
2.2.2 Configuring Knit . 5
2.2.3 Compiling Knit . 6

2.3 Installing Knit . 6
2.4 Testing Knit . 7
2.5 Related Software. 7

2.5.1 The OSKit . 7
2.5.2 gcc for Knitted Code. 7

3 Using Knit 9
3.1 Theknit Compiler . 9

3.1.1 Output Files. 9
3.1.2 Command Line Options. 10
3.1.3 Theknit_generated.mk File . 12

3.2 Theknitdoc Documentation Generator. 12
3.3 Themk_unit Template Generator. 13
3.4 Therename_dot_o_filesObject Editor . 16

4 Tutorial 17
4.1 Unit Basics: Thehello Example . 17

4.1.1 The Unit Model of Software Components. 17
4.1.2 A Unit File . 18
4.1.3 Imports and Exports. 19
4.1.4 Dependencies. 19
4.1.5 Files. 20
4.1.6 Compiling thehello Program. 20

4.2 Using Multiple Units: Themsg Example. 22
4.2.1 Bundletypes . 22
4.2.2 Renaming. 23
4.2.3 Compound Units. 24
4.2.4 Compiling themsg Program . 25

4.3 Knitting Tricks: Thecalc Example . 26

iii

iv CONTENTS

4.3.1 Initializers and Finalizers. 27
4.3.2 More About Dependencies. 28
4.3.3 More About Renaming. 29
4.3.4 Wrappers and Transparent Interposition. 30
4.3.5 Multiple Instantiation. 32
4.3.6 Summary: TheCalc andCalc_Counted Units . 33
4.3.7 Compiling thecalc Program . 34
4.3.8 Optimizing the Code via “Flattening”. 35

4.4 Other Knit Features. 36

5 Debugging Knitted Programs 37

6 Knitting the OSKit 39

Chapter 1

Introduction

Knit is a component definition and linking language which can be used with little or no modification with
C and assembly code. Knit supports component hierarchies, cyclic component dependencies, automatic
scheduling of initializers and finalizers, an extensible constraint system to detect errors in component com-
position, and cross-module inlining to largely eliminate the overheads of componentization.

The goal of this document is to describe the things you need to know in order to start using Knit,
including:

• How to install Knit on your system (Chapter 2).

• How to invoke the Knit compiler (Section 3.1).

• Other Knit support tools including a tool for generatingHTML documentation (Section 3.2) and a tool
for generating unit descriptions (Section 3.3).

• A tutorial on how to use Knit and how to use it effectively (Chapter 4).

The complete Knit language is described in a separate document,Report on the Language Knit: A
Component Definition and Linking Language. You should read this user’s manual, especially the tutorial
chapter, before reading the more detailed Knit language report.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Compiling and Installing Knit

TheINSTALL file in the topmost directory of the Knit source tree contains an abbreviated version of these
instructions.

Knit consists of the following programs:

knit The Knit unit language compiler. This is the heart of the system and
the program that one runs to process a ‘.unit’ file.

knitdoc A program that producesHTML documentation from ‘.unit’ files.

mk_unit A Perl script that can produce a skeleton ‘.unit’ file from a set of
object files. This script is useful for “importing” existing code into
Knit.

rename_dot_o_files A tool used byknit to transform ‘.o’ files. While normally invoked
“behind the scenes,” this program can also be used on its own to edit
symbols that appear within an object file.

knit_c_parser A parser for C source code, invoked internally byknit.

knit_smartmv A small Perl script for moving files, invoked internally byknit.

knitGenBundles A program that produces bundle declarations, invoked internally by
mk_unit.

knit, knitdoc, andknitGenBundles are written in the Haskell programming language, and the helper
programsrename_dot_o_files andknit_c_parser are written in C. Because Knit can be somewhat
tricky to compile, most users will want to download the Knit tools in precompiled form. Users who want to
work on Knit itself, however, will need to be able to compile Knit from source.

FreeBSD and Linux are the current Knit development platforms. If you build Knit on an interesting plat-
form, the Knit developers would love to know about it. Of course, if the build fails, they would like to know
about that, too! Send build reports, bug reports, praise and damnation toknit-users@flux.cs.utah.edu.

2.1 Acquiring Knit

Knit is available on the World Wide Web underhttp://www.cs.utah.edu/flux/knit/. Currently, Knit
is distributed in two forms: as precompiled binaries for a variety of operating systems, and as source code.
We strongly recommend that you use the precompiled binaries for your platform if available. (Please contact

3

mailto:knit-users@flux.cs.utah.edu
http://www.cs.utah.edu/flux/knit/

4 CHAPTER 2. COMPILING AND INSTALLING KNIT

the Knit authors if precompiled binaries for your platform are not available. If demand warrants, your
platform may be added to the supported set.)

2.2 Building the Knit Programs

If you are using a binary distribution of Knit, you should skip the instructions below and proceed to
Section 2.3.

In order to build Knit from source, you will need:

An ELF-based system Knit is currently implemented only forELF-based systems.

A Haskell compiler Version 4.08.1 ofghc, theGlasgow Haskell Compiler1, is our usual
compiler. Instead of a compiler, one can use a Haskell interpreter
such asHugs2, but this is definitely not recommended for large
projects.

green-card green-card3 is a foreign function interface generator for Haskell.
Green Card is required when one usesghc to compile Knit, but is
optional if one uses Hugs.

An ANSI C compiler gcc 2.95.2 is our usual compiler. We strongly recommendgcc for
building Knit. As of this writing, some of the Knit example pro-
grams make use ofgcc language extensions, and the OSKit (de-
scribed inSection 2.5.1requiresgcc in any case. Additionally, as
described inSection 2.5.2, advanced projects may want to build a
special version ofgcc for optimized Knit-based code.

GNU make Version 3.77 has been tested.

flex or lex flex version 2.5.4 has been tested. Vendor-provided versions of
lex should work, but this has not been extensively tested.

bison or yacc bison version 1.25 has been tested. Vendor-provided versions of
yacc should work, but have not been extensively tested.

libelf Version 0.7.0 has been tested.libelf4 is a freely available library
for manipulatingELF object files. libelf is preinstalled on some
operating systems, such as Linux. For other systems,libelf is
available from the World Wide Web.Note the special instructions
for building libelf in Section 2.2.1.

Disk space You will need about 10 MB of free disk space to build Knit and the
current set of Knit example programs.

Once you have the above-listed tools, you will need to (1) unpack the Knit source distributiontar file
and (2) create a build tree to contain the object files. Assuming that you did these things in your home
directory, your directory setup would look something like this:

1http://www.haskell.org/ghc/
2http://www.haskell.org/hugs/
3http://www.dcs.gla.ac.uk/fp/software/green-card/
4http://www.stud.uni-hannover.de/ michael/software/

http://www.haskell.org/ghc/
http://www.haskell.org/hugs/
http://www.dcs.gla.ac.uk/fp/software/green-card/
http://www.stud.uni-hannover.de/~michael/software/

2.2. BUILDING THE KNIT PROGRAMS 5

~/knit-1.0.0/ The Knit source tree, unpacked fromknit-1.0.0.src.tar.gz.

~/obj/ The directory you create to be the root of your Knit object tree. (Of
course, you can call this directory anything you like. It does not
have to be calledobj.)

2.2.1 Compilinglibelf

Before configuring or compiling Knit, you must first have thelibelf library and headers available on your
system. If your operating system haslibelf preinstalled, great: you are done with this step. However, if
your system does not come withlibelf, you must download and compile (and optionally install)libelf
for yourself before proceeding. SeeSection 2.2for download and version information.

WARNING: If you have problems with the Knitrename_dot_o_files program — i.e., if it
seems to produce invalid object files — you may need to buildlibelf so that it does not use
themmap system call to manipulate files. (The Knit authors have seen this problem occur when
the object file is located in anNFS-mounted filesystem.) To buildlibelf so that it does not use
mmap, first configure the library normally, and then comment out theHAVE_MMAP definition in the
generatedconfig.h file. Finally, build and install the library.

If you do not havelibelf installed on your system, you will need to use the--with-libelf command
line option when you configure Knit for your system, as described in the next section.

2.2.2 Configuring Knit

Given the directory setup described inSection 2.2, you would type the following commands to configure
Knit for your operating system:

cd ~/obj
../knit-1.0.0/configure

Theconfigure script in the root of the Knit source tree is an ordinaryconfigure script, generated by
GNU autoconf. Type “configure --help” to see all of the script’s command line options. In addition
to all of the standard options accepted byautoconf-generated scripts, Knit’sconfigure script accepts the
following Knit-specific options:

--with-libelf=DIR Use thelibelf library installed inDIR . The Knit Makefiles will
look for thelibelf header files inDIR /include/, and will look
for thelibelf library itself inDIR /lib/.

--with-greencard-dir=DIR Use the Green Card files inDIR to build certain Knit C source code
files. This option is useful for Hugs-based builds only.

Additionally, the Knit configure script examines the values of the following environment variables:

HC The name of the Haskell compiler to be used. If this variable is
unset, the default valueghc is used.

GREENCARD The name of the the Green Card program. Default:green-card.

RUNHUGS The name of the Hugs program. Default:runhugs.

6 CHAPTER 2. COMPILING AND INSTALLING KNIT

2.2.3 Compiling Knit

Finally, you are ready to compile the Knit tools! If you are using the Glasgow Haskell Compiler, type the
following commands to build Knit and its auxiliary programs:

cd ~/obj/compiler/ghc
make all

Assuming all goes well, these commands should produce all of the Knit programs that need to be com-
piled.

If you are using Hugs, type the following instead:

cd ~/obj/compiler/hugs
make all

These commands will produce some object files and the C-based helper programs only (i.e.,knit_c_
parser andrename_dot_o_files). Since Hugs is an interpreter, there is no need to compile the Haskell-
based programs.

Of course, if you are using a precompiled binary release of Knit, you do not need to build the binaries at
all: you already have them! But you still have toinstall the programs — read on.

2.3 Installing Knit

You can install the Knit compiler programs in a “standard” place on your system by typing “make install”
in thebin subdirectory of your Knit build tree (in our running example,~/obj/bin).

Special instructions for binary distributions: If you are using a binary distribution of Knit, you will
nevertheless need to run the Knitconfigure script, which will (1) tailor certain Knit scripts to your system,
(2) configure the installation process for your system, and (3) produce the Knit example program Makefiles.
We encourage you to run theconfigure script in a directory that is separate from your Knit distribution
tree, because Knit will produce many files when processing the examples. So, to configure and install a
binary distribution, type something like the following:

mkdir ~/obj
cd ~/obj
../knit-1.0.0/configure
cd bin
make install

Whether you use a source or binary distribution, by default, the root installation directory is/usr/
local. You can change this default by specifying the--prefix option toconfigure, e.g.:

../knit-1.0.0/configure --prefix=/usr/local/knit-1.0.0

make -C ~/obj/compiler/ghc all # Build Knit
make -C ~/obj/bin install # Install under ‘/usr/local/knit-1.0.0’

It is not necessary to install Knit in order to use the provided example programs (described in the next
section) or to build your own Knit-based programs.

2.4. TESTING KNIT 7

2.4 Testing Knit

Knit comes with a small set of example programs; these are located in theexamples subdirectory of the
distribution source tree. Running your newly compiled Knit tools on the provided examples is easy. In a
sentence: go to theexamples subdirectory of your Knit object tree and typemake. This will build all of
examples. If everything builds, congratulations! You are now a “techknitian”!

The various example programs are described in greater detail inChapter 4.

2.5 Related Software

The software described below is not part of Knit, but is often used in conjunction with Knit.

2.5.1 The OSKit

For projects involving operating systems or similar low-level software, you may want to use Knit in con-
junction with the OSKit. The OSKit is a framework and set of modularized components and library code,
together with extensive documentation, for the construction of operating system kernels, servers, and other
OS-level tools. Its purpose is to provide much of the infrastructure “grunge” that usually takes up a large
percentage of development time in any operating system or OS-related project, and allow developers to con-
centrate their efforts on the unique and interesting aspects of the new OS in question. The OSKit is available
on the World Wide Web underhttp://www.cs.utah.edu/flux/oskit/.

Recent versions of the OSKit can be configured to work with Knit. Instructions for using Knit with the
OSKit are inChapter 6. Knit-specific files in the OSKit are located in a subdirectory calledoskit/knit.
Look there for unit definition files and related files. Refer to the OSKit documentation for further information
about the OSKit.

WARNING: Because Knit and the OSKit are both active and evolving projects, you must be
careful to get a “matched set” in order to use them together! Knit version 1.0.0 is intended to
work with OSKit version 20010214 (a snapshot release). Later versions of either system may not
work with previous versions of the other —backward compatibility is not guaranteed!

2.5.2 gcc for Knitted Code

If you use Knit’s “flattening” optimization on certain C sources, including the OSKit, you may need to
use a special version ofgcc in order to compile your Knit-generated C code. This special version ofgcc
must ignore certain type errors that may be introduced by Knit, because Knit does not unify identical type
declarations that originate in two separate C files. This sounds really dodgy, but we are assuming that you
have already built your system without flattening using a normal C compiler. If the unflattened version is
free of type errors, then compiling with flattening and the hacked compiler should work just fine.

The instructions for producing a patched version ofgcc are contained in the fileunsupported/gcc.patch
in the Knit distribution tree. The effect of the patch is to allow assignments to variables when the assigned
value has a different type, so long as the types of the variable and value have the same storage size. This
patch relaxes the C type rules and is okay as long as your program can be compiled in a normal way by an
unpatched version ofgcc.

WARNING: If you make a patched version ofgcc, you should be careful to install it in a very
special place with a very special name, so that nobody will use it accidentally to compile anything
other than Knit-generated code.

http://www.cs.utah.edu/flux/oskit/

8 CHAPTER 2. COMPILING AND INSTALLING KNIT

Chapter 3

Using Knit

Knit operates onunit files: files that describe programs and program parts in terms of their of software
components. Each component is called aunit. Unit descriptions are written in a textual specification or
“programming” language and stored in unit files (files whose names end with ‘.unit’), which may be
processed by Knit.

This chapter describes the Knit tools that operate on unit files, that produce unit files, or that may
otherwise by useful to Knit users.Chapter 4is a tutorial on the unit description language, i.e., the contents
of unit files.

3.1 Theknit Compiler

The Knit unit file compiler is simply calledknit. The command line syntax is as follows:

knit [option . . .] [var=value . . .] unit-file unit-name

whereunit-file is the name of the unit file to be read, andunit-name is the name of the “topmost” unit
that should be processed, i.e., the unit that describes the complete program or library that is to be compiled.
(The other command line arguments will be described in a moment.)

3.1.1 Output Files

Assuming that compilation is successful,knit produces a set of output files:

knit_generated.mk knit produces a set ofmake rules for building the archive (‘.a’)
files that will contain the compiled code for the unit named on the
knit command line. Theknit_generated.mk file is not a com-
plete Makefile; rather, it is designed to be included from another
Makefile.

makefile If the MAKEFILE=template argument was specified on the com-
mand line (as described below),knitwill use the specifiedtemplate
to create amakefile in the current directory. (Presumably,makefile
will include theknit_generated.mk file.) Currently, the template
file is simply copied; no transformations are made on the file con-
tents.

9

10 CHAPTER 3. USING KNIT

rename_* These files are inputs to therename_dot_o_files tool (Section 3.4)
and describe how symbols in generated object (‘.o’) files should be
renamed as part of implementing the unit. Therename_* files are
referenced by the rules inknit_generated.mk; you do not need to
deal with these files directly.

knit_inits.c This file contains the implementations of the generatedknit_init
andknit_fini C functions. These functions will be called to run
your units’ initializers and finalizers, respectively. (Initializers and
finalizers are described inSection 4.3.1.)

anon.c If your unit definitions contain literal C code,knit will move this
“anonymous” code into C source files so that it may be compiled.
These files may also be made if you use Knit’s “flattening” opti-
mization (described inSection 4.3.8).

knit may also leave certain temporary files behind, with names likeTMP, *xxx, and*yyy. You may safely
ignore these files.

3.1.2 Command Line Options

The command line options toknit are as follows:

-X Do not create any output files. This option is useful when you simply
want to check the correctness of your unit specifications.

-f Perform the code “flattening” optimization described inSection 4.3.8.
In brief, this option tells Knit to collect and weave all of your C code
into one file, so that it may be better optimized by your C compiler.
Knit does not perform this optimization by default.

-c Check the constraints that are specified in the unit specifications.
Constraints and constraint-checking are described in the theReport
on the Language Knit: A Component Definition and Linking Lan-
guage(in the doc/report directory of the Knit distribution). By
default, Knit does not enforce constraints.

In addition to these options,knit looks for command line arguments of the formvar =value . The
compiler processes these arguments in three ways.

First, all of the variable definitions are copied into the outputknit_generated.mk file. This provides
a convenient way for you to specify certainmake variables at the time Knit is run. Moreover, it makes it
possible for you to put references to these variables at certain points in theunit file itself — for example, in
the specifications of C file names. These references will be expanded when your C code is actually compiled
by make.

Second,var =value arguments toknit are put into the environment of any subprocesses created by
the compiler. This is principally useful whenknit’s code flattening optimization is enabled; with flattening,
knit uses commands like the following to preprocess your unit code:

env var=value ... \
sh -c ’gcc -P -E $KNIT_CPPFLAGS ... source-file.c’

3.1. THEKNIT COMPILER 11

Because the variables are put into the environment, one can use variable references withindirectory speci-
fications in a unit file. In fact, it is very good practice to use variables indirectory specifications, because
this makes your unit files less dependent on the exact organization of your source files.

Third and finally, certain variables have special meaning toknit itself. These variables are:

UNIT_PATH=dirs
(Required.)

Specify the search path for input unit files. Thedirs path is a colon-
separated list of directory names.Note thatknit requires that you
provide a value forUNIT_PATH on the command line.

MAKEFILE=file If specified,knit will use the givenfile as a template for creating
a makefile in the current directory. IfMAKEFILE is not specified
on the command line,knit will not create a Makefile for you. (In
any case,knit will create theknit_generated.mk rule file.)

KNIT_TOOLS=dir Tell knit to find its auxiliary programs (e.g.,knit_c_parser and
knit_smartmv) in the specified directory. This option is primarily
used when invoking a non-installed set of Knit tools, such as the
programs within a Knit build tree. IfKNIT_TOOLS is not specified
on the command line,knit will look for its helper programs along
the user’s usual program search path.

KNIT_CPPFLAGS=cppflags When flattening is enabled,KNIT_CPPFLAGS contains any extra flags
thatknit should pass to the C preprocessor. The default is to pass
no extra arguments. When flattening is not enabled, this variable has
no effect.

KNIT_BUDGET=number When flattening is enabled,KNIT_BUDGET provides control over the
amount of inlining that should be performed.Very roughly, the value
of KNIT_BUDGET is the total number of staticRISC instructions that
should be spent on or saved by inlining. Positive values ofnumber

represent spending (i.e., increased code size) while negative values
represent saving (reduced code size). Code size can be reduced by
removing dead functions, by inlining functions that are only used
once (which eliminates instructions to push arguments, call the func-
tion, and return), and by inlining trivial functions whose body re-
quires fewer instructions than a function call. Any such savings
count toward achieving the overall budget: increasing the number
of inlined instructions thatknit may put elsewhere. If unspecified,
the default budget is0.

In practice, the value ofKNIT_BUDGET is only very loosely corre-
lated with the size of the final binary. This is because Knit oper-
ates on the C source code, and therefore has only indirect control
over the optimizations that may (or may not) be performed by the
C compiler. Beyond simple inlining and dead function elimination,
Knit does not try to predict the effect of other optimizations that the
C compiler may provide.

Note thatknit processes variable settingsfrom theknit command line only. In particular,knit does
not look for settings of environment variables. (You do not want your complete environment copied into the
knit_generated.mk file, do you?)

12 CHAPTER 3. USING KNIT

3.1.3 Theknit_generated.mk File

Most of the recipe for building your program or library is contained in theknit_generated.mk file, which
is produced for you byknit. As described previously, this file contains themake rules for (1) compiling
the necessary source files into object files, (2) manipulating the object files as required to make the proper
cross-unit connections, and (3) combining the resultant files into one or more archive files. This is as far as
theknit_generated.mk rules go, however. More is needed in order to finish the job of making a complete,
final program.

Since the rules for “finishing the job” are not known to Knit, Knit is designed to make it easy for you
to write your own Makefile containing the necessary rules. The idea is that your Makefile will include
the knit_generated.mk rules file, and then provide the higher-level rules for the final assembly of your
program. Typical rules for final assembly might look like this:

$(PROGRAM): knit_inits.o $(KNIT_LIBS) ...
$(CC) -o $@ --begin-group $^ --end-group

knit_inits.o: knit_inits.c
$(CC) -c $< $(CFLAGS)

There are four important things to notice about the above rules. First, the complete program is made
by linking together the compiledknit_inits.o file and all of the libraries that contain your program’s
unit code. If your program requires non-Knitted objects in addition to the Knit-generated libraries, these
would also be listed in the rule. Second, the value ofKNIT_LIBS is set in theknit_generated.mk file.
That file defines a variableKNIT_OBJS as well, and any other variables that were specified on theknit
compiler command line, as described previously inSection 3.1.2. Third, the set of program objects is
given to the C compiler as a group, between the--begin-group and--end-group options. This idiom
— which is specific togcc, unfortunately — eliminates potential problems that the linker might have in
resolving symbols. Finally, the Knit-generatedknit_inits.c file is not in a unit, and therefore must be
compiled and linked into your program explicitly. Think of the code inknit_inits.cas part of the “runtime
environment” for your Knitted code.

The example programs that come with Knit (located within theexamples subdirectory of the software
distribution) each have a complete Makefile that you can easily copy and adapt for your own work.

3.2 Theknitdoc Documentation Generator
WARNING: The knitdoc program does not currently work if you build Knit with Hugs.
knitdoc requires some Haskell libraries that are provided withghc, but not with Hugs.

Theknitdoc program producesHTML-format documentation from a unit file. The command line syntax is:

knitdoc [var=value . . .] dest-dir unit-files

The command line arguments are:

var =value Variable settings, as described previously forknit in Section 3.1.2.
Like knit, knitdoc requires that theUNIT_PATH be specified on
the command line.

dest-dir The name of the directory into which theHTML output files will go.
Note that this directory must already exist.

3.3. THEMK_UNIT TEMPLATE GENERATOR 13

unit-files The names of the unit files to be processed. Any files that are in-
cluded byunit-files will be processed as well.

The output ofknitdoc is a set ofHTML files describing the units and bundletypes that are defined in
the unit files. (Other kinds of top-level definitions are not yet translated.) The “root” of the documentation
is found in the generatedindex.html file.

Although the generatedHTML is determined almost entirely by the unit and bundletype declarations
themselves,knitdoc supportsdocumentation comments(also called “doc comments”) that are similar to
those found in Java. In a unit file, a doc comment begins with the three-character sequence “/*#” and ends
with the sequence “#*/”. Every character between these delimiters is part of the comment; leading asterisks
and whitespace are not discarded as they would be in a Java doc comment.

/*# This comment describes the ‘Part’ unit... #*/
unit Part = {

...
}

A doc comment that precedes a unit or bundletype definition will be copied verbatim into the generated
HTML page for the definition. Therefore, the body of a doc comment should be written as validHTML.1

Documentation comments mustprecedethe unit or bundletype definition; they cannot be used to document
parts of a definition. Also, note thatknitdoc does not currently support Java-styletagged paragraphs
within doc comments (e.g., paragraphs marked with tags like@see or @author).

3.3 Themk_unit Template Generator

Theknit compiler andknitdoc documentation generator both work on unit files, and ultimately, a unit file
must be written by a person who understands the purpose and structure of the unit-encapsulated C code. To
ease the task of writing a unit file, however, the Knit tool suite includesmk_unit, a small script that can aid
the programmer by producing much of the unit file “boilerplate.”

mk_unit reads a set of object (‘.o’) files, analyzes the imported and exported symbols, heuristically
groups related symbols into bundles, and finally outputs (to stdout) the boilerplate for a unit that can encap-
sulate the analyzed objects. The command line syntax ofmk_unit is:

mk_unit [-n name] object-files [-- other-object-files [-- genbundle-args]]

where the options and arguments are as follows:

-n name Usename as the name of the generated unit description. Without
this option,mk_unit gives the generated unit a dummy name.

object-files The names of the object files to be processed. Themk_unit script
creates one unit definition that describes the collection of objects,
not one unit description for each object. If you want each object as
a separate unit, simply runmk_unit separately on each.

1Although you are free to useHTML in doc comments, it would be wise to do so sparingly. Future versions ofknitdoc may
support multiple output formats (e.g., LATEX) in addition toHTML .

14 CHAPTER 3. USING KNIT

-- other-object-files The names of object files that may import symbols from the unit
being generated. When dividing an existing program or library into
multiple units, it is useful formk_unit to know which functions
and variables are actually used across unit boundaries. By knowing
this, mk_unit can make a better unit definitions, ones in which the
exports are driven by actual cross-unit connections.

Thus,mk_unit needs information about the “environment” for the
unit being generated, and this is given byother-object-files .
These files are used to separate the set of exported symbols into
those thatmust be exportedfrom the unit being generated and those
thatone may choose not to exportfrom the unit.

If no information about the “unit environment” is available, one can
simply specify an empty set ofother-object-files .

-- genbundle-args If a second-- appears on the command line, all remaining argu-
ments are passed through to theknitGenBundles program. This
program is invoked bymk_unit to sort the imported and exported
symbols into related groups — what Knit callsbundles. The argu-
ments that may usefully appear after-- are the following:

UNIT_PATH=dirs
(Required.)

Search path for unit files, as
described inSection 3.1.2.

var =value Other bindings as described
in Section 3.1.2.

unit-file The file from which to read
bundletypes.

The mk_unit script uses thebundletype definitions in the given
unit-file to organize the import and export symbols of the unit
definition being created. By providing the set of bundletypes being
used in your project, you cangreatly improve the quality of the unit
definitions generated bymk_unit.

Note that if a second-- option is not given tomk_unit, or if there
are nogenbundle-args on the command line, thenmk_unit will
not invokeknitGenBundles to group symbols. Instead,mk_unit
will produce a unit definition that has a single import bundle and
one or two export bundles. (There may be two export bundles if a
non-empty set ofother-unit-files was specified.)

The output ofmk_unit is a unit definition of the following form:

unit name = {
imports[...];
exports[...];
depends{ exports + inits + finis needs imports; };

3.3. THEMK_UNIT TEMPLATE GENERATOR 15

files{ object-files } with flags {};
}

The following transcript shows howmk_unit could be used to generate a unit definition for one of
the example programs that comes with Knit. In the Knit distribution, the fileexamples/calc/main.c
contains the main function for a calculator-like program calledcalc. (SeeSection 4.3.) Sincecalc is a
Knit example, the fileexamples/calc/calc.unitalready contains a unit definition for the code inmain.c.
Nevertheless, we can usemk_unit to generate a new unit definition for the code. We might do this in order
to check the hand-written unit, for example.

cd examples/calc
make main.o
mk_unit -n Main main.o -- -- calc.unit

mk_unit processesmain.o, reads thebundletype definitions from thecalc.unit file, and finally out-
puts the following unit definition:

unit Main = {
imports[Repl_T : Repl_T, /* {repl} */

];
exports[Main_T : Main_T, /* {main} */

];
depends{ exports + inits + finis needs imports };
files{
"main.o",

} with flags {};
}

Repl_T andMain_T are the names of bundletypes defined in thecalc.unit file. If you compare the above
output to the actual definition ofMain in calc.unit, you will see that themk_unit-generated definition and
the actual definition are nearly identical.mk_unit did not just copy theMain definition fromcalc.unit,
though — it analyzedmain.o and produced its own unit definition!

While amk_unit- generated unit definition will be “complete,” it will almost certainly need some hand-
tweaking in order to be most useful. For instance, you may want to:

• change the organization of the imports and exports,

• reclassify an exported common symbol as an imported common symbol,

• specify linking constraints,

• specify initializers and finalizers,

• provide finer-grain dependency information,

• change thefiles list to refer to the source C files, or

• specify C preprocessor flags for the files.

16 CHAPTER 3. USING KNIT

Most of these Knit language features are described inChapter 4.
Do not be concerned that you will need to edit the generated unit file. The purpose ofmk_unit is to “get

you off the ground,” not to create the final unit definitions for your project. Themk_unit script is something
that you are expected to run once for each set of objects in your project, and then never again.

Finally, note that becausemk_unit is written is Perl, you can easily modify the script to suit the needs
of specific projects.

3.4 Therename_dot_o_filesObject Editor

The final Knit tool described in this chapter isrename_dot_o_files, the object file editor that is invoked
by Knit-generated Makefiles. While you would never need to invokerename_dot_o_files by hand in the
normal course of using Knit, you might findrename_dot_o_files to be of use in other projects. So, for
hackers and the curious, we describe the program here.

The basic purpose ofrename_dot_o_files is to change the names of non-local symbols (i.e., import
and exports) that appear within an object file. Specific symbol renamings are described in arenaming file.
Symbols not listed in the renaming file are renamed by applying a prefix, which is specified on the command
line. The command line syntax ofrename_dot_o_files is:

rename_dot_o_files prefix rename-file object-file

where the arguments are as follows:

prefix The prefix that should be applied by default to every non-local sym-
bol in the object file. However, if an explicit renaming pattern is
given for a symbol in the renaming file, then the prefix isnot ap-
plied to that symbol.

rename-file The name of the renaming file. This file contains a set of renam-
ing specifications, each on a separate line, and each of the form
“from =to ” where from and to are symbols. In the object file
being edited, every occurrence of the (non-local) symbolfrom will
be replaced with the symbolto .

rename_dot_o_files is somewhat fussy about the format of this
file and the file should not contain any unnecessary white space.

object-file The name of the object file to be edited. Note that the object file
is edited “in place”:rename_dot_o_files mutates the given file
instead of producing a new object file.

You might look at the files produced byknit, as described inSection 3.1.1, to get a better feel for how
rename_dot_o_files can be used.

Chapter 4

Tutorial

This chapter presents the Knit unit language by taking you through a series of example programs. Complete
source code for each of the examples is included in the Knit software distribution, within theexamples
subdirectory, so you can try out Knit as you read this chapter. The examples used in this chapter include:

examples/hello The standard “Hello, World!” program, demonstrating the simplest
possible use of Knit.

examples/msg A step up from the previous example, showing how one can build a
program by combining multiple units in a flexible manner.

examples/calc A four-function calculator program built from several units, with
initialization, finalization, and program instrumentation woven by
Knit.

Note that this tutorial does not (yet!) cover all of the features in the Knit unit language. For a full
and formal treatment of the Knit language, please read theReport on the Language Knit: A Component
Definition and Linking Language, which is also part of the Knit software distribution.

4.1 Unit Basics: Thehello Example

Our first example has two goals: first, to introduce a few basic Knit concepts such as units and bundles, and
second, to take you through the steps of compiling a program with Knit. So, to get started, we will show
how to create the standard “Hello, World!” program with Knit.

4.1.1 The Unit Model of Software Components

In Knit, a program is made up of software components calledunits. A unit is a “logical” wrapper around
code, and by “logical” we mean two things:

1. First, units arecompile-timeor configure-timecomponents, notrun-timecomponents. In contrast to
technologies such asCOM andCORBA, unit boundaries are “compiled away” when your program is
turned into an executable. In this way, units are “logical” wrappers, in that they are not present when
your code is ultimately run.

2. Second, units are defined in one or moreunit files that are separate from the files containing your
program’s C code or other source code. This makes it easier to use legacy C code with Knit: the

17

18 CHAPTER 4. TUTORIAL

units and their implementations are logically separate. You do not have to insert unit definitions or
otherwise modify your C files in order to use Knit.

In other words, a Knit unit is a kind of description of the code that it “wraps.” This description is used
when your program iscompiled, not when your program is executed. Therefore, a unit describes the things
that Knit must know about a piece of code in order for that code to be combined and linked with other units
to form a complete system. These things include:

• The basic interfaces of the code.What functions and variables are defined by the unit? What functions
and variables must be provided to the unit? In Knit terminology, these are theimportsandexportsof
a unit, respectively.

• How is the unit implemented?A unit can be implemented by code from one or more separate files:
Knit can currently work with C files, assembly files, and object (‘.o’) files. A unit can also be created
in a hierarchical fashion by composing and wiring together other units.

If a unit is implemented by code from a set of files, we say that the unit isatomic. In contrast, if a unit
is implemented by a set of other units, we say that the unit iscompound.

• What constraints exist on the use of this unit?Some units must be initialized before normal use. Other
units may not require initialization themselves, but may import functions from other units, and those
“imported units” may need to be initialized.

4.1.2 A Unit File

The following unit definition shows how the above-described features of a unit are expressed in Knit. The
next few sections will discuss the parts of this unit definition in more detail.

unit Hello = {
imports [io: {printf}];
exports [main: {main}];
depends { main needs io; };
files { "hello.c" };

}

This definition comes from the fileexamples/hello/hello.unit. As you can see, Knit unit defi-
nitions are written in a textual specification or “programming” language. These definitions are grouped
and stored inunit files (with names ending with ‘.unit’) for processing by the Knit tools. As described
previously, unit files are separate from the files that contain your program’s code.

If you look at thehello.unit file yourself, you will see that Knit supports C++-style comments in
unit files. A comment either starts with “//” and runs to the end of the line, or starts with “/*” and ends
with “*/”. (A comment that begins with “/*#” and ends with “#*/” is a doc comment, as described in
Section 3.2.)

// ‘Hello’ is the (atomic) unit that describes our program. It imports some
// I/O services (function ‘printf’) and exports ‘main’.

4.1. UNIT BASICS: THEHELLO EXAMPLE 19

The comment says thatHello is the unit definition for the entire “Hello, World!” program. (The unit is
“atomic” because it is implemented by a set of files, rather than by a set of other units.) Let us take a closer
look at the parts of this definition.

4.1.3 Imports and Exports

A unit has a set ofimportsand a set ofexports. (Both theimports andexports parts of a unit definition are
required, even if one or both are empty.)

• Imports are the names of functions and variables that must be supplied to the unit, in order for the
unit to be used. In our simple example, the imports of theHello unit will come from the runtime
environment, i.e., the C runtime library. In future examples, however, we will see that most unit
imports are resolved by connecting one unit’s imports with another unit’s exports.

• Exports are the names of the functions and variables that are defined by the unit and provided for use
by other units. The exports of a program’s “topmost” or “outermost” unit are available to the runtime
environment. In the current example, theHello unit is the topmost (and only) program unit.

Because a unit may import many items and export many items, Knit allows you divide your imports and
exports into groups of related items, calledbundles. An imports or exports specification contains a list of
bundles definitions, which looks something like a list of variable declarations:

imports [bundle-name1: bundle-type1 [, bundle-name2: bundle-type2, . . .]];
exports [bundle-name1: bundle-type1 [, bundle-name2: bundle-type2, . . .]];

The name of a bundle (a symbol) appears to the left of the colon, and the type of the bundle appears to
the right. Multiple bundle declarations are separated by commas. In ourHello unit, the type of each bundle
is given as a list of names enclosed in braces, indicating the names of the objects being imported or exported
from the unit:

imports [io: {printf}];
exports [main: {main}];

Hello has a single import bundle namedio: this bundle has a single memberprintf. (If there were
multiple members in the bundle, one would put commas between the member names.) Similarly, the ex-
ported bundle ismain and contains a single member, also calledmain. It is not a problem to reuse names in
this way, because the names of bundles and the names of bundle members are kept in separate namespaces.
This is similar to the handling of variable names andstruct member names in C: the names are in separate
namespaces, and so will never conflict.

The names of bundles may be used in subsequent parts of the unit description. For instance, we may use
them in thedependspart of the unit, which we describe next.

4.1.4 Dependencies

The dependspart of a unit definition states the dependency relations that exist between the imports and
exports of a unit. Knit needs this information in order to schedule the initialization and finalization of units.
For instance, theHello unit says the following:

20 CHAPTER 4. TUTORIAL

depends { main needs io; };

The declaration “main needs io” says that the functions in themain bundle make use of the functions
from theio bundle. Thus, any initializers that are associated with theio bundle must be run before any
functions from themain bundle can be called.

While we do not use Knit’s scheduling features in our current example, it is always a good idea to
describe the dependencies that exist in a unit: this information may be needed in other programs that incor-
porate your units. For this reason, Knitrequiresthat all atomic unit definitions contain adependsclause.

We will describe dependencies in greater detail when we deal with initialization and finalization later in
this tutorial (Section 4.3). Now, however, we describe the final part of ourHello unit.

4.1.5 Files

The implementation of theHello unit comes from the filehello.c, as described in the unit definition:

files { "hello.c" };

If our program were more complex, we could list more than one source file in thefiles part of our unit
definition. (Multiple file names would be separated by commas.) Knit needs the names of the implementa-
tion files in order to produce theknit_generated.mk file, which will contain themake rules for compiling
our unit.

So, to sum up, ourHello unit definition says that the code inhello.c implements a function called
main. Themain function callsprintf (as stated in thedependsclause), andprintf is imported from
outside the unit. Now that we understand what the definition says, we are ready to process the unit file with
Knit in order to create the “Hello, World!” program.

4.1.6 Compiling thehello Program

Assuming that you followed the Knit configuration instructions inSection 2.3, you should have anexamples/
hello directory in your Knit build tree. That directory should contain aGNUmakefile that you can use
to run Knit and compile thehello program. (Note that theGNUmakefile reads a separate file called
GNUmakerules, which is located in the Knitsourcetree, not in your build tree.)

Go into theexamples/hello directory of your Knit build tree and type “make” or “ make all”. As-
suming that you are starting from a blank slate (i.e., the program has not been built already), the build will
start by running a command like this:

../../bin/knit \
UNIT_PATH=.../examples/hello ... \
hello.unit Hello

The command line syntax of theknit compiler is described inSection 3.1.2. In brief, the above com-
mand tellsknit to process thehello.unit file and create the set of output files that are needed in order to
compile an instance of theHello unit. Whenknit finishes, it will have produced three files:

4.1. UNIT BASICS: THEHELLO EXAMPLE 21

knit_generated.mk Themake rules that describe how to compile an instance ofHello.
If you look at this file, you will see that the compiled unit code is
put into an archive (‘.a’) file, and that the archive file is listed in the
KNIT_LIBS macro.

knit_inits.c A C file that contains Knit-generated initialization and finalization
functions for our program. Since we do not use initializers or finaliz-
ers in this example, the generated functions are pretty uninteresting.

rename_Hello A file that describes how certain symbols in our unit’s object file
will be renamed. This file is referenced from the rules inknit_
generated.mk.

After knit has completed, themake process will continue:make will read the newly createdknit_
generated.mk and proceed to compile theknit_inits.c file.

gcc -c knit_inits.c -g -O2 -Wall -Wshadow

Note thatknit_inits.c is not part of theHello unit. Rather, it is part of the “runtime environment” for
the unit.

Next,make will produce the archive file that contains the unit code:

gcc -g -O2 ... -o Hello_hello.c.raw.o -c .../examples/hello/hello.c
cp Hello_hello.c.raw.o Hello_hello.c.o
../../bin/rename_dot_o_files ’Hello_’ rename_Hello Hello_hello.c.o
ar csq foo0.a Hello_hello.c.o

The actualmake issues a few additional commands, which we have omitted to improve readability. The idea
is to compile each source file, run therename_dot_o_files tool to transform the object files as needed,
and then combine all of the objects into an archive.

Finally, make will link the compiled unit, theknit_inits.o file, and the standard C runtime library to
create thehello program:

gcc -o hello --begin-group knit_inits.o foo0.a --end-group

There are two important things that you might notice about this final command.
First, remember that theHello unit is defined to import aprintf function and export amain function.

In our case, sinceHello is our top-level unit, these symbols will be imported from and exported to the
“environment” of our unit code, i.e., the standard C library and any other object files that we link into our
program. If we had not importedprintf, thenour program would not link. Symbols from the environment
are not implicitly imported into a unit: rather, they must be explicitly imported. Similarly, if we had not
exportedmain, our program would not link, because the C library would not have access to themain
function defined in our unit.

Second, the link command line lists the objects and libraries for our program between--begin-group
and--end-group. As previously described inSection 3.1.3, this simply helps to avoid problems that the
linker might have in resolving symbols, and eliminates the need for us to carefully order the files on the link
command line. There is no “deep magic” here; it is simply convenient practice.

Before moving on to the next example, you should check that everything actually worked:

[10] examples/hello> ./hello
Hello, world!

22 CHAPTER 4. TUTORIAL

4.2 Using Multiple Units: The msg Example

Our second example is similar to the “Hello, World!” program that we just built, except that our new program
is built by combining two separate units. We will call our new program “msg”. Let us start by looking at the
source code for the main program, which is in the fileexamples/msg/main.c in the Knit source tree. The
interesting part of the file is this:

const char *message();

int main(int argc, char** argv)
{

printf("%s", message());
return 0;

}

This is of course nearly identical to themain function of the “Hello, World!” program, except that now, the
string to be printed is returned by an external function calledmessage. Since this is a Knit tutorial, we of
course want to get themessage function from another unit. That other unit will export the function, and our
main program unit will import it.

4.2.1 Bundletypes

It is not a problem to define multiple units: simply put multipleunit definitions in your unit file. But if the
units are designed to be linked together, how can we best ensure that all of the various import and export
bundles have the appropriate types? In thehello example (Section 4.1.3), you learned that import and
export bundles can be written like this:

import [bundle-name: { member 1, member 2, ... }];

In other words, you list all of the members of the bundle between braces. This style is tedious, however,
if you want to use the same kind of bundle more than one place — which is usually the case, after all,
because most bundles are exported from one unit and imported into another! So, to help you avoid errors
and verbosity in your unit definitions, Knit allows you to define bundle types by name. For example, in the
unit file for our current program (examples/msg/msg.unit), you will see this:

// Define our ‘‘bundletypes.’’ A bundle is like an ‘‘interface’’: a set of
// functions that describe the imports or exports of a unit.
//
// Our bundletypes are exceedingly simple, since each contains only a single
// member. In general, a bundletype contains several members and describes a
// group of related functions.
//
bundletype IO_T = { printf }
bundletype Msg_T = { message }
bundletype Main_T = { main }

4.2. USING MULTIPLE UNITS: THEMSG EXAMPLE 23

These definitions define three bundletypes in the obvious way. We can now use the bundletypes to define
the unit that will contain our main program code, i.e., the code inmain.c:

// ‘Main’ is the unit that encapsulates our ‘main’ function. If you look at
// the code in ‘main.c’, you will see that ‘main’ calls ‘printf’ and ‘message’.
// We import those functions in two bundles (‘io’ and ‘msg’).
//
unit Main = {

imports [io: IO_T,
msg: Msg_T];

exports [main: Main_T];
depends { main needs (io+msg); };
files { "main.c" };

}

This unit definition should look familiar, since it is very much like the definition of theHello unit from
the previous example (inSection 4.1.2). The three main differences are that:

1. Main import two bundles instead of one.

2. Main uses named bundle types instead of listing the bundle members explicitly.

3. Main uses a set-like syntax to say that its exportedmain bundle needs both of the imported bundles.

4.2.2 Renaming

Now we turn our attention to the second unit in our example: namely, the unit that will provide the definition
of themessage function. This unit will be implemented by the code in theexamples/msg/messages.c
file. If you look at that file, you will see that it defines three functions, each of which returns a string:

const char *not_worth_knowing() { return "..."; }
const char *rarely_fits() { return "..."; }
const char *change_the_spec() { return "..."; }

Unfortunately, although all of these functions have the same C type as themessage function we need,
none of the functions at hand are actually calledmessage! This kind of problem is often encountered by
programmers who need to combine code from different sources. The usual C solution is to write miniature
wrapper functions or to use C preprocessor magic to establish the wanted connections between functions.
Unfortunately, these solutions are often tedious and break down at large scale.

With Knit, however, we can do better. Without changing the C code, we can define a unit that exports
every oneof these functions as a different instance of amessage function. We will later decide which of
these instances will be “the”message function that is imported into ourMain unit.

To export each of our three functions as an instance ofmessage, we define a unit that exports three
bundles, each of typeMsg_T. Then, we userename declarations to say which C functions correspond to
which bundle members, like so:

24 CHAPTER 4. TUTORIAL

unit Messages = {
imports [];
exports [msg_1: Msg_T,

msg_2: Msg_T,
msg_3: Msg_T];

depends { exports needs imports; };
files { "messages.c" };
rename {

msg_1.message to not_worth_knowing;
msg_2.message to rarely_fits;
msg_3.message to change_the_spec;

};
}

All three exported bundles are of typeMsg_T, so each one exports amessage function. By default, Knit
automatically associates each imported or exported bundle member with a C function of the same name.
But since that default rule cannot work here, we must make explicit pairings. Eachrenamedeclaration in
our unit has the form:

rename bundle-name.member to c-function;

These declarations have the “obvious” effects. Thenot_worth_knowing function is exported as the func-
tion referenced by themessage member of themsg_1 bundle. The other two functions are referenced via
the message members ofmsg_2 andmsg_3. Later in this tutorial you will learn how to rename several
functions at once, but for now, we proceed with the current example.

4.2.3 Compound Units

At this point we have two units,Main andMessages. Each of these units isatomic, meaning that each is
implemented by one or more source files. What remains in this example is to connect our units together, via
acompoundunit, to form a single unit that we can use as the top-level for our program.

A compound unit is very similar the units we have seen so far: for instance, a compound unit hasimports
andexports. However, instead of afilessection, a compound unit has alink section. Thelink section states
the units that make up the compound unit, and further, defines how these “internal” units are connected to
each other and to the imports and exports of the compound unit itself.

For our current program, we need a compound unit that connects an instance of ourMain unit with an
instance of ourMessages unit. If you look in themsg.unit file, you will find the following definition of the
compound unit we need:

unit Msg = {
imports [io: IO_T];
exports [main: Main_T];
link {

[main] <- Main <- [io, msg_1];

4.2. USING MULTIPLE UNITS: THEMSG EXAMPLE 25

[msg_1, msg_2, msg_3] <- Messages <- [];
};

}

The imports andexports should look familiar. As explained inSection 4.1.6, sinceMsg is going to be
the top-level unit for our program, we must explicitly import the services that we need from the environment
(in this case, the functions listed in theIO_T bundletype) and explicitly export the functions that the runtime
needs to invoke (i.e., ourmain function).

The link section of a compound unit describes how the unit is implemented in terms of a network of
other units. Each statement in the link section above is of the form:

[export 1, export 2, . . .] <- unit <- [import 1, import 2, . . .]

Each line causes an instance of the named unit to be created. Let us take a closer look at the first line in
the link part of ourMsg unit definition. That line says that aMain unit instance will be created as part of
the (compound)Msg unit. At the start of that line, “[main]” is a list of symbols: these give names to the
bundles that are exported by ourMain unit. Bundles are named in the order they are listed in theexports
list of the unit being instantiated. (Of course, ourMain unit has only one exported bundle.) At the end of
the line, the list “[io, msg_1]” gives names to the imported bundles. Again, the bundles are named in the
order they are listed in theMain unit definition.

Connections between units are indicated when the same name is used at two or more places in the
compound unit. Looking again at the first line within thelink part ofMsg, we see that bundle being exported
from Main has the same name as the bundle being exported from theMsg unit itself. This indicates that the
export ofMain is connected to the export ofMsg: in other words,Msg exports the functions from its internal
Main unit. Similarly, theio bundle that is imported toMain is connected to theio bundle that is imported
by Msg.

So finally we see which of the functions in ourMessages unit becomes “the”message function to be
called in our program. The second link of ourlink specification gives names to the three bundles that will
be exported from an instance of ourMessages unit. One of these bundles (msg_1) is specified as an import
to our Main bundle. Thus, the “wiring” in our compound unit tells us that the function that implements
msg_1.message will be the one to actually be called in our program. (The bundlesmsg_2 andmsg_3 are
not connected to any other units, nor are they exported from the compound unit. This is not a problem —
the bundles are simply unused. Also note that theMessages unit requires no imports, and so its import list
is empty.)

Now it should be clear that you can easily change the “wiring” of the program,without changing the
C source code. If you simply replace themsg_1 import toMain with eithermsg_2 or msg_3, you effec-
tively change the message string that will be output by the complete program. This kind of flexibility is
critical when building programs from components: in Knit, the linkingspecificationsare separate from the
componentimplementations.

4.2.4 Compiling themsg Program

Finally, you are ready to compile themsg program. Go to theexamples/msg directory of our Knit build
tree and type “make” or “ make all”. The make process will go through the steps described previously in
Section 4.1.6, and the result will be program calledmsg. Run it:

26 CHAPTER 4. TUTORIAL

[11] examples/msg> ./msg
A language that doesn’t affect the way you think about programming is not
worth knowing.

If you re-examine themsg.unit file, you should be able to see why the program prints the message
shown above, and not some other message. At this point, you might want to experiment by editingmsg.unit
to change the message output by your program. After a change to the unit file, a simple “make” should be all
that is required to re-Knit and recompile your program. (Do not change the name of theMsg unit, however!
If you change that name, you will have to edit theGNUmakefile in your build directory to match.)

4.3 Knitting Tricks: The calc Example

Now that you have mastered Knit basics, it is time to see how Knit can help in the development of a nontrivial
C program. In this example, we will use Knit to define, build, and analyze a four-function expression
evaluator — in other words, a calculator. The basic program will read expressions from the user, evaluate
them, and print out the results:

[12] examples/calc> ./calc
1+2
read : 1 + 2
eval : 3

To make things a little more interesting, we will Knit together a special version of the program that
monitors calls tomalloc andfree for two different datatypes in the program. The enhanced program will
report its allocation statistics for each input expression, like so:

[13] examples/calc> ./calc
1+2
read : 1 + 2
read : (allocs/frees) 4/ 4 tokens, 3/ 0 exprs
eval : 3
eval : (allocs/frees) 0/ 0 tokens, 3/ 2 exprs
cleanup : (allocs/frees) 0/ 0 tokens, 0/ 4 exprs
total : (allocs/frees) 4/ 4 tokens, 6/ 6 exprs

As shown in the transcript, in the “read” phase of the program, fourtoken objects were allocated, four
tokens were freed, threeexprs were allocated, and zeroexprs were freed. Similar statistics were reported
for the “eval” and “cleanup” phases. Finally, the “total” line shows the sums of the counts from the three
phases. In the example shown, for bothtokens andexprs, the number of allocs is equal to the number of
frees. This is good evidence that there were no memory leaks.1

The C code for our calculator — approximately 1000 lines — is located in theexamples/calcdirectory
of the Knit source tree. Thecalc.unit file organizes the calculator as a small number of atomic units — one
for each major component — and links them together using compound units. If you have worked through
the previous examples in this chapter, you should already understand most of the contents of thecalc.unit
file. Therefore, in the sections below, we describe only the Knit language features that were not used in the
hello or msg programs.

1The evidence is not conclusive, however, because our program counts the number of calls to the allocation and free functions,
but not operations on individual objects. A more sophisticated program would track individual objects, but that is not the point of
our example.

4.3. KNITTING TRICKS: THECALC EXAMPLE 27

4.3.1 Initializers and Finalizers

The first new Knit language feature in our example is the use ofinitializers and finalizers. In Knit, a
component can specify one or more functions that must be called to initialize the component — more
precisely, to initialize one or more of the component’s exports. Similarly, a finalizer is a function that must
be called in order to shut down some of the component’s exports.

Why does Knit treat initializers and finalizers in a special way? Why not simply list initializers and
finalizers among a unit’s imports and exports? It is for the same reasons that languages like C++ have
special notions of constructors and destructors:

• Simplicity.By handling initializers and finalizers specially, Knit can ensure that they are run — instead
of leaving the task in the hands of each Knit user.

• Correctness.Moreover, Knit can ensure that initializers and finalizers are run in a correct order. For
instance, if one unit’s initializer invokes functions that are imported from a second unit, then Knit will
ensure that the second unit is initialized before the first unit.

• Modularity. Finally, Knit’s handling of initializers and finalizers helps to make components more
modular. Two units providing the same exported bundletypes may have very different initialization
and finalization requirements inside. By hiding this difference, Knit makes it possible for a program-
mer to use one unit in place of the other: there is no need for the programmer to write or change any
initialization code by hand. By handling initializers and finalizers automatically, Knit provides better
separation between a unit’s interface and its implementation.

The syntax for specifying initializers and finalizers is illustrated by theInput unit in ourcalc example:

unit Input = {
imports [alloc : Alloc_T,

io : IO_T];
exports [input : Input_T];

initializer init_input for exports;
finalizer fini_input for exports;
depends {

// { init_input } is syntax for ‘‘the set containing ‘init_input’.’’
{ init_input } needs io;
{ fini_input } needs io;
exports needs imports;
//
// As described previously, if we wished, we could replace the above
// three lines with a single (overgeneral) statement that all of our
// exports, initializers, and finalizers depend on all of our imports:
//
// (exports + inits + finis) needs imports;

};
files { "input.c" };

}

28 CHAPTER 4. TUTORIAL

In the above definition, the C functioninit_input is specified to be an initializer for all of the unit’s
exports (as indicated by the keywordexports). Similarly, the C functionfini_input is the finalizer for all
of the exports. In general, one can provide a specific set of bundles when defining an initializer or finalizer,
but it is usually sufficient to say simply that the function is an initializer or finalizer for all exports. Moreover,
it is often a good idea to overgeneralize in this way. If you later tweak the C code and add a new unit export,
for example, you do not have to remember to specify that your initializer or finalizer also applies to the
new export. Finally, note that initializers and finalizers do not generally need to be exported: Knit invokes
them specially. (The only reason to export an initializer or finalizer would be if you want Knit to invoke the
function automaticallyandyou want to explicitly invoke it yourself. This would be rather odd.)

So how are initializers and finalizers used? When theknit compiler is run, it creates a file called
knit_inits.c that contains two function definitions. The first function,knit_init, contains a list of calls
to the initialization functions for the unit instances within your program.2 The second function,knit_fini,
contains calls to the finalizers in your program.

Theknit_init function must be called before your program proper, i.e., before any of the exports from
your program’s top level unit are called. In the current example, this is accomplished with some “runtime
magic” in theinit.c file. Pay special attention: themain function of the calculator program doesnot
invoke the initializers! Instead, the Knit runtime support ininit.c ensures that theknit_init function is
run beforemain is called. Similarly, the code ininit.c ensures thatknit_fini will be called after the
top-level exports (in this example, themain function) will no longer be called (i.e., aftermain has returned,
or exit has been called).

4.3.2 More About Dependencies

The order of the calls in the Knit-generatedknit_init andknit_fini functions are based on the depen-
dency information found in your unit definitions. For instance, if one initializer needs to call functions that
are imported from a second unit, then the second unit must be initialized before the first. Accurate (or, at
least, conservative) dependency information in all units is amustin order for Knit to find correct initializa-
tion and finalization schedules. This is why dependency information is required even for atomic units that
do not themselves have initializers and finalizers, as was previously described inSection 4.1.4.

If we look again at thedependssection of ourInput unit, you will notice some new syntax for describ-
ing dependencies:

depends {
// { init_input } is syntax for ‘‘the set containing ‘init_input’.’’
{ init_input } needs io;
{ fini_input } needs io;
exports needs imports;
//
// As described previously, if we wished, we could replace the above
// three lines with a single (overgeneral) statement that all of our
// exports, initializers, and finalizers depend on all of our imports:
//
// (exports + inits + finis) needs imports;

};

2More precisely,knit_init contains calls to the initializers for the unit instances that make up the top-level unit that was
specified on theknit compiler command line.

4.3. KNITTING TRICKS: THECALC EXAMPLE 29

The first piece of new syntax is for “object sets” as illustrated in the first two statements. To specify that
the init_input andfini_input functions each call functions from the importedio bundle, we create
object sets by putting the function names in braces as shown. Note that we could have put both functions
in a single set. Also note that we must use the object set syntax here, because our initializer and finalizer
functions are not part of any named (imported or exported) bundle.

The second piece of new syntax is illustrated by the third statement. Instead of naming specific bundles,
a dependency statement can refer to certain predefined groups of bundles:

exports All members of the unit’s export bundles.

imports All members of the unit’s import bundles.

inits The set of all of the unit’s initializers.

finis The set of all of the unit’s finalizers.

Further, Knit allows the unit writer to combine object sets using “+” for set union and “-” for set differ-
ence, as shown in the comments above. As the comments describe, we could replace all of the dependency
statements in theInput unit with the single statement:

(exports + inits + finis) needs imports;

which conservatively approximates (overgeneralizes) all of the actual dependencies in the unit. When writ-
ing your own units, it is often good to start with the above statement — but, be careful! If dependency
information istoo conservative, Knit may find aninitialization cycle: a cycle of units in which each unit
requires that the previous unit to be initialized before initializing itself. This can happen if there is in fact
a true dependency cycle, or if your units’ dependency specifications are too general (so that they introduce
false dependency cycles). In the latter case, you will need to make your dependency specifications more
accurate, so that Knit can find workable initialization and finalization sequences. Fortunately, both true and
false dependency cycles are rare in most programs.

Before moving on to further discussion of renaming, it would be useful for you to read through the
definition of theAlloc unit in our calculator unit file. The (rather long) comments in thedependssection
in particular clarify the relationship between dependencies and initializers. (In case you do not have the file
handy right now, the lesson is this: it is extremely unusual for a bundle to depend on its initializer.)

4.3.3 More About Renaming

If you just read through theAlloc unit definition as suggested above, you may have noticed some new
syntax for renaming:

rename {
// We need to associate ‘counted_alloc.malloc’ with the C function
// ‘counted_malloc’, and likewise for ‘counted_alloc.free’. To make
// these associations, we could use two separate renaming declarations:
//
// counted_alloc.malloc to counted_malloc;
// counted_alloc.free to counted_free;
//

30 CHAPTER 4. TUTORIAL

// But we can do the same job by saying that the C function names are
// derived by adding a prefix to the names of the bundle members:
//
counted_alloc with prefix counted_;

};

When we previously discussed renaming inSection 4.2.2, we learned how to make associations one-by-
one. To make certain common cases easier, however, Knit provides special syntax for renaming when the
names of C functions can be manufactured by adding a prefix or suffix to the names of the members of a
bundle. The syntax of these special cases is:

rename {
bundle-name with prefix identifier;
bundle-name with suffix identifier;

};

Of course, this convenient syntax is useful only for prefix or suffix transformations. You cannot apply
both a prefix and a suffix. For situations requiring more that a simple prefix or suffix addition, you must use
Knit’s one-by-one syntax.

4.3.4 Wrappers and Transparent Interposition

For the allocation-monitored version of thecalc program, we want to count the numbers ofexpr andtoken
objects that are dynamically allocated and freed. Further, we want to count these events separately for each
type. Let us considerexprs first. If you look at the code in theexpr.c file, you will find thealloc_expr
function, which handles all dynamic allocations ofexprs:

static expr
alloc_expr(void)
{

return ((expr) malloc(sizeof(expr_struct)));
}

There is an analogousfree_expr function for handling dynamic releases;free_expr invokes the standard
free function to actually release the memory for a givenexpr object.

Counting the number of dynamicexpr allocations and frees, therefore, amounts to counting the num-
ber of times thatalloc_expr calls malloc and the number of times thatfree_expr calls free.3 More
precisely, we must count the number of times thatmalloc returns a non-null result and the number of times
that free is called with a non-null argument. To do this, we need tointerposeon or wrap calls to these
functions, so that we can insert our instrumentation.

3If you look at the code, you will see that it is not correct to count the number of calls tofree_expr itself, becausefree_expr
does not always callfree.

4.3. KNITTING TRICKS: THECALC EXAMPLE 31

Given this scenario, most C programmers would either (1) edit thealloc_expr andfree_expr func-
tions to insert the needed instrumentation, or (2) define C macros to “magically” replace the calls tomalloc
andfree with calls to other functions. Each of these solutions has its problems, however.

The first technique requires the programmer to edit the code. Likely, the programmer will complicate the
code with#ifdefs so that the instrumentation can be conditionally incorporated into the program. While
doing this once or twice might not be a problem, doing it many times turns the code into an#ifdef jungle!

The second approach — instrumentation via macro magic — has a similar but different problem. It
is easy enough to definemalloc andfree as macros that call other functions, say,counted_malloc and
counted_free. To use these macros, the programmer would probably need to change only a few#include
lines in the source, so while source changes are still required, they are minimal. A new problem arises,
however, when the programmer remembers that we want to monitorbothexpr andtoken allocation, and
that we wantseparatecounts for each type! Now we cannot use our simple macros to insert instrumentation
into bothexpr.c andtoken.c, because we need slightly different instrumentation for each file.

A possible solution would be to make more complicated macros, e.g., macros that expand differently
based on other macros. But you do not want to do that. You want to use Knit, which can solve your problems
in an elegant and principled way.

In the calculator program at hand, the code inexpr.c is encapsulated by theExpr unit, which is defined
in the calc.unit file. That unit says that the functionsmalloc andfree are imported into the unit as
elements of a bundle calledalloc, as shown in this excerpt:

bundletype Alloc_T = { free, malloc }

unit Expr = {
imports [alloc : Alloc_T,

You, Knit user, decide where these functions come from. They do not have to come from the standard
C library: they can come fromany unit that exports a bundle of typeAlloc_T. Moreover, the choice is
transparentto the code in theExpr unit: the code in theExpr does know or care where the allocation
functions come from. Thus, we can transparently replace the standard allocation functions with monitored
versions of those functions, if we have a unit that implements the counted versions we want.

Fortunately, we have such a unit:Alloc. TheAlloc unit provides versions of the allocation functions
that count the number of times that they allocate or free memory. Functions to get and reset the allocation
counts are provided in a separate exported bundle, as shown in the excerpt below:

unit Alloc = {
imports [alloc : Alloc_T];
exports [counted_alloc : Alloc_T,

counts : AllocCounts_T];

Note thatAlloc both importsand exports bundles of typeAlloc_T. This is a common Knit idiom for a
unit thatwrapsanother unit: the “wrapper” unit modifies or otherwise interposes on access to the inner
“wrapped” unit. In this case, theAlloc unit imports definitions ofmalloc andfree, and then exports its
own versions of these functions. (Arenamedeclaration, which we discussed previously inSection 4.3.3, is
required in order to export the unit’s own definitions as bundle elements calledmalloc andfree.)

32 CHAPTER 4. TUTORIAL

4.3.5 Multiple Instantiation

As described in the previous section, the code inexpr.c is encapsulated by theExpr unit, and theExpr
unit imports the functionsmalloc andfree from the outside, i.e., some other unit. Now, notice that the
code intoken.c is encapsulated in theToken unit, and that likeExpr, theToken unit imports the allocation
functions from another unit:

unit Token = {
imports [alloc : Alloc_T,

The key insight here is that, although bothExpr andToken import allocation functions,they do not have
to import these functions from the same unit. Instead, every unit instance can import these functions from a
separate unit instance. TheExpr unit can get allocation from one unit instance, and theToken unit can get
different allocation functions from a different unit instance. In this way, we can effectively instrument our
Expr andToken units separately, without changing the C source code of either unit.

The obvious solution, then, is for us to puttwo separate instances of ourAlloc unit into our final
calculator program: one to track the behavior of expression objects and the other to track the behavior of
tokens. This approach gives us separate counts forexpr andtoken objects, which is what we want — but
not everything we want. Remember that in addition to tracking allocation for the two type separately, we
also want to track allocation behavior both for each “phase” of the interpreter, and for each input expression
as a whole (i.e., the “total” counts in transcript below).

[14] examples/calc> ./calc
1+2
read : 1 + 2
read : (allocs/frees) 4/ 4 tokens, 3/ 0 exprs
eval : 3
eval : (allocs/frees) 0/ 0 tokens, 3/ 2 exprs
cleanup : (allocs/frees) 0/ 0 tokens, 0/ 4 exprs
total : (allocs/frees) 4/ 4 tokens, 6/ 6 exprs

In other words, what we really need are two sets of numbers for each type: one set of numbers that
we clear between phases of the interpreter, and a second set that we clear only between expressions. The
Alloc unit in our unit file defines a unit that exports allocation functions and one set of allocation counters.
Cleverly, we can use this unit to create a unit exports allocation functions andtwo sets of counters, simply
by composing two instances ofAlloc as shown below:

unit Alloc_2 = {
imports [alloc : Alloc_T];
exports [counted_alloc : Alloc_T,

counts_1 : AllocCounts_T,
counts_2 : AllocCounts_T];

link {
// [export, export, export, ...]
// <- Unit

4.3. KNITTING TRICKS: THECALC EXAMPLE 33

// <- [import, import, import, ...];

// The exported ‘counted_alloc’ and ‘counts_1’ bundles, from one
// instance of an ‘Alloc’ unit.
[counted_alloc, counts_1]

<- Alloc
<- [counted_alloc_internal];

// The internal ‘counted_alloc_internal’ bundle and the exported
// ‘counts_2’ bundle, from a separate instance of our ‘Alloc’ unit.
[counted_alloc_internal, counts_2]

<- Alloc
<- [alloc];

};
}

Alloc_2 defines a unit likeAlloc, but with two separate sets of counters. Each counter set is accessed
by a bundle of functions: the first set by elements ofcounts_1, and the second set by the elements of
counts_2. TheAlloc_2 unit is implemented as a compound unit (Section 4.2.3) that connects two in-
stances ofAlloc in the “obvious” way. The exported allocation functions from one instance ofAlloc are
given as imports to the second instance ofAlloc. The exported allocation functions from the second in-
stance are then exported fromAlloc_2 itself. The bundles for accessing the counts are also exported from
Alloc_2, thus creating the two-count-set unit that we need for our calculator program.

When a unit is instantiated more than once,each instance of the unit is independent. This is true whether
the unit is instantiated multiple times within a single containing unit (as shown above) or multiple times as
parts of different containing units. In either case, each instance of a unit has its own imports, its own exports,
and therefore, its own copy of its code and data (e.g., static variables declared in the unit’s C files). In terms
of “objects,” you might think of each unit instance as a separate object instance, with its own relationships
to other units. In terms of linking, you might think in terms of the object code being linked multiple times
into the final program, although tailored for each individual copy.

A careful reading of theAlloc_2 unit definition provides additional detail about the behavior of the
two counter sets. The two sets of counters arecorrelated: for each call to one of the exported allocation
functions,twocounter instances will be incremented. But, by looking closely at the wiring withinAlloc_2,
one can see that the two sets of counters areindependent: i.e., that neither depends on the values of the
other, and that if you reset one of the counter sets, the other counter set will be unaffected. You can see this
because neitherAlloc unit imports the other’scounts bundle, and therefore, neither unit could possibly
invoke theget_alloc_counts or reset_alloc_counts functions on the other.

4.3.6 Summary: TheCalc and Calc_Counted Units

So, finally, we have what we need in order to build an instrumented version of the calculator program! The
calc.unit file contains top-level units for both the “plain” and instrumented versions of the program: these
units are calledCalc andCalc_Counted, respectively. Let us briefly summarize the important parts of
Calc_Counted:

• Calc_Counted is the compound unit that instantiates and connects all of the components within the
instrumented calculator program. This is the unit that we will eventually name of the command line
to theknit compiler.

34 CHAPTER 4. TUTORIAL

• Calc_Counted instantiates two copies of theAlloc_2 unit: one for tracked allocation ofexprs and
another for tracked allocation oftokens. Each instance ofAlloc_2 contains two instances ofAlloc;
thus, there are four separate instances ofAlloc in the final program.

• Each instance ofAlloc_2 imports the allocation functions that are imported byCalc_Counted itself.
Ultimately, the implementations of these functions comes from the runtime environment outside Knit,
i.e., the standard C library.

• The (exported) instrumentation bundles from the twoAlloc_2 instances are connected (imported) to
an instance ofRepl_Counted, which is the main “read-eval-print-loop” for the instrumented program.
This gives the main loop the ability to access and clear the allocation statistics as it needs.

The complete definitions of theCalc andCalc_Counted units are located at the end of thecalc.unit
file. By now, everything in these unit definitions should be clear to you — except for theflatten directives,
which we will describe below inSection 4.3.8.

4.3.7 Compiling thecalc Program

A simple “make” or “ make all” in the examples/calc directory of your Knit build tree will runknit
to produce the instrumented version of the calculator program. Themake process will go through the steps
described previously inSection 4.1.6, and the result will be program calledcalc. In the output frommake,
you may notice thatknit prints out the schedule for the program’s initializers and finalizers.

Run your newly compiledcalc program:

[15] examples/calc> ./calc
1+2
read : 1 + 2
read : (allocs/frees) 4/ 4 tokens, 3/ 0 exprs
eval : 3
eval : (allocs/frees) 0/ 0 tokens, 3/ 2 exprs
cleanup : (allocs/frees) 0/ 0 tokens, 0/ 4 exprs
total : (allocs/frees) 4/ 4 tokens, 6/ 6 exprs

As we described in the introduction to this example (Section 4.3), the statistics reported bycalc give us
confidence that the program is behaving correctly, without memory leaks. It turns out, however, that most
nontrivial programs have bugs:

(1
read : scanner error: unexpected end of input
read : (allocs/frees) 3/ 3 tokens, 2/ 0 exprs
eval : scanner error: unexpected end of input
eval : (allocs/frees) 0/ 0 tokens, 1/ 0 exprs
cleanup : (allocs/frees) 0/ 0 tokens, 0/ 2 exprs
total : (allocs/frees) 3/ 3 tokens, 3/ 2 exprs

Although the program correctly handled the erroneous input, it apparently leaked anexpr object in
the process: the “total” line indicates thatcalc allocated threeexprs but freed only two. The author of
the calc example found this bug quicklybecauseKnit allowed him to easily insert instrumentation code
into the program. This bug has been left in the C code in case you wish to examine it — see the function
parse_term in the fileparse.c.

At this point, you may want to experiment with thecalc program. Here are some suggested exercises:

4.3. KNITTING TRICKS: THECALC EXAMPLE 35

• Fix the above-described bug, then build and test a corrected version of the program.

• Edit theGNUmakefile so that Knit will build the uninstrumented version of the program. To do this,
specifyCalc as the top-level unit instead ofCalc_Counted.

Note that if you edit theGNUmakefile , you will need to “make veryclean” before building your
new program. Otherwise,make may be confused by the files that were leftover from the previous run
of knit .

• Use your knowledge of Knit wrapper units to test thecalc program under simulated low-memory
conditions. Start by writing special versions ofmalloc andfree that simulate low-memory condi-
tions. Your version ofmalloc should return a null pointer if the total number of allocated bytes would
exceed some predefined limit, e.g., 128 bytes. (Of course,free’ing an object increases the budget for
further allocation!) Then, write a Knit wrapper unit, and use it to test the instrumentedcalc program
for bugs.

• Experiment with Knit’s “flattening” optimization, described in the next section.

4.3.8 Optimizing the Code via “Flattening”

Flattening is an optimization technique in which theknit compiler “weaves” all of the C source files that
make up a unit into a single (“flat”) C file. The source code is manipulated to create the proper internal unit
connections, of course, but is also manipulated so as to inline functions, remove dead (unused) functions,
and hopefully improve the C compiler’s ability to further optimize the code. The code transformations are
heuristic, but work well for many cases.

Flattening is controlled by directives in your unit definitions. To say that the implementation of a unit
should be flattened, insert theflatten directive into the unit’s definition. (This directive is already specified
in the Calc and Calc_Counted units of this example.) Flattening will be “recursively” applied to the
entire body of the unit — including the bodies of units within compound units — except for units whose
definitions include anoflatten directive. Throughflatten andnoflatten directives, you can specify which
parts of your units are flattened and which are not. Finally, note that flattening directives are honoredonly
when the optimization is enabled on theknit command line via the-f option. By default, flattening is not
performed.

To apply flattening to thecalc example, first “make veryclean” in order to remove any files previously
created by Knit. Then, do:

make KNIT_FLAGS=-f

This will rebuild the program with flattening enabled. Becauseflatten is specified for the top-level
program unit, the entire program will be flattened. The result is an optimizedcalc program — although
you might not notice much speed improvement in this simple example!

Flattening can be “fine-tuned” by specifying an inlining budget. To specify a budget, add a value for
KNIT_BUDGET to the list of flags forknit:

make veryclean
make KNIT_FLAGS=’-f KNIT_BUDGET=1000’

As described previously inSection 3.1.2, very roughly, KNIT_BUDGET is the total number of staticRISC

instructions that should be spent on or saved by inlining. Positive values represent spending (i.e., increased
code size) while negative values represent saving (reduced code size). To see a difference in the program size

36 CHAPTER 4. TUTORIAL

of calc, remember to strip the binary of debugging information. Since thecalc program is relatively small,
you should expect that any program size changes will also be small. Also note that the budget measures are
veryapproximate: a larger budget may actually result in a smaller final program.

4.4 Other Knit Features

Although you have reached the (current) end of the tutorial, there are many features of Knit that we have not
yet discussed. These things include:

• Constraints: the ability to specify constraints on the use of units, and have these conditions automati-
cally checked by Knit.

• Defining bundletypes in terms of other bundletypes, and defining units as modifications of other units.

• Inline units, anonymous units, and matching bundle members by name inlink specifications.

• Globals, defaults, packages, andglue.

For information about these language features, refer to theReport on the Language Knit: A Component
Definition and Linking Language, which is contained in thedoc/report directory of the Knit distribution.
Happy Knitting!

Chapter 5

Debugging Knitted Programs

This chapter will be expanded in the future. For now, it only outlines the basics of what one must know in
order to debug Knitted programs.

To debug a Knit-generated program, you must (1) compile the program for debugging, i.e., by giving the
-g option to your C compiler, (2) run the Knit-generated program under a debugger such asgdb, and
(3) understand how Knit has renamed (“mangled”) the names of the objects — the variables and functions
— that make up the program. The rest of this chapter describes how Knit mangles the names of objects.

Knit renames objects in different units to avoid name clashes. In particular, Knit prefixes every object
name with a string that identifies the unit instance that contains the object. Knit assigns a unique name to
every unit instance it creates as follows:

• The topmost unit instance— i.e., the instance of the unit named on theknit command line — has
the same name as its unit definition.

• A named unit instance within a compound unithas a name of the form:

parent_bundle

bundle is the name of the first bundle exported by the unit instance. Within thelink section of
a compound unit definition, every unit instance exports at least one bundle, and all of the exported
bundle names are unique. Therefore,bundle is a unique name within the compound unit.

parent is the name of the “parent unit instance” — i.e., the name that Knit assigns to the instance
of the containing compound unit. This name is, of course, determined by recursively applying these
rules.

Every object that is not exported by the topmost unit instance is renamed by prepending the name of the
unit instance in which the object is defined. The new name of the object is the name of this unit instance,
followed by an underscore, followed by the object’s original name. For example, consider the following unit
definitions:

unit A = {
imports [...];
exports [...];
link{ [v,w] <- PQ <- []; }

37

38 CHAPTER 5. DEBUGGING KNITTED PROGRAMS

link{ [x,y] <- PQ <- []; }
}

unit PQ = {
imports [...];
exports [p: {p}, q: {q}];
...

}

If A is named as the topmost unit, then the three unit instances in the Knit-generated code are assigned
the names:

A The topmost unit instance.

A_v The first instance ofPQ within the instanceA.

A_x The second instance ofPQ within A.

The instances ofp andq are assigned the names:

A_v_p The objectp in the unit instanceA_v.

A_v_q The objectq in the unit instanceA_v.

A_x_p The objectp in the unit instanceA_x.

A_x_q The objectq in the unit instanceA_x.

The four names above are the names that you would use within your debugger to set breakpoints or
examine variable values.

Final notes:

• In fact,gdb will let you use the original name of a function if it is unambiguous, but always requires
the “fully qualified” name for variables.

• You may find it faster to locate a symbol by executing a command like this:

nm *.a | grep free_number

instead of applying the above rules to determine the name of the unit instance.

Chapter 6

Knitting the OSKit

To use Knit with the OSKit, you should:

1. Obtain a matching version of the OSKit. (The Knit download page says which version of the OSKit
to use with each version of Knit.)

2. Unpack, configure and prepare the OSKit:

mkdir /tmp/src
cd /tmp/src
tar zxvf oskit<version>.tar.gz
mkdir /tmp/obj
cd /tmp/obj
/tmp/src/oskit/configure --enable-knit
make prepare

3. Try building some of the kernels:

mkdir /tmp/test
cd /tmp/test
knit \

OSKITDIR=/tmp/src/oskit \
BUILDDIR=/tmp/obj \
UNIT_PATH=/tmp/src/oskit/knit \
MAKEFILE=/tmp/src/oskit/knit/knit.mk \
Delta.unit \
Hello_ADR

make -s

This will build an OSKit kernel in the filekernel.

The following units define OSKit kernels.

Hello_ADR
Hello_Delta
Timer_Delta
Timer1_COM_Delta

39

40 CHAPTER 6. KNITTING THE OSKIT

Timer2_COM_Delta
MemFS_COM_Delta
Blkio_Delta
DiskPart_Delta
MemFS_Posix_Delta
NetBSD_Posix_Delta
PingReply_Delta
Cat_Delta

	Introduction
	Compiling and Installing Knit
	Acquiring Knit
	Building the Knit Programs
	Compiling libelf
	Configuring Knit
	Compiling Knit

	Installing Knit
	Testing Knit
	Related Software
	The OSKit
	gcc for Knitted Code

	Using Knit
	The knit Compiler
	Output Files
	Command Line Options
	The knit_generated.mk File

	The knitdoc Documentation Generator
	The mk_unit Template Generator
	The rename_dot_o_files Object Editor

	Tutorial
	Unit Basics: The hello Example
	The Unit Model of Software Components
	A Unit File
	Imports and Exports
	Dependencies
	Files
	Compiling the hello Program

	Using Multiple Units: The msg Example
	Bundletypes
	Renaming
	Compound Units
	Compiling the msg Program

	Knitting Tricks: The calc Example
	Initializers and Finalizers
	More About Dependencies
	More About Renaming
	Wrappers and Transparent Interposition
	Multiple Instantiation
	Summary: The Calc and Calc_Counted Units
	Compiling the calc Program
	Optimizing the Code via ``Flattening''

	Other Knit Features

	Debugging Knitted Programs
	Knitting the OSKit

