Report on the Language Knit:
A Component Definition
and Linking Language
Version 1.0.0

Alastair Reid
School of Computing
University of Utah

http://www.cs.utah.edu/flux/

February 2001

Copyright(© 2000, 2001 The University of Utah. Permission is granted to make and distribute verbatim copies of
this document provided the copyright notice and this permission notice are preserved on all copies. Modified versions
of this document may be copied and distributed with the additional condition that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

http://www.cs.utah.edu/flux/

Contents

1 Report 1
1.1 Introduction. e e e e 1
1.2 Lexical Structure. e e e 1

1.2.1 Notational Conventions. e 1
1.2.2 ErrorDetection e 2
1.3 Basic Semantic Concepts: Objects, Bundles,and Types 2
1.4 Definitions, Files, and Directives e 2
1.5 Bundletypes 3
1.6 SourceCode. e e e 3
1.7 ODbject Sets. 4
1.8 Constraints. e e e e e 4
1.9 Initializers, Finalizers, and Dependencies. 5
1.10 Units. . . . e e e 5
1.10.1 AtomicUnits. e e 6
1.10.2 Compound Units o e 6
1.10.3 UnitInstantiation e e 7
1.10.4 ConstructingBundles. 8
1.11 Flattening. e e e e e e 9
1.12 Experimental Features 9
1.12.1 Globals. e 9
1.12.2 Defaults e 9
1.12.3 Packagesand Glue. e 10
1.12.4 Deltas. e 10
1.12.5 Documentation COmMmMENtS. o e 11
1.13 Compilation. e e e 11
1.14 Scheduling e 12

A Syntax 15
Al Lexical Structure e e e 15
A2 Context Free Syntax. 16

CONTENTS

Chapter 1

Report

1.1 Introduction

Knit is a component definition and linking language which can be used with little or no modification with
C and assembly code. Knit supports component hierarchies, cyclic component dependencies, automatic
scheduling of initializers and finalizers, an extensible constraint system to detect errors in component com-
position and cross-module inlining to largely eliminate the overheads of componentization.

This report is the specification of the Knit language and should be suitable for writing Knit programs and
building implementations. It isot a tutorial on programming in Knit such as thait User's Manual and
Tutorial, so familiarity with component programming concepts and the unit model is asstmedhould
read the Knit user's manual, especially the tutorial chapter, before reading the rest of this report.

1.2 Lexical Structure

ToDo: Explain how to define Knit environment variables such as SRCDIR?

1.2.1 Notational Conventions

These notational conventions are used for presenting syntax:

[(pattern] optional

{ (pattern } zero or more repetitions
(pattern + one or more repetitions
(patl) | (pat2) choice

BNF-like syntax is used throughout, with productions having the form:
(nonterm) n= (altl) | (alt2) | ... (altn)

Quoted identifiers and punctuation symbols are terminals (i.e., keywords), unquoted identifiers are non-
terminals, all punctuation symbols with no special meaning are terminals.

Identifiers conform to the usual C rules. Knit is unusual in that (at the time of writing) it has many
keywordsbut noreserved words For example, the keywordmports’ has a special meaning when used
at the start of a unit definitiorSection 1.1pbut it may also be used elsewhere as a normal identifier. This
feature should be regarded as controversial and may change in the future.

1

2 CHAPTER 1. REPORT

1.2.2 Error Detection

When detecting errors, Knit strives to strike a balance between being so strict as to make the language
unusable and being so lax as to accept and attempt to interpret meaningless or ambiguous definitions. Ac-
cordingly, we applied the following rules wherever possible in the design.

Sloppy Lists. All lists of items separated by punctuation (commas, semicolons, etc.) may have a trailing
piece of punctuation. For example, one may wfiégg b, c,] instead offa, b, c].

Lazy Ambiguity Resolution. Ambiguities are reported only if they affect the meaning of a unit not just if
they exist. For example, it is acceptable to bind an identifier to two different entities if the bundle
identifier is not actually referred to.

Order Insensitivity. In a list of items (declarations, bindings, etc.) where the order of the items does not
directly affect the semantics, the order does not matter. For example, the order of declarations in a file
is irrelevant but the order of arguments to a unit does matter.

1.3 Basic Semantic Concepts: Objects, Bundles, and Types

The overall goal of a Knit specification is to define a numbeolgject instancesind the interconnections
between them. Ambjectis either a function or a top-level variable. (Unlike conventional linking) there
may be multiple copies of a particular object in a programphject instances one particular copy of an
object.

Bundles serve to group a set of objectslfandle membejgogether and to provide names for objects.
An object can appear in multiple bundles, can appear several times in the same bundle (with different names
each time) and can have a different name in each bundle it appears in.

Bundles are assigned types.b&ndletypés just a list of the members of the bundle. Bundletypes form
a subtype hierarchy based on inclusion: a bundletypés a subtype of a bundletyge, iff bt; is a subset
of bt,. (In the future, bundletypes may include the C type of a function or constr&etgién 1.8 and the
notion of bundle subtyping will be changed accordingly.)

All units, whether atomic$ection 1.10.Lor compound $ection 1.10.p import zero or more named
bundles and export one or more named bundles.

1.4 Definitions, Files, and Directives

Unit specifications may refer to various other entities by name: bundlety®esidn 1.5, other units
(Section 1.10 compilation flags $ection 1.§; properties $ection 1.8, and types $ection 1.8

Each such entity occurs in its own namespace. For example, the ideatifieple could be used to
refer to a bundletype, a unit, a set of compilation flags, a property and a@ntype same prograrh

(defn) ::= ‘bundletype’ (bundleTldent ‘=" (bundleTypg
| ‘flags’ (flagsldent ‘=" (flags
| ‘property’ (proplden
| ‘type’ (typelden} ‘<=" (supers
| ‘unit’ (unitldent ‘=" (unit)

1In practice, Knit programmers find it helpful to add @ suffix to bundletype identifiers although, strictly speaking, this is not
necessary.

1.5. BUNDLETYPES 3

Definitions may be scattered across multiple files. Files may refer to other files usinthtieide’
directive. If an included file also contains include directives those will be processed unless the unit file has
already been included.

All definitions are “visible to” definitions in any file which directly or indirectly includes the file or is
included by the file.

(file)
(directive

{ (directive | (dec) }
‘include’ (fileNamé

The directory directive defines tldefault directoryfor atomic units Section 1.10.l Only one directory
directive can be included per file and directory directives only apply to units occurring in that file.

(directive = ‘directory’ (dirName

Note that directory names may refer to Knit environment variabtfesctjon 1.2 by writing ${name _
of _variable}. For example, it is common to start a file with a directive like this:

directory "${SRCDIR}"

and then defin@RCDIR when invoking the Knit compiler.

1.5 Bundletypes

A bundletype is a set of bundle member names. Bundletypes can be defined as extensions of other bundle-
types. This is equivalent to copying the definition of the extender into the extendee. Extension is often used
to emphasize the relationship between bundletypes.

(bundleTypg = (bundleTIdent
| ‘{" (btElement_1°," ... (btElement_m[,’]"} m >0
(btElement = ‘extends’ (bundleTIdent
| (memberldent
Examples:

{ malloc, free %}
{ extends Malloc_T, realloc }

1.6 Source Code

Objects are defined in source files which must be compiled to produce object files. Source code can consist of
actual C or assembly language files or (usually short) sections of literal C code or (despite the terminological

abuse) they can consist of object files.
Source files may specify a directory in which the files appear. If the directory is omitted, the default

directory is used if one was specified in the same file.

4 CHAPTER 1. REPORT

(sourceCodg n= (fileSef [‘with’‘ flags’ (flags]
(fileSe} = ‘files’[(dirName] ‘{’ (fileNamé_1"," ... (fleName_m[,]‘} m >0
| (literal C) ['with’‘ flags’ (flag9]

Compilation generally requires “compilation flags” to direct the compiler. Compilation flags are strings
which are passed to the compiler when compiling the source code.

(flags = (flagsldent
| ‘{" (flagy)_1°," ... (flag)_m[,]'}Y m >0
(flag) = ‘flags’ (flagsldent
| (string)
Examples:

%{ const charx ip_address = "128.36.15.8"; %}

files{ "main.c", "eval.c" } with flags { "-DKNIT" }

1.7 Object Sets

Sets of objects can be constructed from bundles, by extracting objects from bundles or using set union
(denoted by+") and set difference (denoted by'). Four special object sets are definetinports’ denotes

the set of all imported objectsexports’ denotes the set of all exported objectsits’ denotes the set of

all initializers declared in this unit and inis’ denotes the set of all finalizers declared in this unit.

(objectSet ::= (objectSetDiff _1 '+ ... (objectSetDiff _m ['+] m > 1
(atomicObjectSet -’ (atomicObjectSét

(atomicObjectSet ::= (bundleldent

| ‘{ (objectident 1°,"... (objectldent_m[,]‘¥ m>0
| “C (objectSet*)’

| ‘imports’

| ‘exports’
|

|

‘inits’
‘finis’

1.8 Constraints

Constraints are used to detect errors in component interconnections. Each object may have zero or more
propertiesassociated with it. Each property of an object can be assigned a type. Types are related by
a subtyping relationship (a partial order) and unit definitions can contain constraints between properties
which refer to that subtyping relationship. An error is reported if no solution can be found which both
satisfies all the constraints assigns a unique minimal type to each property.

(constraint$ = {'constraints’‘{’ (constrain}_1°*;’... (constrainf_m [;]'}"} m>0

1.9. INITIALIZERS, FINALIZERS, AND DEPENDENCIES 5

(constraing = (property) ‘=" (property)
| (property ‘<=" (property)
| (property ‘>=" (property)
= (typeldent
(propldent (atomicObjectSet

(property)
|

Examples:

constraints{ context exports <= NoContext I};
constraints{ context exports <= context imports };

1.9 Initializers, Finalizers, and Dependencies

Initializers and finalizers are functions of type

int <function>(void)

that are to be run before (respectively, after) the first use of any of a set of objects. Initializers and finalizers
indicate failure by returning a non-zero result.
Dependenciebetween symbols are used to propagate initializers and finalizers up the call chain.

(initialization) == {'initializer’ (objectlden} ‘for’ (objectSet*;’}

{"finalizer’ (objectldent ‘for’ (objectSet‘;’}

{"depends’ ‘' {’ (depend_1"*;’... (depend_mI[;]'} ‘;’} m >0
(depend ::= (objectSet ‘needs’ (objectSet

| (objectSet ‘<’ (objectSet
There are two forms of dependency:

a needs b means that all of’s initializers (respectively, finalizers) are initializers (respectively, finalizers)
for a as well. That s, ifz is needed, thebi's initializers (respectively, finalizers) must be run and they
must be run before (respectively, after)This is useful for expressing the idea thatill call a.

a < b means that iti's initializers (respectively, finalizers) are run, they must be run before (respectively,
after)b. This is useful for expressing the idea thatill call « iff « is part of the system.

Knit schedules calls to the initializers and finalizers in an order that respects the dependencies. Schedul-
ing is described in more detail Bection 1.14

1.10 Units

Units define sets of objects (tleportsof the unit) and their connection to other objects (theortsof the
unit). Units are the building block for component reuse and so they contain all information one might need
about the unit: constraints, initialization information, a hint as to whether or not the “flattening” optimization
would be worthwhile and the definition of the objects themselves.

There are two kinds of unit: atomic units which contain source code; and compound units which instan-
tiate and interconnect other units.

6 CHAPTER 1. REPORT

(unit) =
‘imports’‘ [(import)_1°," ... {importy_m[,7°1"";’ m >0
‘exports’‘ [’ (expory 1°,"... (expory m[,7'1" "}’ m > 1

(constraints

(initialization)
[(‘flatten’ | ‘noflatten’)’;’]
((atomicBody | (compoundBody [* ;']
‘p

1.10.1 Atomic Units

An atomic unitconsists of a collection of C (or assembly) files with information about how to compile them
and their externally visible properties.

By default, the names of bundle members in the imports and exports correspond directly to the names
of objects in the source code. This default correspondence can be changedmithrag section which
defines how bundle members are mapped to identifiers in the source code.

(atomicBody ::= (sourceCodg _1°;’ ... (sourceCode m[;’] m > 1
{ (rename }

(rename = ‘rename’ ' {’ (renaming_1°‘;" ... (renaming_m[;1"'} *;’ m >0

(renaming = (objectldent ‘to’ (Cldent

| (bundleldent ‘with’‘prefix’ (Cldent
| (bundleldent ‘with’‘suffix’ (Clden}

Example:

unit malloc_statistics = {
import[in : Malloc_T, files : Files_T];
export[out : Malloc_T];

rename{ in with prefix in_; out with prefix out_ };

}

As a guard against carelessness, atomic units are required to have a non-empty dependency list. On the
rare occasion that no dependency is required, one might use this dependency:

{} needs {}

1.10.2 Compound Units

A compound unitonsists of a set dfundle bindingsvhich define new bundles in terms of imported bundles
and unit instances. Some additional experimental features which are descriection 1.12

(compoundBody = ‘link’‘{’ (binding 1°;’... (binding_m[;7'¥} m >0

1.10. UNITS 7

Bindings may be given in any order and may be mutually recursive. Bindings may refer to bundle
identifiers defined in the imports and exports refer to bundle identifiers defined in the biRdings.

1.10.3 Unit Instantiation

Unit instantiation creates a copy of a unit in which the imports of the unit are bound to a #sjuhent
bundlesand the exports of the unit are bound to a list of bundle identifiers.

There are two ways of specifying the argument bundles: with an ordered list of bundles which are
matcheddy position and with an unordered list of bundles labeled with bundle identifiers which are matched
by namewith the import of the same name in the unit being instantiated.

(binding)

(unitinstance

‘[’ (bundleldent_1°*," ... (bundleldent_m[*,]*]1" ‘<-" (unitinstance m > 1

(unitldent ‘<~ ((posArgs | (nameArgs)

Matching Arguments by Paosition

(posArgs = ‘[(posArg _1°*,"... (posArg_m[,]'] m >0
(posArg = (arg)
(arg) = (bundlg
| “C (unitinstance ‘)’
Example:

[printf] <- printf_unit <- [putchar,strcpy]

Matching Arguments by Name
(nameArgs = {" (nameArg_1°*," ... (nameArg_mI[,]"'} m >0

(bundleldent ‘=" (arg)
| (bundleldent

(nameArg

We say that gunoccurs if the name of the import argument in the instantiated unit matches the name
of the actual argument. That is, if the argument is of the fare x. Such puns may be abbreviated to just
Z.

Example:

[printf] <- printf_unit <- {putchar=console_putchar, strcpy}

2Exports may also refer to bundleldentifiers defined in the imports but this feature is regarded as controversial and should usually
be avoided.

8 CHAPTER 1. REPORT

Inline Units

Short and simple units can also be instantiated “inline”; instead of declaring a unit at the top level, it can be
written on the right hand side of a binding. Inline units are required to have no imports.

(unitinstance = ‘unit’ (unit)

Example:

[abc] <- unit { imports[]; exports[out : {a,b,c} 1;
depends{ exports + inits + finis needs imports };
%{ int a=1, b=2, c=3; %}
};

Anonymous Units

Exceptionally short and simple atomic units can be further abbreviated by simply writing some inline C
code.

(unitinstance = (literal C)

Since there is no list of imports or exports, the C code is required to consist of a list of variable declara-
tions of the form:

<type> <identifier> = <value>;

Example:

[abc] <= %{ int a=1, b=2, c=3; %};

1.10.4 Constructing Bundles

Bundles can also be constructed from other bundles using a combination of reference to other bundle iden-
tifiers, selecting individual symbols from other bundles and bundle unions.

(binding) ::= (bundleldent ‘=" (bundlée
(bundle = (atomicBundlg_1‘+ ... (atomicBundlg_m ['+] m > 1
(atomicBundlg ::= (bundleldent
| ‘{" (memberBinding 1°,"... (memberBinding m[*,7*%} m > 1
| “C (bundle ‘)’

(memberBinding := (memberldent'=" (objectlden}

1.11. FLATTENING 9

1.11 Flattening

Knit supports an optimization known as “flattening” (or cross-module inlining) which can eliminate all or
most of the function-call overhead between components. Flattening can be turned on or off for individual
units using theflatten’ and ‘noflatten’ annotations on the unit instance or in the unit definition. Unit
instances “inherit” the flattening disposition of the unit that instantiates them with the “closest” annotation
having precedence. That is, an annotation on a unit definition has precedence over an annotation on the unit
instance which has precedence over the flattening disposition of the unit which instantiates it.

(unit) =y
‘imports’‘ [’ (import)_1°*,’... (importy_mI[',]‘1" "}’ m >0
‘exports’‘ [’ (expory 1°,"... (expory _m[',71"*;’ m>1
(constraint$

(initialization)
[(‘flatten’ | ‘noflatten’)’;’]
((atomicBody | (compoundBody [* ;']
‘p
(unitinstance = ‘flatten’ (unitinstance
| ‘noflatten’ (unitinstance

1.12 Experimental Features

The features described in this section are experimental but are considered important enough to be worth
documenting in their relatively unfinished and unstable state. We expect that these features will change
somewhat in the near future but that future versions of Knit will provide broadly equivalent functionality.

1.12.1 Globals

Declaring a bundleglobal in a compound unit implicitly adds that bundle to the imports of every unit
instance (transitively) contained inside that unit.

This can be useful if all or most units in a system import a common set of bundles and you do not
envisage wanting to change which bundles it imports. Examples include functions suehcay or a
software floating-point implementation.

(compoundBody ::= {(globals }

‘link’ ‘' {’ (binding_1°;"... (bindingg_m[;’]*} m >0
(globalg = ‘global’ ‘{’ (global)_1°,"... (global) _m[,] '} "}’ >0
(global) = (bundleldent

1.12.2 Defaults

Compound units can contain a list défault bundledo be used if a unit requires a bundle that the unit
instance does not explicitly provide. This feature is only used when passing arguments by name and if the
last argument to the unit is...’. Default bundles are selected by bundletype. There must be a unique
choice of default for each argument.

10 CHAPTER 1. REPORT

This can be useful if all or most units in a single compound unit import a common set of bundles or if
many unit interconnections are “boring” and one wants to draw attention to a few “interesting” interconnec-
tions. It differs fromglobalsin that defaults apply only to that unit and in that the definitions of units being
instantiated must still explicitly list the bundles as imports.

(compoundBody ::= {(globals }

{(defaults }

‘link’ ‘{’ (binding _1°*;" ... (binding_mT[" ;7' ¥} m >0
(defaults = ‘default’‘ {’ (defaulh_1°, ... (defauly_m[,7'}*;’ m >0
(default = (bundleldent

1.12.3 Packages and Glue

Compound units can contain a setgdfie unitsto be instantiated. Glue units can be specified by listing
individual unit identifiers or by listingpackage identifieréwhich name sets of unit identifiers). The imports
of these units are provided from the default bundles and the exports of the units are all provided as default
units.

The form ‘find’ (bundleTypg can be used to refer to a default bundle with a given bundletype. This is
useful if one wants to export the export of a glue unit.

(compoundBody := {(globals}

{(glues }

{(defaults }

‘link’ ‘{’ (binding _1°*;" ... (bindingg_mT[" ;7' ¥ m >0
(glues n= ‘glue’ ' {" (glue)_1°," ... (glue) m[,]} " >0
(glue) = ‘package’ (packageldent

| (unitiden?

(defn) = ‘package’ (packageldent'=" (package
(package m= L (glue)_1°,"... (glueg_m[,]"¥
(atomicBundlg = ‘find’ (bundleTypg
1.12.4 Deltas

Compound units can be defined as a modification to an existing unit by listing what parts of the unit are to
be removed and which are to be added.

(modUnit = ‘modify’ (unitideny ‘deleting’‘{’ (remuni} ‘}’ ‘adding’‘{’ (addunip ‘}’
(remunit = {‘imports’‘ [’ (bundleldent _1°‘,"... (bundleldent m[,7‘1"*;’} m >0
{*exports’‘ [(bundleldent_1"," ... (bundleldent_m{[,7°'1"*;’} m>0
{'constraints’‘{’ (constrain} _1°‘,"... (constraint_m[;1°} ‘;’} m>0
{'depends’ ‘' {’ (depend_1"*;’... (depend_mI[;’]"} '} m >0
{(globals }
{(glue’)}
{(defaults }

{*1ink’ ‘' {’ (bundleldent_1°‘," ... (bundleldent m [, 7'} *;’} m>0

1.13. COMPILATION 11

(addunit == {'imports’‘ [’ (import)_1°," ... (importy m[,]°1"";"} m >0
{*exports’‘ [’ (exporp_1*,"... (exporh_mI[,7°1"";"} m >0
{'constraints’ ' {’ (constrainy_1"‘;’ ... (constraint_m[;']")"*;’} m>0
{"depends’ ‘' {’ (depend_1°*;’... (depend_mI[;]'} ‘;’} m >0
{(globalg }
{(glues }
{(defaults }
{*1link’‘*{’ (binding _1°;"... (bindingg_m[;]“}*;"} m >0

Example:

unit Goodbye =
modify Hello
deleting {
glue{ hello };
} adding {
glue{ goodbye };
}

1.12.5 Documentation Comments

Documentation comments are a special form of comment that may be treated specially by a documentation
generator. Since they are intended for documenting definitions, they are restricted to appearing at the top
level.

(defn) ::= (doc comment

Examples:

/x#
Bring down system on fatal error.

void panic(const char *fmt, ...);

The panic() function terminates the running system. The message fmt is a
printf(3) style format string. The message is printed to the console.
#x/

bundletype panic_T = { panic }

1.13 Compilation

Compiling a unit (whether atomic or compound) generates an objetsfiteh that:

3The current version of Knit actually generates a set of object file archives (k&files) to allow a limited form of dead-code
elimination. This may not be necessary with more modern versiogsiofld.

12 CHAPTER 1. REPORT

The symbolsmportedby the unit are either undefined or common variables in the object file.

The symbolsexportedby the unit are either defined or common variables in the object file.

The symbolsknit_init andknit_fini are defined and the symhiohit_progress is undefined.
These functions are used for initialization and finalization and are described furtBection 1.14

No other symbols are defined or undefirfed.

1.14 Scheduling

The initializer, finalizer and dependency declarations of the unit (including all subunits) are used to deter-
mine the order in which initializers, finalizers and the exports of the unit can be run.

This information is used to partition the initializers and finalizers ingelaedulevhich is a pair of lists
is and fs such that:

e Allinitializers of exported symbols are iis.
e All finalizers of exported symbols are ifs.

e For each initializer or finalizex, all initializers of z occurbeforex in is, fs and all finalizers ofr
occurafterx in is, fs.

An error is reported if it is no such partition exists. This can happen if two initializers are initializers for
each other.

Note that these ruledo notimply thatis only contains initializers or thats only contains finalizers.
For example, if the only use of the filesystem is in a finalizer, it is perfectly possible that the filesystem will
not be initialized until after the main program runs.

The listsis = [z1,...2] and fs = [z1,...x,,] are used to generate the functidgasit_init and
knit_fini defined by:

int knit_<init or fini>(void)
{
int rc;
rc = x_10;
knit_progress("x_1", rc);
if (rc) return rc;

rc = x_m();
knit_progress("x_m", rc);
if (rc) return rc;

The functionknit_progress is used as a “progress indicator” during initialization and finalization: it
is called after each initializer or finalizer returns. This function has type:

4Actually, many other symbols may be defined but they are prefixed with an identifier which makes it unlikely that they will
conflict with object files not generated by Knit.

1.14. SCHEDULING

13

void knit_progress(const char* what, int rc);

ToDo: Show standard use of initializers for Unix programs

14

CHAPTER 1. REPORT

Appendix A

Syntax

These notational conventions are used for presenting syntax:

[(pattern] optional

{ (pattern } zero or more repetitions
(pattern + one or more repetitions
(patl) | (pat2) choice

BNF-like syntax is used throughout, with productions having the form:

(nonterm (altl) | (alt2) | ... (altn)

Quoted identifiers and punctuation symbols are terminals (i.e., keywords), unquoted identifiers are non-
terminals, all punctuation symbols with no special meaning are terminals.

Identifiers conform to the usual C rules. There are no “reserved identifiers”: keywords can be used as
normal identifiers anywhere that they have no special meaning.

All lists of patterns separated by commas (or semicolons) may have a trailing comma (or semicolon).
For example, one may writea, b, c,] instead offa, b, c]. This optional punctuation is omitted from
the grammar to avoid clutter.

A.1 Lexical Structure

ToDo: The rules for comments and strings aren’t quite right because 'any’ ought to exclude the terminating characters

(file) = { (lexeme | (whitespaceg }

(lexemé = (ident) | (punctuation | (string) | (integel | (literal C) | (doc comment
(whitespace = (whitestuff)+

(whitestuff ::= (whitechay | (comment | (ncommernjt

(whitechai = (newling | (formfeed | (tab) | (space

(commenjt == /7 {(any)} (newling

(ncommernit =/ {(any)) x/

(doc comment =/ {(any)) ‘#x/

(literal C) = %L {(any) Y

15

16 APPENDIXA. SYNTAX

(string) n= 0 {{any)
(ident) = ((alpha) | ‘_") {(idChar)}
| {(any))
(idChar) = (alpha) | (digit) | *_’
(alpha) ='a' |'p|... 2 |'N|'B|... 7
(digit) s=0 LY
(punctuation s e S G S I S R R e I R R e R e AR S RS

A.2 Context Free Syntax

ToDo: Hack the grammar package so that subscripts come out as subscripts

(file) = { (directive | (dec) }
(directive = ‘directory’ (dirName
| ‘include’ (fileName
(defn) = ‘bundletype’ (bundleTldent =" (bundleTypg

| ‘flags’ (flagsldent ‘=" (flags

| ‘unit’ (unitldend ‘=" ((unit) | (modUnit)
| ‘property’ (proplden

| ‘type’ (typelden} ‘<=" (supertypes

| ‘package’ (packageldent'=" (packagé

| (doc comment

(bundleTypg ::= (bundleTIdent
| “{" (btElement_1°,"... (btElement_m[","]* ¥ m >0
(btElement = ‘extends’ (bundleTIdent

| (memberldent

(sourceCodg n= (fileSe} ['with'‘ flags’ (flag9]
(fileSej n= ‘files’[(dirName] ‘{’ (fileNamé_1°," ... (fleNamé_m[,]‘} m >0
| (literal C) ['with’'‘flags’ (flag9]
(flags = (flagsldent
| ‘{ (flag)_1°,"... (flag)_mT[,]'} m >0
(flag) = ‘flags’ (flagsldent
| (string)
(constraint$ = {'constraints’‘{’ (constrain}_1°*;’... (constrainj_m [;]'}"} m>0
(constrainy = (property) ‘=" (property)

| (property) ‘<=" (property)
| (property ‘>=" (property)

(property) = (typelden}
| (propldent (atomicObjectSeét
(supertypes = (typelden}

| ‘C (typeldent 1°,"... (typeldent m[',]")’ m >0

A.2. CONTEXT FREE SYNTAX

(initialization) == {'initializer’ (objectlden} ‘for’ (objectSet*;’}
{*finalizer’ (oObjectldent ‘for’ (objectSet*;’}
{'depends’ ‘' {’ (depend_1°;"... (depend m[;]"} "*;"}
(depend ::= (objectSet ‘needs’ (objectSet
| (objectSet ‘<’ (objectSet

(objectSet = (objectSetDiff _1 '+ ... (objectSetDiff _m ['+]
| (atomicObjectSeét -’ (atomicObjectSét
(atomicObjectSet ::= (bundleldent
| ‘{ (objectident 1°,"... (objectldent_m[,]*‘¥
| “(C (objectSet‘)’
| ‘imports’
| ‘exports’
| ‘inits’
| ‘finis’
(unit) =y
‘imports’‘ [’ (import)_1°*,’... (importy_m [,]‘1" "}’
‘exports’‘ [’ (expory 1°,"... (expory _m[',71"“;’
(constraint$
(initialization)
[(‘flatten’ | ‘noflatten’)’;’]
((atomicBody | (compoundBody [* ;']
L}i
(atomicBody ::= (sourceCodg 1°;’... (sourceCode m[;’]
{ (rename }
(renamé = ‘rename’ ' {’ (renaming_1";’ ... (renaming_m1[;]"} *;’
(renaming ::= (objectldent ‘to’ (Cldent
| (bundleldent ‘with’‘prefix’ (Clden}
| (bundleldent ‘with’‘suffix’ (Cldent
(compoundBody := {(globals}
{{glues}
{(defaults }
‘link’ ‘{’ (binding _1°*;" ... (bindingg_m[" ;7' ¥
(globals = ‘global’‘{’ (global) 1°,"... (global) m[,] '} ;"
(global) ::= (bundleldent
(glues n= fglue’ ' { (glue)_1°,"... (glueg_m[,]"'}"
(glue) = ‘package’ (packageldent
| (unitiden?

(package m= " (glue)_1°,"..(glueg m[,]'¥

(defaults = ‘default’‘{’ (defauly _1°,’... (defauly _mT[,7} *;’
(default ::= (bundleldent

(import) ::= (bundleldent ‘:" (bundleType

(expord ::= (bundleldent ‘ ;" (bundleTypg

18
(binding)

(unitinstance

posArgs
posArg
nameArgs
nameArg

{
{
{
{

(arg)

(bundle
(atomicBundlg

(memberBinding

(modUnit
(remunit

(addunit

(fileName
(dirName
(objectldent
(Cldenb
(bundleldent

APPENDIXA. SYNTAX

== ‘[’ (bundleldent 1°,"... (bundleldent m[,’]'1" ‘<=’ (unitinstancé m > 1

(bundleldent ‘=" (bundlé

= (unitldend ‘<-’ ((posArgs | (nameArgs)

‘flatten’ (unitinstancé
‘noflatten’ (unitinstancé

‘unit’ (unit)
(literal C)
= ‘[(posArg 1°,"...(posArg m[,]‘]
(arg)
‘£ (nameArg_1°,"... (nameArg_mI[',"*...1[',]1'Y

(bundleldent ‘=" (arg)
(bundleldent

(bundle
(" (unitinstance ‘)’
(atomicBundle_1 '+ ... (atomicBundle_m ['+]

‘find’ (bundleType

‘{" (memberBinding 1°," ... (memberBinding m[*,]"}
(bundleldent

“C (bundlg *)’

(memberldent‘=" (objectlden}

‘modify’ (unitldeny ‘deleting’‘{’ (remuni} ‘}’ ‘adding’‘{’ (addunip ‘}’

{"imports’‘ [’ (bundleldent_1°," ... (bundleldent_m[,]7°1"*;"}
{*exports’‘ [’ (bundleldent_1°," ... (bundleldent m[,7°1 *;’}
{"constraints’‘{’ (constrain}_1°,"... (constraint_m[;]"} *;"}
{"depends’ ‘' {’ (depend_1°*;’... (depend_mI[;’]} '}
{(globals }

{(glue’) }

{(defaults }

{*1ink’ ‘' {’ (bundleldent_1°‘," ... (bundleldent m[,7'} *;’}
{*imports’‘ [’ (import)_1°," ... (importy_m[,]1°1 "’}
{"exports’‘ [(exporh_1°," ... (expory_mI[,]°'1"";"}
{'constraints’‘{’ (constrain} _1°‘;’ ... (constrainf_m[;]")"*;"}
{'depends’ ‘' {’ (depend_1"*;"... (depend_mT[;]"} *;"}
{(globals }

{{glues}

{(defaults }

{*1ink’ *{’ (binding_1°;"... (bindingg_m T[]} *;"}
(string)

(string)
(objectldeny
(ident)
(ident)

m >0
m >0
m >0
m >0

m >0
m >0
m >0
m >0

A.2. CONTEXT FREE SYNTAX

memberldent
bundleTIdent
unitiden?
flagsldent
packageldent
proplden}
typeldent
qualldent

o~ o~ o~ o~ o~ o~~~

i
o
)
>
N3

20

APPENDIXA. SYNTAX

	Report
	Introduction
	Lexical Structure
	Notational Conventions
	Error Detection

	Basic Semantic Concepts: Objects, Bundles, and Types
	Definitions, Files, and Directives
	Bundletypes
	Source Code
	Object Sets
	Constraints
	Initializers, Finalizers, and Dependencies
	Units
	Atomic Units
	Compound Units
	Unit Instantiation
	Constructing Bundles

	Flattening
	Experimental Features
	Globals
	Defaults
	Packages and Glue
	Deltas
	Documentation Comments

	Compilation
	Scheduling

	Syntax
	Lexical Structure
	Context Free Syntax

