MIT/GNU Scheme Reference Manual

Edition 1.105 for release 9.1
2011-10-14

by Chris Hanson
the MIT Scheme Team
and a cast of thousands

This manual documents MIT/GNU Scheme 9.1.

Copyright (©) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Massachusetts
Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

Short Contents

Acknowledgements. 1
L OVEIVIEW .« vttt e 3
2 Special Forms e 15
3 Equivalence Predicates......... 55
4 NUmbers . ..o e 61
5 Characters.oii i e 79
6 SETINgS . oo e 91
A)1 109
8 Vet OrS . o ot 125
9 Bit Strings. e 129
10 Miscellaneous Datatypes. 133
11 ASSOCIationS. ...ttt e 147
12 Procedures. 171
13 Environmentsin . 181
14 Input/Outputot 185
15 Operating-System Interface 229
16 Error System........... .. 263
17 GraphiCs .. e e e 287
18 Win32 Package Reference........... 301
A GNU Free Documentation License...................... 311
B Binding Index 319
C Concept Index. ... e 337

Table of Contents

Acknowledgements 1
1 OVerview ... 3
1.1 Notational Conventionsccoiiiiiiiiiiiiiiieaann. 4
111 Brrors. .o 4
1.1.2 Examplesoooi e 4
1.1.3 Entry Format i 5
1.2 Scheme Concepts.ouu it 6
1.2.1 Variable Bindings ... 6
1.2.2 Environment Conceptscovveiiiiiiiiiiinennnn... 6
1.2.3 Initial and Current Environments.......................... 7
1.2.4 Static Scoping. ..o 7
1.25 Trueand False............oo i, 8
1.2.6 External Representations.............. ..., 8
1.2.7 Disjointness of Types........ccoviiiiiiiiiiiiiiiiiinin.. 9
1.2.8 Storage Model...... ... 9
1.3 Lexical Conventionsuuuieiiiiiiiiiiieeeeaeanannnns 9
1.3.1 WHhitespace. . ..ottt e 9
1.3.2 Delimiters.oouuiiiiii 10
1.3.3 Identifiers. ..o 10
1.3.4 Uppercase and Lowercase...............coiiiiiiineee .. 10
1.3.5 Naming Conventionsc.ooiiiiiiiiiiiieien.. 10
1.3.6 CommEnts 11
1.3.7 Additional Notations...............ciiiiiii .. 11
1.4 EXPreSSIONS . oottt ettt et e 12
1.4.1 Literal EXpressions...........ooiiiiiiinininnn. 13
1.4.2 Variable References L. 13
1.4.3 Special Form Syntax ..., 13
1.4.4 Procedure Call Syntaxcocoviiiiiiiiiiinnn... 13

2 Special Forms................... 15
2.1 Lambda ExXpressionsooouiiiiniiniiiiiiii.. 15
2.2 Lexical Bindingo 17
2.3 Dynamic Bindingo 18
2.4 Definitions. ..o 20
2.4.1 Top-Level Definitions.............. .. o i, 21
2.4.2 Internal Definitions. 21
2.5 ASSIGNIMENES . oo\t 22
2.6 QUOINE. ..ottt e 22
2.7 Conditionalscooiiiii 24
2.8 SeqUENCING.ottt 26

2.9 Tteration 27

iv MIT/GNU Scheme 9.1

2.10 Structure Definitions......... i 29
201 MaACTOS oo 34
2.11.1 Binding Constructs for Syntactic Keywords.............. 35
2.11.2 Pattern Languageccoviiiiiiiiiiiiiiiiii .., 38
2.11.3 Syntactic Closuresccoviuiiiiiiiiiiniieennn.. 40
2.11.3.1 Syntax Terminologycooiiiiiiin.. 40
2.11.3.2 Transformer Definition 41
2.11.3.3 Identifiers........ ..o 45
2.11.4 Explicit Renamingo i i 47
212 SRFEIsyntax........oiiiii i e 49
2.12.1 cond-expand (SRFI0).........., 50
2.12.2 receive (SRFI8) ..o.ooiiii 51
2.12.3 and-let™ (SRFI2) 52
2.12.4 define-record-type (SRFI9)l 52

3 Equivalence Predicates........................ 55
4 Numbers........... 61
4.1 Numerical types. .. oo 61
4.2 BEXACHESS . . o vttt ettt 62
4.3 Implementation restrictions i i 62
4.4 Syntax of numerical constants............... oL 64
4.5 Numerical operations.c.coouiiiiiiiiiiiiiiiiie.. 64
4.6 Numerical input and output............. 71
4.7 Fixnum and Flonum Operations................... ...t 74
4.7.1 Fixnum Operations.oiiiiiiiiiiiieniiiea . 74
4.7.2 Flonum Operations.............ccoiiiiiiiiiiiiniiean. 76
4.8 Random Numbers........ ... 7
5 Characters.............ccoiiiiiiiiiii, 79
5.1 External Representation of Characters......................... 79
5.2 Comparison of Characters...............ooiiiiiiiii ... 81
5.3 Miscellaneous Character Operations........................... 81
5.4 Internal Representation of Characters......................... 82
5.5 ISO-8859-1 Charactersoueurtiiiiieinaennan.. 84
5.6 Character Sets........oouiiiii 84
5.7 Unicode. .. e 87
5.7.1 Wide Strings......oooviii e 87

5.7.2 Unicode Representationscoooiiiiiiiii. 88

6 Strings......... 91

6.1 Construction of Strings......... ... 92
6.2 Selecting String Components..............ccooiiiiiiiiiin.. 92
6.3 Comparison of Strings......... ..o 93
6.4 Alphabetic Case in Strings ... 94
6.5 Cutting and Pasting Strings........ ...t 95
6.6 Searching Stringscoiiiiiiiiii i 97
6.7 Matching Strings.........o.oiiiiiiiii e 99
6.8 Regular EXpressionsot 100
6.8.1 Regular-expression procedures...................ooe.... 100
6.8.2 REXP abstraction 102
6.9 Modification of Strings....... ... 104
6.10 Variable-Length Strings............. ... oo i L. 106
6.11 Byte Vectors. ..o 106
T Lists......... 109
T Pairs 110
7.2 Construction of Lists...... ... 112
7.3 Selecting List Components............c.oooiiiiiiiiiia... 114
7.4 Cutting and Pasting Lists........... ... i 115
7.5 Filtering Lists. ... 117
7.6 Searching Lists..........c.oiiiiiiiiii i 119
7.7 Mapping of Lists. ... 120
7.8 Reduction of Lists ... 121
7.9 Miscellaneous List Operations................cooiiieea. ... 123
8 Vectors...........oiiiiiiii 125
8.1 Construction of Vectors......... ..o, 125
8.2 Selecting Vector Components.cooiiiiiiiiiieean... 126
8.3 Cutting Vectors. e 127
8.4 Modifying Vectorso 127
9 Bit Strings........... 129
9.1 Construction of Bit Strings............. ... i 129
9.2 Selecting Bit String Componentsc.ooeviiina... 130
9.3 Cutting and Pasting Bit Strings.............., 130
9.4 Bitwise Operations on Bit Strings............................ 131
9.5 Modification of Bit Strings................o i, 131

9.6 Integer Conversions of Bit Strings............................ 132

vi MIT/GNU Scheme 9.1

10 Miscellaneous Datatypes................... 133
10.1 Booleansooiiiiii e e 133
10.2 Symbols 134
10.3 Cells. e 137
10,4 Records ... 138
105 Promises 139
106 SErEaIS . 141
10.7 Weak Pairso 143
10.8 Ephemerons 144

11 Associations................................. 147
11.1 Association Lists............ooiiiiii .. 147
11.2 1D Tables .. 149
11.3 The Association Table 150
11.4 Hash Tableso i e 151

11.4.1 Construction of Hash Tables 151
11.4.2 Basic Hash Table Operations........................... 153
11.4.3 Resizing of Hash Tables............., 154
11.4.4 Address Hashing........... ... it 157
11.5 Object Hashing......... ... o i, 157
11.6 Red-Black Treesc.cooiiiiiiiiie e, 159
11.7 Weight-Balanced Trees............coooiiiiiiiiiiiiiii .. 162
11.7.1 Construction of Weight-Balanced Trees................. 163
11.7.2 Basic Operations on Weight-Balanced Trees............ 164
11.7.3 Advanced Operations on Weight-Balanced Trees........ 165
11.7.4 Indexing Operations on Weight-Balanced Trees......... 168

12 Procedures.................... i 171
12.1 Procedure Operations.c.cooiiiiiiiieiiiieennn.. 171
12,2 ATIEY oot 172
12.3 Primitive Procedures.......... ... i i 173
12.4 Continuations.ouuiit i 174
12.5 Application HOOKSo 176
12.6 Generic Dispatch 178

12.6.1 Generic Procedureso it 178
12.6.2 Method Generatorscoviiiiiiiiiiiiia... 179
12.6.3 Dispatch Tags ... 179

13 Environments 181
13.1 Environment Operations...............ooiiiiiiieiiiiaa . 181
13.2 Environment Variables.................cooiiiiiiiiiiii, 183
13.3 REPL Environment.......... i, 183

13.4 Top-level Environments................ooiiiiiiii.. 184

14 Input/Output............................... 185
141 POrtS .o 185
14.2 File Ports. ..o 187
14.3 String Ports . ..o 189
14.4 Input Procedureso.iiiiiiiiiiiii .. 191
14.5 Output Procedures ... 194
14.6 Format ... 197
14.7 Custom Outpub.ooinni i 198
14.8 Prompting......... .o 200
14.9 Port Primitiveso 202

14.9.1 Port Types .. .vveii e e 202
14.9.2 Constructors and Accessors for Ports................... 203
14.9.3 Input Port Operations, 204
14.9.4 Output Port Operations...................coiiiiian. 205
14.9.5 Blocking Mode. ... 207
14.9.6 Terminal Mode 208
14.10 Parser Buffers.......... 209
14.11 Parser Languageooiiieiiiiniiiiiiiiii 212
14.11.1 *Matcher 214
14.11.2 A PaISeT ..ttt e e e 217
14.11.3 Parser-language Macros.............ccooiiiiiiii.. 220
14.12 XML SUPPOTt «« v et 221
14.12.1 XML Input ..o 221
14.12.2 XML Output .. cvvvei 222
14.12.3 XML Namesoon e 223
14.12.4 XML Structure 225

15 Operating-System Interface................ 229

15.1 Pathnamesooiiiiiii i 229
15.1.1 Filenames and Pathnames.............................. 230
15.1.2 Components of Pathnames................., 231
15.1.3 Operations on Pathnames.............................. 234
15.1.4 Miscellaneous Pathname Procedures.................... 237

15.2 Working Directoryo 238

15.3 File Manipulation.......... ... o i i 239

15.4 Directory Reader ... 245

155 Dateand Timec e 245
15.5.1 Universal Timeooo oo, 246
15.5.2 Decoded Timecooiiiii e, 246
15.5.3 File Time.......ooiiii e 248
15.5.4 Time-Format Conversion..................ovviueee.... 249
15.5.5 External Representation of Time 252

15.6 Machine Time ...ttt 253

15.7 SUDPIOCESSES. . .t vttt e 255
15.7.1 Subprocess Procedures..............o i 255
15.7.2 Subprocess Conditionsccovviiiiiiiii... 255
15.7.3 Subprocess Optionsc.ovieiieiiiiineiiienannn.. 256

15.8

TCOP SOCKES . . oot 259

vii

viii MIT/GNU Scheme 9.1

15.9 Miscellaneous OS Facilities. ...t 261
16 Error System................... 263
16.1 Condition Signalling, 264
16.2 Error MesSagesttt 266
16.3 Condition Handling........... .o oo i 267
16.4 Restartsoouiii i 269
16.4.1 Establishing Restart Code..............t 270
16.4.2 Invoking Standard Restart Code 271
16.4.3 Finding and Invoking General Restart Code............ 273
16.4.4 The Named Restart Abstraction........................ 274
16.5 Condition Instances............c.oooiiiiiiiiiiiiiiia.. 274
16.5.1 Generating Operations on Conditions 275
16.5.2 Condition Abstraction oo i 276
16.5.3 Simple Operations on Condition Instances.............. 276
16.6 Condition TyPes.ttt e 277
16.7 Condition-Type Taxonomycooiiiiiieenieenn... 278
17 Graphics............ ... 287
17.1 Opening and Closing of Graphics Devices 287
17.2 Coordinates for Graphicso, 288
17.3 Drawing Graphicso 288
17.4 Characteristics of Graphics Output.......................... 290
17.5 Buffering of Graphics Outputooiiiin.. 291
17.6 Clipping of Graphics Output............ 292
17.7 Custom Graphics Operations...............coiiiiiiio... 292
17.8 IMAZES .. e e 292
17.9 X Graphics . ..o vvii e e 293
17.9.1 X Graphics Type ..ot 294
17.9.2 Utilities for X Graphics ..., 294
17.9.3 Custom Operations on X Graphics Devices............. 295
17.10 Win32 Graphics ... 298
17.10.1 Win32 Graphics Type........coviiiiiiiiii i 298
17.10.2 Custom Operations for Win32 Graphics............... 299
18 Win32 Package Reference.................. 301
18.1 OVEIVIEW . .ve ettt 301
18.2 Foreign Function Interfaceo .. 301
18.2.1 Windows Types. ..ot 302
18.2.2 Windows Foreign Procedures........................... 304
18.2.3 Win32 API names and procedures...................... 306
18.3 Device Independent Bitmap Utilities 307
18.3.1 DIB procedures.........coovuuiiiiiiiiiiiii i 307

18.3.2 Other parts of the DIB Utilities implementation........ 309

Appendix A GNU Free Documentation License

... 311
A.1 ADDENDUM: How to use this License for your documents... 317

Appendix B Binding Index 319

Appendix C Concept Index................... 337

ix

Acknowledgements 1

Acknowledgements

While "a cast of thousands" may be an overstatement, it is certainly the case that this
document represents the work of many people. First and foremost, thanks go to the authors
of the Revised™4 Report on the Algorithmic Language Scheme, from which much of this
document is derived. Thanks also to BBN Advanced Computers Inc. for the use of parts of
their Butterfly Scheme Reference, and to Margaret O’Connell for translating it from BBN’s
text-formatting language to ours.

Special thanks to Richard Stallman, Bob Chassell, and Brian Fox, all of the Free Software
Foundation, for creating and maintaining the Texinfo formatting language in which this
document is written.

This report describes research done at the Artificial Intelligence Laboratory and the
Laboratory for Computer Science, both of the Massachusetts Institute of Technology. Sup-
port for this research is provided in part by the Advanced Research Projects Agency of the
Department of Defense and by the National Science Foundation.

Chapter 1: Overview 3

1 Overview

This manual is a detailed description of the MIT/GNU Scheme runtime system. It is
intended to be a reference document for programmers. It does not describe how to run
Scheme or how to interact with it — that is the subject of the MIT/GNU Scheme User’s
Manual.

This chapter summarizes the semantics of Scheme, briefly describes the MIT/GNU
Scheme programming environment, and explains the syntactic and lexical conventions of
the language. Subsequent chapters describe special forms, numerous data abstractions, and
facilities for input and output.

Throughout this manual, we will make frequent references to standard Scheme, which
is the language defined by the document Revised~4 Report on the Algorithmic Language
Scheme, by William Clinger, Jonathan Rees, et al., or by IEEE Std. 1178-1990, IEEE Stan-
dard for the Scheme Programming Language (in fact, several parts of this document are
copied from the Revised Report). MIT/GNU Scheme is an extension of standard Scheme.

These are the significant semantic characteristics of the Scheme language:

Variables are statically scoped
Scheme is a statically scoped programming language, which means that each
use of a variable is associated with a lexically apparent binding of that variable.
Algol is another statically scoped language.

Types are latent
Scheme has latent types as opposed to manifest types, which means that Scheme
associates types with values (or objects) rather than with variables. Other
languages with latent types (also referred to as weakly typed or dynamically
typed languages) include APL, Snobol, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly typed or statically typed
languages) include Algol 60, Pascal, and C.

Objects have unlimited extent
All objects created during a Scheme computation, including procedures and
continuations, have unlimited extent; no Scheme object is ever destroyed. The
system doesn’t run out of memory because the garbage collector reclaims the
storage occupied by an object when the object cannot possibly be needed by
a future computation. Other languages in which most objects have unlimited
extent include APL and other Lisp dialects.

Proper tail recursion
Scheme is properly tail-recursive, which means that iterative computation can
occur in constant space, even if the iterative computation is described by a syn-
tactically recursive procedure. With a tail-recursive implementation, you can
express iteration using the ordinary procedure-call mechanics; special iteration
expressions are provided only for syntactic convenience.

Procedures are objects
Scheme procedures are objects, which means that you can create them dy-
namically, store them in data structures, return them as the results of other
procedures, and so on. Other languages with such procedure objects include
Common Lisp and ML.

4 MIT/GNU Scheme 9.1

Continuations are explicit
In most other languages, continuations operate behind the scenes. In Scheme,
continuations are objects; you can use continuations for implementing a variety
of advanced control constructs, including non-local exits, backtracking, and
coroutines.

Arguments are passed by value
Arguments to Scheme procedures are passed by value, which means that Scheme
evaluates the argument expressions before the procedure gains control, whether
or not the procedure needs the result of the evaluations. ML, C, and APL
are three other languages that pass arguments by value. In languages such as
SASL and Algol 60, argument expressions are not evaluated unless the values
are needed by the procedure.

Scheme uses a parenthesized-list Polish notation to describe programs and (other) data.
The syntax of Scheme, like that of most Lisp dialects, provides for great expressive power,
largely due to its simplicity. An important consequence of this simplicity is the susceptibility
of Scheme programs and data to uniform treatment by other Scheme programs. As with
other Lisp dialects, the read primitive parses its input; that is, it performs syntactic as well
as lexical decomposition of what it reads.

1.1 Notational Conventions

This section details the notational conventions used throughout the rest of this document.

1.1.1 Errors

When this manual uses the phrase “an error will be signalled,” it means that Scheme will
call error, which normally halts execution of the program and prints an error message.

When this manual uses the phrase “it is an error,” it means that the specified action is
not valid in Scheme, but the system may or may not signal the error. When this manual
says that something “must be,” it means that violating the requirement is an error.

1.1.2 Examples

This manual gives many examples showing the evaluation of expressions. The examples

have a common format that shows the expression being evaluated on the left hand side, an

“arrow” in the middle, and the value of the expression written on the right. For example:
(+12) = 3

Sometimes the arrow and value will be moved under the expression, due to lack of space.
Occasionally we will not care what the value is, in which case both the arrow and the value
are omitted.

If an example shows an evaluation that results in an error, an error message is shown,
prefaced by ° "
(+ 1 ’foo) Illegal datum
An example that shows printed output marks it with ‘
(begin (write ’foo) ’bar)
- foo
= bar

Chapter 1: Overview 5

When this manual indicates that the value returned by some expression is unspecified,
it means that the expression will evaluate to some object without signalling an error, but
that programs should not depend on the value in any way.

1.1.3 Entry Format

Each description of an MIT/GNU Scheme variable, special form, or procedure begins with
one or more header lines in this format:

template [category]
where category specifies the kind of item (“variable”, “special form”, or “procedure”). The
form of template is interpreted depending on category.

Variable Template consists of the variable’s name.

Special Form
Template starts with the syntactic keyword of the special form, followed by a
description of the special form’s syntax. The description is written using the
following conventions.

Named components are italicized in the printed manual, and uppercase in the
Info file. “Noise” keywords, such as the else keyword in the cond special form,
are set in a fixed width font in the printed manual; in the Info file they are not
distinguished. Parentheses indicate themselves.

A horizontal ellipsis (. ..) is describes repeated components. Specifically,
thing . ..

indicates zero or more occurrences of thing, while
thing thing . ..

indicates one or more occurrences of thing.

Brackets, [], enclose optional components.

Several special forms (e.g. lambda) have an internal component consisting of a
series of expressions; usually these expressions are evaluated sequentially un-
der conditions that are specified in the description of the special form. This
sequence of expressions is commonly referred to as the body of the special form.

Procedure Template starts with the name of the variable to which the procedure is bound,
followed by a description of the procedure’s arguments. The arguments are
described using “lambda list” notation (see Section 2.1 [Lambda Expressions],
page 15), except that brackets are used to denote optional arguments, and
ellipses are used to denote “rest” arguments.

The names of the procedure’s arguments are italicized in the printed manual,
and uppercase in the Info file.

When an argument names a Scheme data type, it indicates that the argument
must be that type of data object. For example,

cdr pair [procedure]
indicates that the standard Scheme procedure cdr takes one argument, which
must be a pair.

6 MIT/GNU Scheme 9.1

Many procedures signal an error when an argument is of the wrong type; usually
this error is a condition of type condition-type:wrong-type-argument.

In addition to the standard data-type names (pair, list, boolean, string, etc.),
the following names as arguments also imply type restrictions:

e object: any object

e thunk: a procedure of no arguments
e x, y: real numbers

e (, n: integers

e k: an exact non-negative integer

Some examples:

list object ... [procedure]
indicates that the standard Scheme procedure list takes zero or more arguments, each of
which may be any Scheme object.

write-char char [output-port] [procedure]
indicates that the standard Scheme procedure write-char must be called with a character,
char, and may also be called with a character and an output port.

1.2 Scheme Concepts

1.2.1 Variable Bindings

Any identifier that is not a syntactic keyword may be used as a variable (see Section 1.3.3
[Identifiers], page 10). A variable may name a location where a value can be stored. A
variable that does so is said to be bound to the location. The value stored in the location
to which a variable is bound is called the variable’s value. (The variable is sometimes said
to name the value or to be bound to the value.)

A variable may be bound but still not have a value; such a variable is said to be unas-
signed. Referencing an unassigned variable is an error. When this error is signalled, it is
a condition of type condition-type:unassigned-variable; sometimes the compiler does
not generate code to signal the error. Unassigned variables are useful only in combination
with side effects (see Section 2.5 [Assignments|, page 22).

1.2.2 Environment Concepts

An environment is a set of variable bindings. If an environment has no binding for a variable,
that variable is said to be unbound in that environment. Referencing an unbound variable
signals a condition of type condition-type:unbound-variable.

A new environment can be created by extending an existing environment with a set of
new bindings. Note that “extending an environment” does not modify the environment;
rather, it creates a new environment that contains the new bindings and the old ones. The
new bindings shadow the old ones; that is, if an environment that contains a binding for x
is extended with a new binding for x, then only the new binding is seen when x is looked
up in the extended environment. Sometimes we say that the original environment is the
parent of the new one, or that the new environment is a child of the old one, or that the
new environment inherits the bindings in the old one.

Chapter 1: Overview 7

Procedure calls extend an environment, as do let, let*, letrec, and do expressions.
Internal definitions (see Section 2.4.2 [Internal Definitions], page 21) also extend an envi-
ronment. (Actually, all the constructs that extend environments can be expressed in terms
of procedure calls, so there is really just one fundamental mechanism for environment ex-
tension.) A top-level definition (see Section 2.4.1 [Top-Level Definitions|, page 21) may add
a binding to an existing environment.

1.2.3 Initial and Current Environments

MIT/GNU Scheme provides an initial environment that contains all of the variable bind-
ings described in this manual. Most environments are ultimately extensions of this initial
environment. In Scheme, the environment in which your programs execute is actually a
child (extension) of the environment containing the system’s bindings. Thus, system names
are visible to your programs, but your names do not interfere with system programs.

The environment in effect at some point in a program is called the current environment
at that point. In particular, every REP loop has a current environment. (REP stands for
“read-eval-print”; the REP loop is the Scheme program that reads your input, evaluates it,
and prints the result.) The environment of the top-level REP loop (the one you are in when
Scheme starts up) starts as user-initial-environment, although it can be changed by
the ge procedure. When a new REP loop is created, its environment is determined by the
program that creates it.

1.2.4 Static Scoping

Scheme is a statically scoped language with block structure. In this respect, it is like Algol
and Pascal, and unlike most other dialects of Lisp except for Common Lisp.

The fact that Scheme is statically scoped (rather than dynamically bound) means that
the environment that is extended (and becomes current) when a procedure is called is the
environment in which the procedure was created (i.e. in which the procedure’s defining
lambda expression was evaluated), not the environment in which the procedure is called.
Because all the other Scheme binding expressions can be expressed in terms of procedures,
this determines how all bindings behave.

Consider the following definitions, made at the top-level REP loop (in the initial envi-
ronment):

(define x 1)

(define (f x) (g 2))

(define (g y) (+ x y))

(f 5) = 3 ;mnot 7

Here £ and g are bound to procedures created in the initial environment. Because Scheme

is statically scoped, the call to g from f extends the initial environment (the one in which
g was created) with a binding of y to 2. In this extended environment, y is 2 and x is 1.
(In a dynamically bound Lisp, the call to g would extend the environment in effect during
the call to £, in which x is bound to 5 by the call to £, and the answer would be 7.)

Note that with static scoping, you can tell what binding a variable reference refers
to just from looking at the text of the program; the referenced binding cannot depend
on how the program is used. That is, the nesting of environments (their parent-child
relationship) corresponds to the nesting of binding expressions in program text. (Because

8 MIT/GNU Scheme 9.1

of this connection to the text of the program, static scoping is also called lexical scoping.)
For each place where a variable is bound in a program there is a corresponding region
of the program text within which the binding is effective. For example, the region of a
binding established by a lambda expression is the entire body of the lambda expression.
The documentation of each binding expression explains what the region of the bindings it
makes is. A use of a variable (that is, a reference to or assignment of a variable) refers to
the innermost binding of that variable whose region contains the variable use. If there is no
such region, the use refers to the binding of the variable in the global environment (which
is an ancestor of all other environments, and can be thought of as a region in which all your
programs are contained).

1.2.5 True and False

In Scheme, the boolean values true and false are denoted by #t and #f. However, any
Scheme value can be treated as a boolean for the purpose of a conditional test. This
manual uses the word true to refer to any Scheme value that counts as true, and the word
false to refer to any Scheme value that counts as false. In conditional tests, all values count
as true except for #£, which counts as false (see Section 2.7 [Conditionals|, page 24).

1.2.6 External Representations

An important concept in Scheme is that of the external representation of an object as
a sequence of characters. For example, an external representation of the integer 28 is the
sequence of characters ‘28’, and an external representation of a list consisting of the integers
8 and 13 is the sequence of characters ‘(8 13)’.

The external representation of an object is not necessarily unique. The integer 28 also
has representations ‘#e28.000" and ‘#x1c’, and the list in the previous paragraph also has
the representations ‘(08 13)’ and ‘(8 . (13 . ()))".

Many objects have standard external representations, but some, such as procedures
and circular data structures, do not have standard representations (although particular
implementations may define representations for them).

An external representation may be written in a program to obtain the corresponding
object (see Section 2.6 [Quoting], page 22).

External representations can also be used for input and output. The procedure read
parses external representations, and the procedure write generates them. Together, they
provide an elegant and powerful input/output facility.

Note that the sequence of characters ‘(+ 2 6)’ is not an external representation of the
integer 8, even though it is an expression that evaluates to the integer 8; rather, it is an
external representation of a three-element list, the elements of which are the symbol + and
the integers 2 and 6. Scheme’s syntax has the property that any sequence of characters
that is an expression is also the external representation of some object. This can lead to
confusion, since it may not be obvious out of context whether a given sequence of characters
is intended to denote data or program, but it is also a source of power, since it facilitates
writing programs such as interpreters and compilers that treat programs as data or data as
programs.

Chapter 1: Overview 9

1.2.7 Disjointness of Types

Every object satisfies at most one of the following predicates (but see Section 1.2.5 [True
and False|, page 8, for an exception):

bit-string? environment? port? symbol?
boolean? null? procedure? vector?
cell? number? promise? weak-pair?
char? pair? string?

condition?

1.2.8 Storage Model
This section describes a model that can be used to understand Scheme’s use of storage.

Variables and objects such as pairs, vectors, and strings implicitly denote locations or
sequences of locations. A string, for example, denotes as many locations as there are
characters in the string. (These locations need not correspond to a full machine word.) A
new value may be stored into one of these locations using the string-set! procedure, but
the string continues to denote the same locations as before.

An object fetched from a location, by a variable reference or by a procedure such as car,
vector-ref, or string-ref, is equivalent in the sense of eqv? to the object last stored in
the location before the fetch.

Every location is marked to show whether it is in use. No variable or object ever refers
to a location that is not in use. Whenever this document speaks of storage being allocated
for a variable or object, what is meant is that an appropriate number of locations are chosen
from the set of locations that are not in use, and the chosen locations are marked to indicate
that they are now in use before the variable or object is made to denote them.

In many systems it is desirable for constants (i.e. the values of literal expressions) to
reside in read-only memory. To express this, it is convenient to imagine that every object
that denotes locations is associated with a flag telling whether that object is mutable or
immutable. The constants and the strings returned by symbol->string are then the im-
mutable objects, while all objects created by other procedures are mutable. It is an error to
attempt to store a new value into a location that is denoted by an immutable object. Note
that the MIT/GNU Scheme compiler takes advantage of this property to share constants,
but that these constants are not immutable. Instead, two constants that are equal? may
be eq? in compiled code.

1.3 Lexical Conventions

This section describes Scheme’s lexical conventions.

1.3.1 Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used to
improve the readability of your programs and to separate tokens from each other, when nec-
essary. (A token is an indivisible lexical unit such as an identifier or number.) Whitespace
is otherwise insignificant. Whitespace may occur between any two tokens, but not within a
token. Whitespace may also occur inside a string, where it is significant.

10 MIT/GNU Scheme 9.1

1.3.2 Delimiters

All whitespace characters are delimiters. In addition, the following characters act as delim-
iters:

¢y oo

Finally, these next characters act as delimiters, despite the fact that Scheme does not
define any special meaning for them:

L1 {1}

For example, if the value of the variable name is "max":

(1ist"Hi"name(+ 1 2)) = ("Hi" "max" 3)

1.3.3 Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used in
several ways in Scheme programs:

e An identifier can be used as a variable or as a syntactic keyword.

e When an identifier appears as a literal or within a literal, it denotes a symbol.

Scheme accepts most of the identifiers that other programming languages allow.
MIT/GNU Scheme allows all of the identifiers that standard Scheme does, plus many
more.

MIT/GNU Scheme defines a potential identifier to be a sequence of non-delimiter char-
acters that does not begin with either of the characters ‘#’ or ‘,’. Any such sequence of
characters that is not a syntactically valid number (see Chapter 4 [Numbers|, page 61) is
considered to be a valid identifier. Note that, although it is legal for ‘#’ and ‘,’ to appear