
Python Library Reference
Release 1.5.1

Guido van Rossum

April 14, 1998

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA

E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright c© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addressftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manualdescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file I/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which
may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manualremains the highest authority on syntactic and semantic questions.
Finally, the manual entitledExtending and Embedding the Python Interpreterdescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types. 3

Truth Value Testing. 3
Boolean Operations. 4
Comparisons . 4
Numeric Types . 5
Sequence Types. 6
Mapping Types . 8
Other Built-in Types . 9
Special Attributes. 12

2.2 Built-in Exceptions. 12
2.3 Built-in Functions. 15

3 Python Services 23
3.1 Built-in Modulesys . 24
3.2 Standard Moduletypes . 26
3.3 Standard ModuleUserDict . 27
3.4 Standard ModuleUserList . 28
3.5 Built-in Moduleoperator . 28
3.6 Standard Moduletraceback . 30
3.7 Standard Modulepickle . 30
3.8 Built-in ModulecPickle . 33
3.9 Standard Modulecopy reg . 33
3.10 Standard Moduleshelve . 34
3.11 Standard Modulecopy . 34
3.12 Built-in Modulemarshal . 35
3.13 Built-in Moduleimp . 36

Examples . 38
3.14 Built-in Moduleparser . 39

Creating AST Objects. 40
Converting AST Objects. 40
Queries on AST Objects. 41
Exceptions and Error Handling. 41
AST Objects. 42
Examples . 42

3.15 Standard Modulesymbol . 48
3.16 Standard Moduletoken . 48

i

3.17 Standard Modulekeyword . 49
3.18 Standard Modulecode . 49
3.19 Standard Modulepprint . 49

PrettyPrinter Objects. 51
3.20 Standard Moduledis . 52

Python Byte Code Instructions. 53
3.21 Standard Modulesite . 57
3.22 Standard Moduleuser . 58
3.23 Built-in Module builtin . 59
3.24 Built-in Module main . 59

4 String Services 61
4.1 Standard Modulestring . 61
4.2 Built-in Modulere . 64

Regular Expression Syntax. 64
Module Contents . 67
Regular Expression Objects. 69
Match Objects. 69

4.3 Built-in Moduleregex . 70
Regular Expressions. 71
Module Contents . 72

4.4 Standard Moduleregsub . 74
4.5 Built-in Modulestruct . 75
4.6 Standard ModuleStringIO . 77
4.7 Built-in ModulecStringIO . 77

5 Miscellaneous Services 79
5.1 Built-in Modulemath . 79
5.2 Built-in Modulecmath . 80
5.3 Standard Modulewhrandom . 82
5.4 Standard Modulerandom . 82
5.5 Built-in Modulearray . 83
5.6 Standard Modulefileinput . 85

6 Generic Operating System Services 87
6.1 Standard Moduleos . 87
6.2 Built-in Moduletime . 88
6.3 Standard Modulegetopt . 91
6.4 Standard Moduletempfile . 92
6.5 Standard Moduleerrno . 92
6.6 Standard Moduleglob . 98
6.7 Standard Modulefnmatch . 98
6.8 Standard Modulelocale . 99

Background, details, hints, tips and caveats. 101
For extension writers and programs that embed Python. 102

7 Optional Operating System Services 103
7.1 Built-in Modulesignal . 103
7.2 Built-in Modulesocket . 105

Socket Objects . 107
Example. 108

7.3 Built-in Moduleselect . 109
7.4 Built-in Modulethread . 110
7.5 Standard ModuleQueue . 111

Queue Objects. 111

ii

7.6 Standard Moduleanydbm . 111
7.7 Standard Moduledumbdbm . 112
7.8 Standard Modulewhichdb . 112
7.9 Built-in Modulezlib . 112
7.10 Standard Modulegzip . 113

8 Unix Specific Services 115
8.1 Built-in Moduleposix . 115
8.2 Standard Moduleposixpath . 120
8.3 Built-in Modulepwd . 122
8.4 Built-in Modulegrp . 122
8.5 Built-in Modulecrypt . 122
8.6 Built-in Moduledbm . 123
8.7 Built-in Modulegdbm . 123
8.8 Built-in Moduletermios . 124

Example. 125
8.9 Standard ModuleTERMIOS . 125
8.10 Built-in Modulefcntl . 125
8.11 Standard Moduleposixfile . 126
8.12 Built-in Moduleresource . 128

Resource Limits. 128
Resource Usage. 129

8.13 Built-in Modulesyslog . 130
8.14 Standard Modulestat . 131
8.15 Standard Modulecommands . 132

9 The Python Debugger 135
9.1 Debugger Commands. 136
9.2 How It Works . 137

10 The Python Profiler 139
10.1 Introduction to the profiler. 139
10.2 How Is This Profiler Different From The Old Profiler?. 139
10.3 Instant Users Manual. 140
10.4 What Is Deterministic Profiling?. 141
10.5 Reference Manual. 142

TheStats Class . 143
10.6 Limitations . 144
10.7 Calibration . 145
10.8 Extensions — Deriving Better Profilers. 146

OldProfile Class. 146
HotProfile Class. 147

11 Internet and WWW Services 149
11.1 Standard Modulecgi . 150

Introduction . 150
Using the cgi module. 150
Old classes . 152
Functions . 152
Caring about security. 153
Installing your CGI script on a Unix system. 153
Testing your CGI script. 154
Debugging CGI scripts. 154
Common problems and solutions. 155

11.2 Standard Moduleurllib . 155

iii

11.3 Standard Modulehttplib . 157
HTTP Objects. 157
Example. 158

11.4 Standard Moduleftplib . 158
FTP Objects. 159

11.5 Standard Modulegopherlib . 161
11.6 Standard Moduleimaplib . 161

IMAP4 Objects . 162
IMAP4 Example . 163

11.7 Standard Modulenntplib . 164
NNTP Objects. 165

11.8 Standard Moduleurlparse . 166
11.9 Standard Modulesgmllib . 167
11.10Standard Modulehtmllib . 169
11.11Standard Modulexmllib . 170
11.12Standard Moduleformatter . 173

The Formatter Interface. 173
Formatter Implementations. 175
The Writer Interface . 175
Writer Implementations. 176

11.13Standard Modulerfc822 . 176
Message Objects. 177

11.14Standard Modulemimetools . 178
Additional Methods of Message objects. 179

11.15Standard Modulebinhex . 179
Notes . 179

11.16Standard Moduleuu . 180
11.17Built-in Modulebinascii . 180
11.18Standard Modulexdrlib . 181

Packer Objects . 181
Unpacker Objects. 182
Exceptions. 183

11.19Standard Modulemailcap . 183
11.20Standard Modulebase64 . 184
11.21Standard Modulequopri . 185
11.22Standard ModuleSocketServer . 185
11.23Standard Modulemailbox . 187

Mailbox Objects. 187
11.24Standard Modulemimify . 187
11.25Standard ModuleBaseHTTPServer . 188

12 Restricted Execution 193
12.1 Standard Modulerexec . 194

An example . 195
12.2 Standard ModuleBastion . 196

13 Multimedia Services 197
13.1 Built-in Moduleaudioop . 197
13.2 Built-in Moduleimageop . 200
13.3 Standard Moduleaifc . 201
13.4 Built-in Modulejpeg . 203
13.5 Built-in Modulergbimg . 203
13.6 Standard Moduleimghdr . 204

iv

14 Cryptographic Services 207
14.1 Built-in Modulemd5 . 207
14.2 Built-in Modulempz . 208
14.3 Built-in Modulerotor . 209

15 SGI IRIX Specific Services 211
15.1 Built-in Moduleal . 211

Configuration Objects. 211
Port Objects. 212

15.2 Standard ModuleAL . 213
15.3 Built-in Modulecd . 213

Player Objects. 214
Parser Objects. 216

15.4 Built-in Modulefl . 216
Functions Defined in Modulefl . 217
Form Objects . 218
FORMS Objects. 220

15.5 Standard ModuleFL . 221
15.6 Standard Moduleflp . 221
15.7 Built-in Modulefm . 221
15.8 Built-in Modulegl . 222
15.9 Standard ModulesGLandDEVICE . 224
15.10Built-in Moduleimgfile . 224

16 SunOS Specific Services 227
16.1 Built-in Modulesunaudiodev . 227

Audio Device Objects. 227

17 Undocumented Modules 229
17.1 Frameworks; somewhat harder to document, but well worth the effort. 229
17.2 Stuff useful to a lot of people, including the CGI crowd. 229
17.3 Miscellaneous useful utilities. 229
17.4 Parsing Python. 230
17.5 Platform specific modules. 230
17.6 Code objects and files, debugger etc.. 230
17.7 Multimedia . 231
17.8 Oddities. 231
17.9 Obsolete. 231
17.10Extension modules. 232

Module Index 233

Index 235

v

vi

CHAPTER

ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of animport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, like socket I/O; others provide interfaces that are
specific to a particular application domain, like the World-Wide Web. Some modules are avaiable in all versions
and ports of Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’thaveto read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see modulerand) and read a section or two.

Let the show begin!

1

2

CHAPTER

TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy reference.1

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manualfor the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the‘ . . .‘ notation). The latter conversion is implicitly used when an object is written
by theprint statement.

Truth Value Testing

Any object can be tested for truth value, for use in anif or while condition or as operand of the Boolean operations
below. The following values are considered false:

• None

• zero of any numeric type, e.g.,0, 0L , 0.0 .

• any empty sequence, e.g.,’’ , () , [] .

• any empty mapping, e.g.,{} .

• instances of user-defined classes, if the class defines anonzero () or len () method, when that method
returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return0 for false and1 for true, unless otherwise
stated. (Important exception: the Boolean operations ‘or ’ and ‘and ’ always return one of their operands.)

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

3

Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, theny, elsex (1)

x and y if x is false, thenx, elsey (1)
not x if x is false, then1, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operators, so e.g.not a == b is interpreted asnot(a == b) ,
anda == not b is a syntax error.

Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily, e.g.x < y <= z is equivalent to
x < y and y <= z , except thaty is evaluated only once (but in both casesz is not evaluated at all whenx < y
is found to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than

<= less than or equal
> strictly greater than

>= greater than or equal
== equal
<> not equal (1)
!= not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betweenABC and C! :-)

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (e.g., win-
dows) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such
objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, ‘in ’ and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

Numeric Types

There are four numeric types:plain integers, long integers, floating point numbers, andcomplex numbers. Plain
integers (also just calledintegers) are implemented usinglong in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implemented usingdouble in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implemented usingdouble in C. To extract these
parts from a complex numberz, usez.real andz.imag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or ‘ l ’ suffix yield long integers (‘L’
is preferred because ‘1l ’ looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ‘j ’ or ‘ J ’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the same rule.2

The functionsint() , long() , float() , andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
x + y sum ofx andy
x - y difference ofx andy
x * y product ofx andy
x / y quotient ofx andy (1)
x % y remainder ofx / y

- x x negated
+x x unchanged

abs(x) absolute value or magnitude ofx
int(x) x converted to integer (2)

long(x) x converted to long integer (2)
float(x) x converted to floating point

complex(re, im) a complex number with real partre, imaginary partim. im defaults to zero.
divmod(x, y) the pair(x / y, x % y) (3)

pow(x, y) x to the powery
x ** y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functionsfloor()
andceil() in modulemath for well-defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

2As a consequence, the list[1, 2] is considered equal to[1.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ‘˜ ’ has the same priority as the other unary numeric operations (‘+’ and ‘- ’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation Result Notes
x | y bitwiseor of x andy
x ˆ y bitwiseexclusive orof x andy
x & y bitwiseandof x andy

x << n x shifted left byn bits (1), (2)
x >> n x shifted right byn bits (1), (3)

˜ x the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and cause aValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication bypow(2, n) without overflow check.

(3) A right shift byn bits is equivalent to division bypow(2, n) without overflow check.

Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotes:’xyzzy’ , "frobozz" . See Chapter 2 of thePython Reference
Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheses, e.g.,a, b, c or () . A single item tuple must
have a trailing comma, e.g.,(d,) .

Sequence types support the following operations. The ‘in ’ and ‘not in ’ operations have the same priorities as the
comparison operations. The ‘+’ and ‘* ’ operations have the same priority as the corresponding numeric operations.3

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table,s andt are sequences of the same type;n, i andj are integers:

Operation Result Notes
x in s 1 if an item ofs is equal tox, else0

x not in s 0 if an item ofs is equal tox, else1
s + t the concatenation ofs andt

s * n, n * s n copies ofs concatenated (3)
s[i] i’th item of s, origin 0 (1)

s[i: j] slice ofs from i to j (1), (2)
len(s) length ofs
min(s) smallest item ofs
max(s) largest item ofs

Notes:

(1) If i or j is negative, the index is relative to the end of the string, i.e.,len(s) + i or len(s) + j is substituted.
But note that-0 is still 0.

3They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

(2) The slice ofs from i to j is defined as the sequence of items with indexk such thati <= k < j. If i or j is greater
thanlen(s) , uselen(s) . If i is omitted, use0. If j is omitted, uselen(s) . If i is greater than or equal toj,
the slice is empty.

(3) Values ofn less than0 are treated as0 (which yields an empty sequence of the same type ass).

More String Operations

String objects have one unique built-in operation: the%operator (modulo) with a string left argument interprets this
string as a Csprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple object.4 The following format characters
are understood:%, c , s , i , d, u, o, x , X, e, E, f , g, G. Width and precision may be a* to specify that an integer
argument specifies the actual width or precision. The flag characters- , +, blank,# and0 are understood. The size
specifiersh, l or L may be present but are ignored. The%sconversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI features%pand%nare not supported. Since Python strings have
an explicit length,%sconversions don’t assume that’\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50;%f conversions for numbers whose absolute value is
over 1e25 are replaced by%gconversions.5 All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after the ‘%’ character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2
>>> language = ’Python’
>>> print ’%(language)s has %(count)03d quote types.’ % vars()
Python has 002 quote types.

In this case no* specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modulestring and in built-in modulere .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (wherex is an arbitrary object):

4A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and

without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

Operation Result Notes
s[i] = x item i of s is replaced byx

s[i: j] = t slice ofs from i to j is replaced byt
del s[i: j] same ass[i: j] = []

s.append(x) same ass[len(s):len(s)] = [x]
s.count(x) return number ofi’s for whichs[i] == x
s.index(x) return smallesti such thats[i] == x (1)

s.insert(i, x) same ass[i: i] = [x] if i >= 0
s.remove(x) same asdel s[s.index(x)] (1)
s.reverse() reverses the items ofs in place (3)

s.sort() sort the items ofs in place (2), (3)

Notes:

(1) Raises an exception whenx is not found ins.

(2) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should return-1 , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list in
reverse order it is much faster to use calls tosort() andreverse() than to usesort() with a comparison
function that reverses the ordering of the elements.

(3) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don’t return the sorted or reversed list to remind you of this side effect.

Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thedictionary. A dictionary’s keys are almost arbitrary values. The
only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g.1 and1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated list ofkey: value pairs within braces, for example:
{’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’} .

The following operations are defined on mappings (wherea is a mapping,k is a key andx is an arbitrary object):

Operation Result Notes
len(a) the number of items ina

a[k] the item ofa with keyk (1)
a[k] = x seta[k] to x
del a[k] removea[k] from a (1)

a.clear() remove all items froma
a.copy() a (shallow) copy ofa

a.has key(k) 1 if a has a keyk, else0
a.items() a copy ofa’s list of (key, item) pairs (2)
a.keys() a copy ofa’s list of keys (2)

a.update(b) for k, v in b.items(): a[k] = v (3)
a.values() a copy ofa’s list of values (2)

a.get(k[, f]) the item ofa with keyk (4)

Notes:

8 Chapter 2. Built-in Types, Exceptions and Functions

(1) Raises an exception ifk is not in the map.

(2) Keys and values are listed in random order.

(3) b must be of the same type asa.

(4) Never raises an exception ifk is not in the map, instead it returnsf . f is optional, when not provided andk is not
in the map,None is returned.

Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access:m. name, wherem is a module andnameaccesses a name
defined inm’s symbol table. Module attributes can be assigned to. (Note that theimport statement is not, strictly
spoking, an operation on a module object;import foodoes not require a module object namedfoo to exist, rather it
requires an (external)definitionfor a module namedfoosomewhere.)

A special member of every module isdict . This is the dictionary containing the module’s symbol table. Mod-
ifying this dictionary will actually change the module’s symbol table, but direct assignment to thedict at-
tribute is not possible (i.e., you can writem. dict [’a’] = 1 , which definesm.a to be1, but you can’t write
m. dict = {} .

Modules are written like this:<module ’sys’> .

Classes and Class Instances

See Chapters 3 and 7 of thePython Reference Manualfor these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributes:f .func code is a function’scode object(see below) and
f .func globals is the dictionary used as the function’s global name space (this is the same asm. dict where
m is the module in which the functionf was defined).

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods:m.im self is the object whose
method this is, andm.im func is the function implementing the method. Callingm(arg-1, arg-2, . . ., arg-n)
is completely equivalent to callingm.im func(m.im self, arg-1, arg-2, . . ., arg-n) .

See thePython Reference Manualfor more information.

2.1. Built-in Types 9

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-incompile() function and can be extracted from function objects
through theirfunc code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to theexec statement or the
built-in eval() function.

See thePython Reference Manualfor more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in functiontype() . There
are no special operations on types. The standard moduletypes defines names for all standard built-in types.

Types are written like this:<type ’int’> .

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedNone (a built-in name).

It is written asNone.

File Objects

File objects are implemented using C’sstdio package and can be created with the built-in functionopen() de-
scribed under Built-in Functions below. They are also returned by some other built-in functions and methods, e.g.
posix.popen() andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/O-related reason, the exceptionIOError is raised. This includes situations where
the operation is not defined for some reason, likeseek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore.

flush ()
Flush the internal buffer, likestdio ’s fflush() .

isatty ()
Return1 if the file is connected to a tty(-like) device, else0.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl or os.read() and friends.

read ([size])
Read at mostsizebytes from the file (less if the read hitsEOF or no more data is immediately available on a
pipe, tty or similar device). If thesizeargument is negative or omitted, read all data untilEOF is reached. The
bytes are returned as a string object. An empty string is returned whenEOF is encountered immediately. (For
certain files, like ttys, it makes sense to continue reading after anEOF is hit.)

10 Chapter 2. Built-in Types, Exceptions and Functions

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string6 (but may be absent when a
file ends with an incomplete line). If thesizeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned whenEOF

is hit immediately. Note: unlikestdio ’s fgets() , the returned string contains null characters (’\0’) if they
occurred in the input.

readlines ([sizehint])
Read untilEOF using readline() and return a list containing the lines thus read. If the optionalsizehint
argument is present, instead of reading up toEOF, whole lines totalling approximatelysizehintbytes (possibly
after rounding up to an internal buffer size) are read.

seek (offset, whence)
Set the file’s current position, likestdio ’s fseek() . The whenceargument is optional and defaults to0
(absolute file positioning); other values are1 (seek relative to the current position) and2 (seek relative to the
file’s end). There is no return value.

tell ()
Return the file’s current position, likestdio ’s ftell() .

truncate ([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most) that size. The size
defaults to the current position. Availability of this function depends on the operating system version (e.g., not
all UNIX versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: due to buffering, the string may not actually show up
in the file until theflush() or close() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to matchreadlines() ;
writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attribute; theclose() method
changes the value.

mode
The I/O mode for the file. If the file was created using theopen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute.

name
If the file object was created usingopen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form ‘<...> ’. This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using theprint
statement. Classes that are trying to simulate a file object should also have a writablesoftspace attribute,
which should be initialized to zero. This will be automatic for classes implemented in Python; types imple-
mented in C will have to provide a writablesoftspace attribute.

6The advantage of leaving the newline on is that an empty string can be returned to meanEOF without being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

Internal Objects

See thePython Reference Manualfor this information. It describes code objects, stack frame objects, traceback
objects, and slice objects.

Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

• x. dict is a dictionary of some sort used to store an object’s (writable) attributes;

• x. methods lists the methods of many built-in object types, e.g.,[]. methods yields
[’append’, ’count’, ’index’, ’insert’, ’remove’, ’reverse’, ’sort’] ;

• x. members lists data attributes;

• x. class is the class to which a class instance belongs;

• x. bases is the tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5, all standard exceptions have been converted to class objects, and users are encouraged to the the same.
The source code for those exceptions is present in the standard library moduleexceptions ; this module never needs
to be imported explicitly.

For backward compatibility, when Python is invoked with the-X option, the standard exceptions are strings. This may
be needed to run some code that breaks because of the different semantics of class based exceptions. The-X option
will become obsolete in future Python versions, so the recommended solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, in atry statement with anexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from whichit is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theraise statement. For string exceptions, the associated value itself will be stored in the variable named
as the second argument of theexcept clause (if any). For class exceptions derived from the root classException ,
that variable receives the exception instance, and the associated value is present as the exception instance’sargs
attribute; this is a tuple even if the second argument toraise was not (then it is a singleton tuple).

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard exceptions
are used, they are tuples containing the directly derived classes.

12 Chapter 2. Built-in Types, Exceptions and Functions

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforced. Thestr() function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code).

StandardError
The base class for built-in exceptions. All built-in exceptions are derived from this class, which is itself derived
from the root classException .

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:OverflowError ,
ZeroDivisionError , FloatingPointError .

LookupError
The base class for thise exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError .

The following exceptions are the exceptions that are actually raised. They are class objects, except when the-X option
is used to revert back to string-based standard exceptions.

AssertionError
Raised when anassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at all,TypeError is raised.)

EOFError
Raised when one of the built-in functions (input() or raw input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: theread() andreadline() methods of file objects return an empty string
when they hitEOF.) No associated value.

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the--with-fpectl option, or theWANTSIGFPE HANDLERsymbol is defined
in the ‘config.h’ file.

IOError
Raised when an I/O operation (such as aprint statement, the built-inopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

When class exceptions are used, and this exception is instantiated asIOError(errno, strerror) , the
instance has two additional attributeserrno and strerror set to the error code and the error message,
respectively. These attributes default toNone.

ImportError
Raised when animport statement fails to find the module definition or when afrom . . . import fails to
find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer,TypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt
Raised when the user hits the interrupt key (normallyControl-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in functioninput() or raw input()) is waiting

2.2. Built-in Exceptions 13

for input also raise this exception. No associated value.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’smalloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiseMemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occur in animport statement, in anexec
statement, in a call to the built-in functioneval() or input() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttributesfilename , lineno , offset and
text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptions,str() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string
of the Python interpreter (sys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemExit
This exception is raised by thesys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C’s exit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

When class exceptions are used, the instance has an attributecode which is set to the proposed exit status or
error message (defaulting toNone).

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses oftry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after afork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

14 Chapter 2. Built-in Types, Exceptions and Functions

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such asIndexError .

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

import (name[, globals[, locals[, fromlist]]])
This function is invoked by theimport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semantics of theimport statement. For examples
of why and how you would do this, see the standard library modulesihooks andrexec . See also the built-
in moduleimp , which defines some useful operations out of which you can build your ownimport ()
function.

For example, the statement ‘import spam ’ results in the following call: import (’spam’,
globals(), locals(), []) ; the statement from spam.ham import eggs results in

import (’spam.ham’, globals(), locals(), [’eggs’]) . Note that even thoughlocals()
and[’eggs’] are passed in as arguments, theimport () function does not set the local variable named
eggs ; this is done by subsequent code that is generated for the import statement. (In fact, the standard
implementation does not use itslocals argument at all, and uses itsglobals only to determine the package
context of theimport statement.)

When thenamevariable is of the formpackage.module , normally, the top-level package (the name up
till the first dot) is returned,not the module named byname. However, when a non-emptyfromlist argument
is given, the module named bynameis returned. This is done for compatibility with the bytecode generated
for the different kinds of import statement; when using ‘import spam.ham.eggs ’, the top-level package
spam must be placed in the importing namespace, but when using ‘from spam.ham import eggs ’, the
spam.ham subpackage must be used to find theeggs variable.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, args[, keywords])
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargsargument must be a tuple. Thefunctionis called withargsas argument list; the number of arguments
is the the length of the tuple. (This is different from just callingfunc(args) , since in that case there is always
exactly one argument.) If the optionalkeywordsargument is present, it must be a dictionary whose keys are
strings. It specifies keyword arguments to be added to the end of the the argument list.

callable (object)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they have acall () method.

chr (i)
Return a string of one character whoseASCII code is the integeri, e.g.,chr(97) returns the string’a’ . This
is the inverse oford() . The argument must be in the range [0..255], inclusive.

cmp(x, y)
Compare the two objectsx andy and return an integer according to the outcome. The return value is negative if
x < y, zero ifx == y and strictly positive ifx > y.

2.3. Built-in Functions 15

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, kind)
Compile thestring into a code object. Code objects can be executed by anexec statement or evaluated by a call
to eval() . Thefilenameargument should give the file from which the code was read; pass e.g.’<string>’
if it wasn’t read from a file. Thekindargument specifies what kind of code must be compiled; it can be’exec’
if string consists of a sequence of statements,’eval’ if it consists of a single expression, or’single’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else thanNone will printed).

complex (real[, imag])
Create a complex number with the valuereal + imag*j. Each argument may be any numeric type (including
complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion function like
int() , long() andfloat() .

delattr (object, name)
This is a relative ofsetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ’ foobar’) is equivalent todel x. foobar.

dir ()
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to re-
turn a list of valid attribute for that object. This information is gleaned from the object’sdict , methods
and members attributes, if defined. The list is not necessarily complete; e.g., for classes, attributes defined
in base classes are not included, and for class instances, methods are not included. The resulting list is sorted
alphabetically. For example:

>>> import sys
>>> dir()
[’sys’]
>>> dir(sys)
[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]
>>>

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same as(a / b, a % b) . For floating point numbers the result is the same as
(math.floor(a / b), a % b) .

eval (expression[, globals[, locals]])
The arguments are a string and two optional dictionaries. Theexpressionargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) using theglobalsandlocalsdictionaries as global and
local name space. If thelocalsdictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment whereeval is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(’x+1’)
2
>>>

This function can also be used to execute arbitrary code objects (e.g. created bycompile()). In this case
pass a code object instead of a string. The code object must have been compiled passing’eval’ to thekind
argument.

Hints: dynamic execution of statements is supported by theexec statement. Execution of statements from

16 Chapter 2. Built-in Types, Exceptions and Functions

a file is supported by theexecfile() function. Theglobals() and locals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use byeval() or
execfile() .

execfile (file[, globals[, locals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module.7

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using theglobalsand locals dictionaries as global and local name
space. If thelocalsdictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are omitted,
the expression is executed in the environment whereexecfile() is called. The return value isNone.

filter (function, list)
Construct a list from those elements oflist for which functionreturns true. Iflist is a string or a tuple, the result
also has that type; otherwise it is always a list. Iffunction is None, the identity function is assumed, i.e. all
elements oflist that are false (zero or empty) are removed.

float (x)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly singed dec-
imal or floating point number, possibly embedded in whitespace; this behaves identical tostring.atof(x) .
Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

getattr (object, name)
The arguments are an object and a string. The string must be the name of one of the object’s attributes. The
result is the value of that attribute. For example,getattr(x, ’ foobar’) is equivalent tox. foobar.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callinggetattr(object, name) and seeing whether it raises an exception
or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machine,hex(-1) yields ’0xffffffff’ . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raise anOverflowError exception.

id (object)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disjunct may have the sameid() value.) (Implementation
note: this is the address of the object.)

input ([prompt])
Almost equivalent toeval(raw input(prompt)) . Like raw input() , thepromptargument is optional,
and thereadline module is used when loaded. The difference is that a long input expression may be broken

7It is used relatively rarely so does not warrant being made into a statement.

2.3. Built-in Functions 17

over multiple lines using the backslash convention.

intern (string)
Enterstring in the table of “interned” strings and return the interned string – which isstring itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

int (x)
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly singed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical
to string.atoi(x) . Otherwise, the argument may be a plain or long integer or a floating point number.
Conversion of floating point numbers to integers is defined by the C semantics; normally the conversion truncates
towards zero.8

isinstance (object, class)
Return true if theobject argument is an instance of theclassargument, or of a (direct or indirect) subclass
thereof. Also return true ifclassis a type object andobject is an object of that type. Ifobject is not a class
instance or a object of the given type, the function always returns false. Ifclassis neither a class object nor a
type object, aTypeError exception is raised.

issubclass (class1, class2)
Return true ifclass1is a subclass (direct or indirect) ofclass2. A class is considered a subclass of itself. If either
argument is not a class object, aTypeError exception is raised.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence)
Return a list whose items are the same and in the same order assequence’s items. If sequenceis already
a list, a copy is made and returned, similar tosequence[:] . For instance,list(’abc’) returns returns
[’a’, ’b’, ’c’] andlist((1, 2, 3)) returns[1, 2, 3] .

locals ()
Return a dictionary representing the current local symbol table. Inside a function, modifying this dictionary
does not always have the desired effect.

long (x)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly singed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves identical tostring.atol(x) .
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint() .

map(function, list, ...)
Apply function to every item oflist and return a list of the results. If additionallist arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended withNone items. If functionis None, the identity function is assumed; if
there are multiple list arguments,map() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Thelist arguments may be any kind of sequence; the result is
always a list.

max(s)
Return the largest item of a non-empty sequence (string, tuple or list).

8This is ugly — the language definition should require truncation towards zero.

18 Chapter 2. Built-in Types, Exceptions and Functions

min (s)
Return the smallest item of a non-empty sequence (string, tuple or list).

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machine,oct(-1) yields ’037777777777’ . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raise anOverflowError exception.

open (filename[, mode[, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio ’s fopen() : filenameis the file name to be opened,modeindicates how the file is to be opened:’r’
for reading,’w’ for writing (truncating an existing file), and’a’ opens it for appending (which onsomeUNIX

systems means thatall writes append to the end of the file, regardless of the current seek position). Modes
’r+’ , ’w+’ and’a+’ open the file for updating, provided the underlyingstdio library understands this. On
systems that differentiate between binary and text files,’b’ appended to the mode opens the file in binary mode.
If the file cannot be opened,IOError is raised. Ifmodeis omitted, it defaults to’r’ . The optionalbufsize
argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive
value means use a buffer of (approximately) that size. A negativebufsizemeans to use the system default, which
is usually line buffered for for tty devices and fully buffered for other files.9

ord (c)
Return theASCII value of a string of one character. E.g.,ord(’a’) returns the integer97 . This is the inverse
of chr() .

pow(x, y[, z])
Returnx to the powery; if z is present, returnx to the powery, moduloz (computed more efficiently than
pow(x, y) % z). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; e.g.,pow(2, -1) or pow(2, 35000) is not allowed.

range ([start,] stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used in
for loops. The arguments must be plain integers. If thestep argument is omitted, it defaults to
1. If the start argument is omitted, it defaults to0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...] . If step is positive, the last element is the largest
start + i * stepless thanstop; if stepis negative, the last element is the largeststart + i * stepgreater
thanstop. stepmust not be zero (or elseValueError is raised). Example:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]
>>>

9Specifying a buffer size currently has no effect on systems that don’t havesetvbuf() . The interface to specify the buffer size is not done
using a method that callssetvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 19

raw input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. WhenEOF is read,
EOFError is raised. Example:

>>> s = raw_input(’--> ’)
--> Monty Python’s Flying Circus
>>> s
"Monty Python’s Flying Circus"
>>>

If the readline module was loaded, thenraw input() will use it to provide elaborate line editing and
history features.

reduce (function, list[, initializer])
Apply the binary function to the items of list so as to reduce the list to a single value. E.g.,
reduce(lambda x, y: x*y, list, 1) returns the product of the elements oflist. The optional
initializer can be thought of as being prepended tolist so as to allow reduction of an emptylist. The list
arguments may be any kind of sequence.

reload (module)
Re-parse and re-initialize an already importedmodule. The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as themoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firstimport statement for it does not bind
its name locally, but does store a (partially initialized) module object insys.modules . To reload the module
you must firstimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with atry statement it can test
for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except forsys ,
main and builtin . In certain cases, however, extension modules are not designed to be initialized

more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usingfrom . . . import . . . , calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute thefrom
statement, another is to useimport and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed toeval() .

round (x, n)
Return the floating point valuex rounded ton digits after the decimal point. Ifn is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minusn; if two

20 Chapter 2. Built-in Types, Exceptions and Functions

multiples are equally close, rounding is done away from 0 (so e.g.round(0.5) is 1.0 andround(-0.5)
is -1.0).

setattr (object, name, value)
This is the counterpart ofgetattr() . The arguments are an object, a string and an arbitrary value. The string
must be the name of one of the object’s attributes. The function assigns the value to the attribute, provided the
object allows it. For example,setattr(x, ’ foobar’, 123) is equivalent tox. foobar = 123 .

slice ([start,] stop[, step])
Return a slice object representing the set of indices specified byrange(start, stop, step) . Thestart and
steparguments default to None. Slice objects have read-only data attributesstart , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. for ‘a[start:stop:step] ’ or ‘ a[start:stop, i] ’.

str (object)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference withrepr(object) is thatstr(object) does not always attempt to return a string that is
acceptable toeval() ; its goal is to return a printable string.

tuple (sequence)
Return a tuple whose items are the same and in the same order assequence’s items. If sequenceis already
a tuple, it is returned unchanged. For instance,tuple(’abc’) returns returns(’a’, ’b’, ’c’) and
tuple([1, 2, 3]) returns(1, 2, 3) .

type (object)
Return the type of anobject. The return value is a type object. The standard moduletypes defines names for
all built-in types. For instance:

>>> import types
>>> if isinstance(x, types.StringType): print "It’s a string"

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that has adict attribute), returns a dictionary cor-
responding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefined.10

xrange ([start,] stop[, step])
This function is very similar torange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantage ofxrange() over range() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

10In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 21

22

CHAPTER

THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys — Access system specific parameters and functions.

types — Names for all built-in types.

UserDict — Class wrapper for dictionary objects.

UserList — Class wrapper for list objects.

operator — All Python’s standard operators as built-in functions.

traceback — Print or retrieve a stack traceback.

pickle — Convert Python objects to streams of bytes and back.

cPickle — Faster version ofpickle , but not subclassable.

copy reg — Registerpickle support functions.

shelve — Python object persistency.

copy — Shallow and deep copy operations.

marshal — Convert Python objects to streams of bytes and back (with different constraints).

imp — Access the implementation of theimport statement.

parser — Retrieve and submit parse trees from and to the runtime support environment.

symbol — Constants representing internal nodes of the parse tree.

token — Constants representing terminal nodes of the parse tree.

keyword — Test whether a string is a keyword in the Python language.

code — Code object services.

pprint — Data pretty printer.

dis — Disassembler.

site — A standard way to reference site-specific modules.

user — A standard way to reference user-specific modules.

builtin — The set of built-in functions.

main — The environment where the top-level script is run.

23

3.1 Built-in Module sys

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script.argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the ‘-c ’ command
line option to the interpreter,argv[0] is set to the string"-c" . If no script name was passed to the Python
interpreter,argv has zero length.

builtin module names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way —modules.keys() only lists the imported modules.)

exc info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containing threeNone values is returned.
Otherwise, the values returned are(type, value, traceback) . Their meaning is:typegets the exception type
of the exception being handled (a string or class object);value gets the exception parameter (itsassociated
valueor the second argument toraise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thetracebackreturn value to a local variable in a function that is handling an exception
will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something liketype, value = sys.exc info()[:2] to extract only the exception
type and value. If you do need the traceback, make sure to delete it after use (best done with atry ... finally
statement) or to callexc info() in a function that does not itself handle an exception.

exc type
exc value
exc traceback

Deprecated since release 1.5.Useexc info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handled,exc type is set toNone and the other two are
undefined.

exec prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also"/usr/local" . This can be set at build time with the--exec-prefix argument to
the configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file) are installed in the
directoryexec prefix + "/lib/python version/config" , and shared library modules are installed in
exec prefix + "/lib/python version/lib-dynload" , whereversionis equal toversion[:3] .

exit (n)
Exit from Python with numeric exit statusn. This is implemented by raising theSystemExit exception, so
cleanup actions specified by finally clauses oftry statements are honored, and it is possible to catch the exit
attempt at an outer level.

exitfunc

24 Chapter 3. Python Services

This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when the
interpreter exits in any way (except when a fatal error occurs: in that case the interpreter’s internal state cannot
be trusted).

getrefcount (object)
Return the reference count of theobject. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument togetrefcount() .

last type
last value
last traceback

These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use is ‘import pdb; pdb.pm() ’ to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values fromexc info() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unlike forexc type etc.)

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionary isnot
the same as callingreload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
$PYTHONPATH, or an installation-dependent default.

The first item of this list,path[0] , is the directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script
is read from standard input),path[0] is the empty string, which directs Python to search modules in the
current directory first. Notice that the script directory is insertedbefore the entries inserted as a result of
$PYTHONPATH.

platform
This string contains a platform identifier, e.g.’sunos5’ or ’linux1’ . This can be used to append platform-
specific components topath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the string"/usr/local" . This can be set at build time with the--prefix argu-
ment to theconfigure script. The main collection of Python library modules is installed in the directory
prefix + "/lib/python version" while the platform independent header files (all except ‘config.h’) are
stored inprefix + "/include/python version" , whereversionis equal toversion[:3] .

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case are’>>> ’ and ’... ’ . If a non-string object is
assigned to either variable, itsstr() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The default is10 , meaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a value<= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

3.1. Built-in Module sys 25

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

setprofile (profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), but it isn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just returnNone.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams.stdin is used for
all interpreter input except for scripts but including calls toinput() andraw input() . stdout is used
for the output ofprint and expression statements and for the prompts ofinput() and raw input() .
The interpreter’s own prompts and (almost all of) its error messages go tostderr . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it has awrite() method that takes a
string argument. (Changing these objects doesn’t affect the standard I/O streams of processes executed by
os.popen() , os.system() or theexec*() family of functions in theos module.)

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The default is1000 . When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter.

3.2 Standard Module types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to use ‘from types import * ’ — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will all end in ‘Type ’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):

if type(item) is IntType:
del list[item]

else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returned bytype()).

IntType
The type of integers (e.g.1).

LongType
The type of long integers (e.g.1L).

26 Chapter 3. Python Services

FloatType
The type of floating point numbers (e.g.1.0).

StringType
The type of character strings (e.g.’Spam’).

TupleType
The type of tuples (e.g.(1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g.[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g.{’Bacon’: 1, ’Ham’: 0}).

DictionaryType
An alternate name forDictType .

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name forFunctionType .

CodeType
The type for code objects such as returned bycompile() .

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name forMethodType .

BuiltinFunctionType
The type of built-in functions likelen() or sys.exit() .

BuiltinMethodType
An alternate name forBuiltinFunction .

ModuleType
The type of modules.

FileType
The type of open file objects such assys.stdout .

XRangeType
The type of range objects returned byxrange() .

TracebackType
The type of traceback objects such as found insys.exc traceback .

FrameType
The type of frame objects such as found intb.tb frame if tb is a traceback object.

3.3 Standard Module UserDict

3.3. Standard Module UserDict 27

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviours to dictionaries.

TheUserDict module defines theUserDict class:

UserDict ()
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which
is accessible via thedata attribute ofUserDict instances.

data
A real dictionary used to store the contents of theUserDict class.

3.4 Standard Module UserList

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to lists.

TheUserList module defines theUserList class:

UserList ([list])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via the data attribute ofUserList instances. The instance’s contents are initially set to a copy oflist,
defaulting to the empty list[] . list can be either a regular Python list, or an instance ofUserList (or a
subclass).

data
A real Python list object used to store the contents of theUserList class.

3.5 Built-in Module operator

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For example,operator.add(x, y) is equivalent to the expressionx+y . The function names are those used for
special class methods; variants without leading and trailing ‘’ are also provided for convenience.

Theoperator module defines the following functions:

add (a, b)
add (a, b)

Returna + b, for a andb numbers.

sub (a, b)
sub (a, b)

Returna - b.

mul (a, b)
mul (a, b)

Returna * b, for a andb numbers.

div (a, b)
div (a, b)

Returna / b.

mod(a, b)
mod (a, b)

Returna %b.

28 Chapter 3. Python Services

neg (o)
neg (o)

Returno negated.

pos (o)
pos (o)

Returno positive.

abs (o)
abs (o)

Return the absolute value ofo.

inv (o)
inv (o)

Return the inverse ofo.

lshift (a, b)
lshift (a, b)

Returna shifted left byb.

rshift (a, b)
rshift (a, b)

Returna shifted right byb.

and (a, b)
and (a, b)

Return the bitwise and ofa andb.

or (a, b)
or (a, b)

Return the bitwise or ofa andb.

concat (a, b)
concat (a, b)

Returna + b for a andb sequences.

repeat (a, b)
repeat (a, b)

Returna * b wherea is a sequence andb is an integer.

getitem (a, b)
getitem (a, b)

Return the value ofa at indexb.

setitem (a, b, c)
setitem (a, b, c)

Set the value ofa at indexb to c.

delitem (a, b)
delitem (a, b)

Remove the value ofa at indexb.

getslice (a, b, c)
getslice (a, b, c)

Return the slice ofa from indexb to indexc-1 .

setslice (a, b, c, v)
setslice (a, b, c, v)

Set the slice ofa from indexb to indexc-1 to the sequencev.

delslice (a, b, c)
delslice (a, b, c)

3.5. Built-in Module operator 29

Delete the slice ofa from indexb to indexc-1 .

Example: Build a dictionary that maps the ordinals from0 to 256 to their character equivalents.

>>> import operator
>>> d = {}
>>> keys = range(256)
>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 Standard Module traceback

This module provides a standard interface to format and print stack traces of Python programs. It exactly mimics the
behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack traces under
program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variablessys.exc traceback
andsys.last traceback .

The module defines the following functions:

print tb (traceback[, limit])
Print up tolimit stack trace entries fromtraceback. If limit is omitted orNone, all entries are printed.

extract tb (traceback[, limit])
Return a list of up tolimit “pre-processed” stack trace entries extracted fromtraceback. It is useful for alternate
formatting of stack traces. Iflimit is omitted orNone, all entries are extracted. A “pre-processed” stack trace
entry is a quadruple (filename, line number, function name, line text) representing the information that is usually
printed for a stack trace. Theline text is a string with leading and trailing whitespace stripped; if the source is
not available it isNone.

print exception (type, value, traceback[, limit])
Print exception information and up tolimit stack trace entries fromtraceback. This differs fromprint tb()
in the following ways: (1) iftracebackis notNone, it prints a header ‘Traceback (innermost last): ’;
(2) it prints the exceptiontypeandvalueafter the stack trace; (3) iftype is SyntaxError andvaluehas the
appropriate format, it prints the line where the syntax error occurred with a caret indicating the approximate
position of the error.

print exc ([limit])
This is a shorthand for ‘print exception(sys.exc type, sys.exc value,
sys.exc traceback, limit) ’.

print last ([limit])
This is a shorthand for ‘print exception(sys.last type, sys.last value,
sys.last traceback, limit) ’.

3.7 Standard Module pickle

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistency — althoughpickle reads and writes file objects, it
does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thepickle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to

30 Chapter 3. Python Services

write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on “dbm”-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thecPickle module. This has the same interface except thatPickler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Unlike the built-in modulemarshal , pickle handles the following correctly:

• recursive objects (objects containing references to themselves)

• object sharing (references to the same object in different places)

• user-defined classes and their instances

The data format used bypickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printableASCII representation. This is slightly more voluminous than a
binary representation. The big advantage of using printableASCII (and of some other characteristics ofpickle ’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for thebin
argument to thePickler constructor or thedump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, which themarshal module does. I supposepickle could, and
maybe it should, but there’s probably no great need for it right now (as long asmarshal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written usingpickle , it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of printableASCII

characters. The resolution of such names is not defined by thepickle module — the persistent object module will
have to implement a methodpersistent load() . To write references to persistent objects, the persistent module
must define a methodpersistent id() which returns eitherNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, itsinit () method is normallynot invoked.Note: This is a deviation
from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the change is that
in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to have to provide
a getinitargs () method.

If it is desirable that the init () method be called on unpickling, a class can define a method
getinitargs () , which should return atuple containing the arguments to be passed to the class constructor

(init ()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the instance.

Classes can further influence how their instances are pickled — if the class defines the methodgetstate () ,
it is called and the return state is pickled as the contents for the instance, and if the class defines the method

setstate () , it is called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate () method, the instance’sdict is pickled. If there is no

setstate () method, the pickled object must be a dictionary and its items are assigned to the new instance’s
dictionary. (If a class defines bothgetstate () and setstate () , the state object needn’t be a dictionary
— these methods can do what they want.) This protocol is also used by the shallow and deep copying operations
defined in thecopy module.

3.7. Standard Module pickle 31

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’s setstate () method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an objectx onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an objectx from a filef , open for reading:

u = pickle.Unpickler(f)
x = u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the methodf.write() with a string argument. TheUnpickler calls the meth-
ods f.read() (with an integer argument) andf.readline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thePickler class has an optional second argument,bin. If this is present and nonzero, the binary
pickle format is used; if it is zero or absent, the (less efficient, but backwards compatible) text pickle format is used.
TheUnpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

• None

• integers, long integers, floating point numbers

• strings

• tuples, lists and dictionaries containing only picklable objects

• classes that are defined at the top level in a module

• instances of such classes whosedict or setstate () is picklable

Attempts to pickle unpicklable objects will raise thePicklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

32 Chapter 3. Python Services

It is possible to make multiple calls to thedump() method of the samePickler instance. These must then be
matched to the same number of calls to theload() method of the correspondingUnpickler instance. If the same
object is pickled by multipledump() calls, theload() will all yield references to the same object.Warning: this
is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the samePickler instance, the object is not pickled again — a reference to
it is pickled and theUnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. I have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, file[, bin])
Write a pickled representation ofobect to the open file objectfile. This is equivalent to
‘Pickler(file, bin).dump(object) ’. If the optionalbin argument is present and nonzero, the binary pickle
format is used; if it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objectfile. This is equivalent to ‘Unpickler(file).load() ’.

dumps(object[, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the optionalbin
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passed toPickler.dump() .

See Also:

3.9: Modulecopy reg (pickle interface constructor registration)

3.10: Moduleshelve (indexed databases of objects; usespickle)

3.11: Modulecopy (shallow and deep object copying)

3.12: Modulemarshal (high-performance serialization of built-in types)

3.8 Built-in Module cPickle

ThecPickle module provides a similar interface and identical functionality as thepickle module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to note is thatPickler() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced using thepickle module, so it is possible to usepickle
andcPickle interchangably with existing pickles.

3.9 Standard Module copy reg

Thecopy reg module provides support for thepickle andcPickle modules. Thecopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (object)
Declaresobjectto be a valid constructor.

3.8. Built-in Module cPickle 33

pickle (type, function[, constructor])
Declares thatfunctionshould be used as a “reduction” function for objects of type or classtype. functionshould
return either a string or a tuple. The optionalconstructorparameter, if provided, is a callable object which can
be used to reconstruct the object when called with the tuple of arguments returned byfunctionat pickling time.

3.10 Standard Module shelve

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that thepickle module can handle. This includes
most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interface (key is a string,data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

• The choice of which database package will be used (e.g.dbmor gdbm) depends on which interface is available.
Therefore it isn’t safe to open the database directly usingdbm. The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

• Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

• Theshelve module does not supportconcurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. UNIX file locking can be used to solve this, but this differs across UNIX versions and
requires knowledge about the database implementation used.

3.11 Standard Module copy

This module provides generic (shallow and deep) copying operations.

Interface summary:

34 Chapter 3. Python Services

import copy

x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y

For module specific errors,copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

• A shallow copyconstructs a new compound object and then (to the extent possible) insertsreferencesinto it to
the objects found in the original.

• A deep copyconstructs a new compound object and then, recursively, insertscopiesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

• Because deep copy copieseverythingit may copy too much, e.g. administrative data structures that should be
shared even between copies.

Python’sdeepcopy() operation avoids these problems by:

• keeping a table of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket,
window, nor array, nor any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods
called getinitargs () , getstate () and setstate () . See the description of modulepickle for
information on these methods.

3.12 Built-in Module marshal

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does).1

This is not a general “persistency” module. For general persistency and transfer of Python objects through RPC calls,
see the modulespickle andshelve . The marshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules of ‘.pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported:None, integers, long
integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where it should be understood

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.12. Built-in Module marshal 35

that tuples, lists and dictionaries are only supported as long as the values contained therein are themselves supported;
and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C’slong int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the currentmarshal module uses 32 bits to transfer
plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from the ‘.pyc’ instead.2

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file)
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() .

If the value has (or contains an object that has) an unsupported type, aValueError exception is raised — but
garbage data will also be written to the file. The object will not be properly read back byload() .

load (file)
Read one value from the open file and return it. If no valid value is read, raiseEOFError , ValueError or
TypeError . The file must be an open file object.

Warning: If an object containing an unsupported type was marshalled withdump() , load() will substitute
None for the unmarshallable type.

dumps(value)
Return the string that would be written to a file bydump(value, file) . The value must be a supported type.
Raise aValueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raiseEOFError , ValueError or TypeError .
Extra characters in the string are ignored.

3.13 Built-in Module imp

This module provides an interface to the mechanisms used to implement theimport statement. It defines the follow-
ing constants and functions:

get magic ()
Return the magic string value used to recognize byte-compiled code files (“.pyc files”). (This value may be
different for each Python version.)

get suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix, mode, type) , wheresuffix is a string to be appended to the module name to form the filename to
search for,modeis the mode string to pass to the built-inopen function to open the file (this can be’r’
for text files or ’rb’ for binary files), andtype is the file type, which has one of the valuesPY SOURCE,
PY COMPILED, or C EXTENSION, described below.

find module (name[, path])
Try to find the modulenameon the search pathpath. If path is a list of directory names, each directory is
searched for files with any of the suffixes returned byget suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings). Ifpath is omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name (C BUILTIN), then a frozen module (PY FROZEN), and on some systems some other places are

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would be to let themarshal
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

36 Chapter 3. Python Services

looked in as well (on the Mac, it looks for a resource (PY RESOURCE); on Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triple(file, pathname, description) wherefile is an open file
object positioned at the beginning,pathnameis the pathname of the file found, anddescriptionis a triple as
contained in the list returned byget suffixes() describing the kind of module found. If the module does
not live in a file, the returnedfile is None, filenameis the empty string, and thedescriptiontuple contains empty
strings for its suffix and mode; the module type is as indicate in parentheses dabove. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to findP.M, i.e.,
submoduleM of packageP, usefind module() andload module() to find and load packageP, and then
usefind module() with thepathargument set toP. path . WhenP itself has a dotted name, apply this
recipe recursively.

load module (name, file, filename, description)
Load a module that was previously found byfind module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported, it
is equivalent to areload() ! Thenameargument indicates the full module name (including the package name,
if this is a submodule of a package). Thefile argument is an open file, andfilenameis the corresponding file
name; these can beNone and’’ , respectively, when the module is not being loaded from a file. Thedescription
argument is a tuple as returned byfind module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usuallyImportError)
is raised.

Important: the caller is responsible for closing thefile argument, if it was notNone, even when an exception
is raised. This is best done using atry ... finally statement.

new module (name)
Return a new empty module object calledname. This object isnot inserted insys.modules .

The following constants with integer values, defined in this module, are used to indicate the search result of
find module() .

PY SOURCE
The module was found as a source file.

PY COMPILED
The module was found as a compiled code object file.

C EXTENSION
The module was found as dynamically loadable shared library.

PY RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKGDIRECTORY
The module was found as a package directory.

C BUILTIN
The module was found as a built-in module.

PY FROZEN
The module was found as a frozen module (seeinit frozen()).

The following constant and functions are obsolete; their functionality is available throughfind module() or
load module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init builtin (name)
Initialize the built-in module callednameand return its module object. If the module was already initialized, it

3.13. Built-in Module imp 37

will be initialized again. A few modules cannot be initialized twice — attempting to initialize these again will
raise anImportError exception. If there is no built-in module calledname, None is returned.

init frozen (name)
Initialize the frozen module callednameand return its module object. If the module was already initialized,
it will be initialized again. If there is no frozen module calledname, None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’sfreezeutility. See ‘Tools/freeze/’ for now.)

is builtin (name)
Return1 if there is a built-in module callednamewhich can be initialized again. Return-1 if there is a built-in
module callednamewhich cannot be initialized again (seeinit builtin()). Return0 if there is no built-in
module calledname.

is frozen (name)
Return1 if there is a frozen module (seeinit frozen()) calledname, or 0 if there is no such module.

load compiled (name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializedagain. Thenameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Thefile argument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load dynamic (name, pathname[, file])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializedagain. Some modules don’t like that and may raise
an exception. Thepathnameargument must point to the shared library. Thenameargument is used to construct
the name of the initialization function: an external C function called ‘init name() ’ in the shared library is
called. The optionalfile argment is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load source (name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedagain. Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thefile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file. Note
that if a properly matching byte-compiled file (with suffix ‘.pyc’) exists, it will be used instead of parsing the
given source file.

Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thisimplementationwouldn’t work in that version, sincefind module() has been extended and
load module() has been added in 1.4.)

38 Chapter 3. Python Services

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:

pass

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)

finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

A more complete example that implements hierarchical module names and includes areload() function can be
found in the standard moduleknee (which is intended as an example only — don’t rely on any part of it being a
standard interface).

3.14 Built-in Module parser

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

Theparser module was written and documented by Fred L. Drake, Jr. (fdrake@acm.org).

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of using theparser module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to thePython Language Reference. The parser itself is created from
a grammar specification defined in the file ‘Grammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
the expr() or suite() functions, described below. The AST objects created bysequence2ast() faithfully
simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

Each element of the sequences returned byast2list() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
‘ Include/graminit.h’ and the Python modulesymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the

3.14. Built-in Module parser 39

parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywordif in an if stmt , are included in the node tree without any special treatment. For exam-
ple, theif keyword is represented by the tuple(1, ’if’) , where1 is the numeric value associated with allNAME
tokens, including variable and function names defined by the user. In an alternate form returned when line number
information is requested, the same token might be represented as(1, ’if’, 12) , where the12 represents the line
number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of theif keyword above is representative. The various types of
terminal symbols are defined in the C header file ‘Include/token.h’ and the Python moduletoken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create the’eval’ and’exec’ forms.

expr (string)
The expr() function parses the parameterstring as if it were an input to ‘compile(string, ’eval’) ’.
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

suite (string)
Thesuite() function parses the parameterstring as if it were an input to ‘compile(string, ’exec’) ’.
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

sequence2ast (sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be validated, aParserError exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passed tocompileast() . This may indicate
problems not related to syntax (such as aMemoryError exception), but may also be due to constructs such as
the result of parsingdel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form
(1, ’name’) or as three-element lists of the form(1, ’name’, 56) . If the third element is present,
it is assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols
in the input tree.

tuple2ast (sequence)
This is the same function assequence2ast() . This entry point is maintained for backward compatibility.

Converting AST Objects

40 Chapter 3. Python Services

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python list representing the equivelent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspection,ast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which the tokenends. This
information is omitted if the flag is false or omitted.

ast2tuple (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python tuple representing the equivelent
parse tree. Other than returning a tuple instead of a list, this function is identical toast2list() .

If line info is true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, filename = ’<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-ineval() function. This function provides the interface to
the compiler, passing the internal parse tree fromast to the parser, using the source file name specified by the
filenameparameter. The default value supplied forfilenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be aSyntaxEr-
ror caused by the parse tree fordel f(0) : this statement is considered legal within the formal grammar for
Python but is not a legal language construct. TheSyntaxError raised for this condition is actually generated
by the Python byte-compiler normally, which is why it can be raised at this point by theparser module. Most
causes of compilation failure can be diagnosed programmatically by inspection of the parse tree.

Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source code viaexpr() or suite()
or from a parse tree viasequence2ast() .

isexpr (ast)
Whenastrepresents an’eval’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created bycompileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

issuite (ast)
This function mirrorsisexpr() in that it reports whether an AST object represents an’exec’ form, com-
monly known as a “suite.” It is not safe to assume that this function is equivelent to ‘not isexpr(ast) ’, as
additional syntactic fragments may be supported in the future.

Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

3.14. Built-in Module parser 41

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built inSyntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed tosequence2ast() and an explanatory string. Calls tosequence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionscompileast() , expr() , andsuite() may throw exceptions which are normally thrown
by the parsing and compilation process. These include the built in exceptionsMemoryError , OverflowError ,
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

AST Objects

AST objects returned byexpr() , suite() andsequence2ast() have no methods of their own.

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (using thepickle
module) is also supported.

ASTType
The type of the objects returned byexpr() , suite() andsequence2ast() .

AST objects have the following methods:

compile ([filename])
Same ascompileast(ast, filename) .

isexpr ()
Same asisexpr(ast) .

issuite ()
Same asissuite(ast) .

tolist ([line info])
Same asast2list(ast, line info) .

totuple ([line info])
Same asast2tuple(ast, line info) .

Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulation of thecompile() built-in function and the complex example
shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using theparser module to produce an intermediate data structure is equivelent to the
code

42 Chapter 3. Python Services

>>> code = compile(’a + 5’, ’eval’)
>>> a = 5
>>> eval(code)
10

The equivelent operation using theparser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(’a + 5’)
>>> code = parser.compileast(ast)
>>> a = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
code = parser.compileast(ast)
return ast, code

def load_expression(source_string):
ast = parser.expr(source_string)
code = parser.compileast(ast)
return ast, code

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter viaimport . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located in the ‘Demo/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defined by adef statement at
column zero of a module, but not a function defined within a branch of anif ... else construct, though there are
some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large

3.14. Built-in Module parser 43

number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the file ‘Grammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (See file ‘docstring.py’.)

"""Some documentation.
"""

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = parser.ast2tuple(ast)
>>> pprint.pprint(tup)
(257,

(264,
(265,

(266,
(267,

(307,
(287,

(288,
(289,

(290,
(292,

(293,
(294,

(295,
(296,

(297,
(298,

(299,
(300, (3, ’"""Some documentation.\012"""’))))))))))))))))),

(4, ’’))),
(4, ’’),
(0, ’’))

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. However, thesymbol and token modules provide symbolic
names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the integer257 and three additional tuples.
Node type257 has the symbolic namefile input . Each of these inner tuples contains an integer as the first ele-
ment; these integers,264 , 4, and0, represent the node typesstmt , NEWLINE, andENDMARKER, respectively. Note
that these values may change depending on the version of Python you are using; consult ‘symbol.py’ and ‘token.py’ for
details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the moment. Thestmt node is much more interesting. In
particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described
structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple pattern
matching approach to check any given subtree for equivelence to the general pattern for docstrings. Since the example

44 Chapter 3. Python Services

demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form, allowing
a simple variable representation to be[’variable name’] . A simple recursive function can implement the pattern
matching, returning a boolean and a dictionary of variable name to value mappings. (See file ‘example.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):
if vars is None:

vars = {}
if type(pattern) is ListType:

vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (See file ‘example.py’.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,

(symbol.small_stmt,
(symbol.expr_stmt,

(symbol.testlist,
(symbol.test,

(symbol.and_test,
(symbol.not_test,

(symbol.comparison,
(symbol.expr,

(symbol.xor_expr,
(symbol.and_expr,

(symbol.shift_expr,
(symbol.arith_expr,

(symbol.term,
(symbol.factor,

(symbol.power,
(symbol.atom,

(token.STRING, [’docstring’])
)))))))))))))))),

(token.NEWLINE, ’’)
))

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously
is easy:

3.14. Built-in Module parser 45

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found
1
>>> vars
{’docstring’: ’"""Some documentation.\012"""’}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt node in a code block (file input or suite node types). A module consists of a singlefile input
node, and class and function definitions each contain exactly onesuite node. Classes and functions are readily
identified as subtrees of code block nodes which start with(stmt, (compound stmt, (classdef, ... or
(stmt, (compound stmt, (funcdef, Note that these subtrees cannot be matched bymatch() since
it does not support multiple sibling nodes to match without regard to number. A more elaborate matching function
could be used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it represents. TheModuleInfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

The public classes includeClassInfo , FunctionInfo , and ModuleInfo . All objects provide the meth-
ods get name() , get docstring() , get class names() , and get class info() . The Class-
Info objects supportget method names() and get method info() while the other classes provide
get function names() andget function info() .

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base class,SuiteInfoBase , with the accessors for function
and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of thedef statement to define both types of elements.

Most of the accessor functions are declared inSuiteInfoBase and do not need to be overriden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuiteInfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of theSuiteInfoBase definition from ‘example.py’:

46 Chapter 3. Python Services

class SuiteInfoBase:
_docstring = ’’
_name = ’’

def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:

self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])
else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:

self._docstring = eval(vars[’docstring’])
discover inner definitions
for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)
if found:

cstmt = vars[’compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]
self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:
name = cstmt[2][1]
self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls theextract info() method. This method performs
the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):

return x ** y
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only,small stmt
element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is only onesmall stmt node
in thesimple stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds using thematch() function as described
above, and the value of the docstring is stored as an attribute of theSuiteInfoBase object.

3.14. Built-in Module parser 47

After docstring extraction, a simple definition discovery algorithm operates on thestmt nodes of thesuite node.
The special case of the short form is not tested; since there are nostmt nodes in the short form, the algorithm will
silently skip the singlesimple stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The repesentation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by theSuiteIn-
foBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-level function
can be used to extract the complete set of information from a source file. (See file ‘example.py’.)

def get_docs(fileName):
source = open(fileName).read()
import os
basename = os.path.basename(os.path.splitext(fileName)[0])
import parser
ast = parser.suite(source)
tup = parser.ast2tuple(ast)
return ModuleInfo(tup, basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

See Also:

3.15: Modulesymbol (useful constants representing internal nodes of the parse tree)

3.16: Module token (useful constants representing leaf nodes of the parse tree and functions for testing node
values)

3.15 Standard Module symbol

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to the file ‘Grammar/Grammar’ in the Python distribution for the
defintions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

sym name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

3.14: Moduleparser (second example uses this module)

3.16 Standard Module token

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file ‘Grammar/Grammar’ in the Python distribution for the defintions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

48 Chapter 3. Python Services

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(x)
Return true for terminal token values.

ISNONTERMINAL(x)
Return true for non-terminal token values.

ISEOF(x)
Return true ifx is the marker indicating the end of input.

See Also:

3.14: Moduleparser (second example uses this module)

3.17 Standard Module keyword

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (s)
Return true ifs is a Python keyword.

3.18 Standard Module code

Thecode module defines operations pertaining to Python code objects.

Thecode module defines the following functions:

compile command(source,[filename[, symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This functionalmost
always makes the same decision as the real interpreter main loop.

Arguments:sourceis the source string;filenameis the optional filename from which source was read, defaulting
to "<input>" ; andsymbolis the optional grammar start symbol, which should be either"single" (the
default) or"eval" .

Return a code object (the same ascompile(source, filename, symbol)) if the command is complete and
valid; returnNone if the command is incomplete; raiseSyntaxError if the command is a syntax error.

3.19 Standard Module pprint

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. ConstructPrettyPrinter objects explicitly if you need to adjust the width constraint.

3.17. Standard Module keyword 49

Thepprint module defines one class:

PrettyPrinter (...)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using thestreamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, thePrettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywords areindent, depth, andwidth. The amount
of indentation added for each recursive level is specified byindent; the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth; if the data structure being printed is too deep, the next contained level is replaced by
‘ ... ’. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using thewidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[[’’,

’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’],

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

>>>
>>> import parser
>>> tup = parser.ast2tuple(
... parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(266, (267, (307, (287, (288, (...))))))

ThePrettyPrinter class supports several derivative functions:

pformat (object)
Return the formatted representation ofobjectas a string. The default parameters for formatting are used.

pprint (object[, stream])
Prints the formatted representation ofobject on stream, followed by a newline. Ifstream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of aprint statement for in-
specting values. The default parameters for formatting are used.

50 Chapter 3. Python Services

>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=869440>,

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

isreadable (object)
Determine if the formatted representation ofobject is “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (object)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation ofobject, protected against recursive data structures. If the rep-
resentation of object exposes a recursive entry, the recursive reference will be represented as
‘<Recursion on typenamewith id= number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=682968>, ’’, ’/usr/local/lib/python1.5’, ’/usr/loca
l/lib/python1.5/test’, ’/usr/local/lib/python1.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/python1.5/tkinter’]"

PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation ofobject. This takes into Account the options passed to thePret-
tyPrinter constructor.

pprint (object)
Print the formatted representation ofobjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since newPrettyPrinter objects don’t need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. If thedepthparameter of thePrettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

3.19. Standard Module pprint 51

3.20 Standard Module dis

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the file ‘Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functionmyfunc :

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembly ofmyfunc() :

>>> dis.dis(myfunc)
0 SET_LINENO 1

3 SET_LINENO 2
6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)

12 CALL_FUNCTION 1
15 RETURN_VALUE
16 LOAD_CONST 0 (None)
19 RETURN_VALUE

Thedis module defines the following functions:

dis ([bytesource])
Disassemble thebytesourceobject.bytesourcecan denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

distb ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, lasti])
Disassembles a code object, indicating the last instruction iflasti was provided. The output is divided in the
following columns:

1.the current instruction, indicated as ‘--> ’,

2.a labelled instruction, indicated with ‘>>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, lasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of a operation names, indexable using the byte code.

52 Chapter 3. Python Services

cmp op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

hascompare
Sequence of byte codes of boolean operations.

Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOPCODE
Indicates end-of-code to the compiler, not used by the interpreter.

POPTOP
Removes the top-of-stack (TOS) item.

ROTTWO
Swaps the two top-most stack items.

ROTTHREE
Lifts second and third stack item one position up, moves top down to position three.

DUPTOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARYPOSITIVE
ImplementsTOS = +TOS.

UNARYNEG
ImplementsTOS = -TOS.

UNARYNOT
ImplementsTOS = not TOS.

UNARYCONVERT
ImplementsTOS = ‘TOS‘ .

UNARYINVERT
ImplementsTOS = ˜TOS.

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY POWER
ImplementsTOS = TOS1 ** TOS.

BINARY MULTIPLY

3.20. Standard Module dis 53

ImplementsTOS = TOS1 * TOS.

BINARY DIVIDE
ImplementsTOS = TOS1 / TOS.

BINARY MODULO
ImplementsTOS = TOS1 %TOS.

BINARY ADD
ImplementsTOS = TOS1 + TOS.

BINARY SUBTRACT
ImplementsTOS = TOS1 - TOS.

BINARY SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY LSHIFT
ImplementsTOS = TOS1 << TOS.

BINARY RSHIFT
ImplementsTOS = TOS1 >> TOS.

BINARY AND
ImplementsTOS = TOS1 and TOS.

BINARY XOR
ImplementsTOS = TOS1 ˆ TOS.

BINARY OR
ImplementsTOS = TOS1 or TOS.

The slice opcodes take up to three parameters.

SLICE+0
ImplementsTOS = TOS[:] .

SLICE+1
ImplementsTOS = TOS1[TOS:] .

SLICE+2
ImplementsTOS = TOS1[:TOS1] .

SLICE+3
ImplementsTOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORESLICE+0
ImplementsTOS[:] = TOS1 .

STORESLICE+1
ImplementsTOS1[TOS:] = TOS2 .

STORESLICE+2
ImplementsTOS1[:TOS] = TOS2 .

STORESLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3 .

DELETESLICE+0
Implementsdel TOS[:] .

DELETESLICE+1
Implementsdel TOS1[TOS:] .

54 Chapter 3. Python Services

DELETESLICE+2
Implementsdel TOS1[:TOS] .

DELETESLICE+3
Implementsdel TOS2[TOS1:TOS] .

STORESUBSCR
ImplementsTOS1[TOS] = TOS2.

DELETESUBSCR
Implementsdel TOS1[TOS] .

PRINT EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminated withPOPSTACK.

PRINT ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT NEWLINE
Prints a new line onsys.stdout . This is generated as the last operation of a print statement, unless the
statement ends with a comma.

BREAKLOOP
Terminates a loop due to a break statement.

LOADLOCALS
Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

EXECSTMT
Implementsexec TOS2,TOS1,TOS . The compiler fills missing optional parameters with None.

POPBLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

ENDFINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORENAME namei
Implementsname = TOS. nameiis the index ofnamein the attributeco names of the code object. The
compiler tries to useSTORELOCALor STOREGLOBALif possible.

DELETENAME namei
Implementsdel name , wherenameiis the index intoco names attribute of the code object.

UNPACKTUPLE count
Unpacks TOS intocountindividual values, which are put onto the stack right-to-left.

UNPACKLIST count
Unpacks TOS intocountindividual values.

STOREATTR namei

3.20. Standard Module dis 55

ImplementsTOS.name = TOS1, wherenameiis the index of name inco names.

DELETEATTR namei
Implementsdel TOS.name , usingnameias index intoco names.

STOREGLOBAL namei
Works asSTORENAME, but stores the name as a global.

DELETEGLOBAL namei
Works asDELETENAME, but deletes a global name.

LOADCONST consti
Pushes ‘co consts[consti] ’ onto the stack.

LOADNAME namei
Pushes the value associated with ‘co names[namei] ’ onto the stack.

BUILD TUPLE count
Creates a tuple consumingcountitems from the stack, and pushes the resulting tuple onto the stack.

BUILD LIST count
Works asBUILD TUPLE, but creates a list.

BUILD MAP zero
Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOADATTR namei
Replaces TOS withgetattr(TOS,co names[namei] .

COMPAREOP opname
Performs a boolean operation. The operation name can be found incmp op[opname] .

IMPORTNAME namei
Imports the moduleco names[namei] . The module object is pushed onto the stack. The current name space
is not affected: for a proper import statement, a subsequentSTOREFAST instruction modifies the name space.

IMPORTFROM namei
Imports the attributeco names[namei] . The module to import from is found in TOS and left there.

JUMPFORWARDdelta
Increments byte code counter bydelta.

JUMPIF TRUE delta
If TOS is true, increment the byte code counter bydelta. TOS is left on the stack.

JUMPIF FALSE delta
If TOS is false, increment the byte code counter bydelta. TOS is not changed.

JUMPABSOLUTE target
Set byte code counter totarget.

FORLOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code counter bydelta. Otherwise, push the sequence, the incremented
counter, and the current item onto the stack.

LOADGLOBAL namei
Loads the global namedco names[namei] onto the stack.

SETUPLOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with a size ofdelta
bytes.

SETUPEXCEPT delta

56 Chapter 3. Python Services

Pushes a try block from a try-except clause onto the block stack.deltapoints to the first except block.

SETUPFINALLY delta
Pushes a try block from a try-except clause onto the block stack.deltapoints to the finally block.

LOADFAST var num
Pushes a reference to the localco varnames[var num] onto the stack.

STOREFAST var num
Stores TOS into the localco varnames[var num] .

DELETEFAST var num
Deletes localco varnames[var num] .

SET LINE NO lineno
Sets the current line number tolineno.

RAISE VARARGS argc
Raises an exception.argc indicates the number of parameters to the raise statement, ranging from 1 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL FUNCTION argc
Calls a function. The low byte ofargc indicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKEFUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to haveargcdefault parameters, which are found below TOS.

BUILD SLICE argc
Pushes a slice object on the stack.argc must be 2 or 3. If it is 2,slice(TOS1, TOS) is pushed; if it is 3,
slice(TOS2, TOS1, TOS) is pushed. See theslice() built-in function.

3.21 Standard Module site

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place ‘import site ’ somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it usessys.prefix and
sys.exec prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first ‘lib/pythonversion/site-packages’ and then ‘lib/site-python’ (on UNIX). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, adds tosys.path , and also inspected for path
configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items (one per
line) to be added tosys.path . Non-existing items are never added tosys.path , but no check is made that the
item refers to a directory (rather than a file). No item is added tosys.path more than once. Blank lines and lines
beginning with# are skipped.

For example, supposesys.prefix andsys.exec prefix are set to ‘/usr/local’. The Python 1.5.1 library is then
installed in ‘/usr/local/lib/python1.5’ (note that only the first three characters ofsys.version are used to form the
path name). Suppose this has a subdirectory ‘/usr/local/lib/python1.5/site-packages’ with three subsubdirectories, ‘foo’,
‘bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’. Assume ‘foo.pth’ contains the following:

3.21. Standard Module site 57

foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added tosys.path , in this order:

/usr/local/lib/python1.5/site-packages/bar
/usr/local/lib/python1.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory because ‘bar.pth’
comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module namedsitecustomize , which can perform
arbitrary site-specific customizations. If this import fails with anImportError exception, it is silently ignored.

Note that for some non-UNIX systems,sys.prefix andsys.exec prefix are empty, and the path manipula-
tions are skipped; however the import ofsitecustomize is still attempted.

3.22 Standard Module user

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

The user module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened, exececutes it
(usingexecfile()) in its own (i.e. the moduleuser ’s) global namespace. Errors during this phase are not caught;
that’s up to the program that imports theuser module, if it wishes. The home directory is assumed to be named by
the $HOME environment variable; if this is not set, the current directory is used.

The user’s ‘.pythonrc.py’ could conceivably test forsys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variableuser.spam verbose , as follows:

58 Chapter 3. Python Services

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shouldnot import this module; a user can easily break into a a program by
placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use shouldnot import this module; it may interfere with the operation of the importing program.

See Also:

3.21: Modulesite (site-wide customization mechanism)

3.23 Built-in Module builtin

This module provides direct access to all ‘built-in’ identifiers of Python; e.g.builtin .open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.24 Built-in Module main

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input or from a script file.

3.23. Built-in Module builtin 59

60

CHAPTER

FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string — Common string operations.

re — New Perl-style regular expression search and match operations.

regex — Regular expression search and match operations.

regsub — Substitution and splitting operations that use regular expressions.

struct — Interpret strings as packed binary data.

StringIO — Read and write strings as if they were files.

cStringIO — Faster version ofStringIO , but not subclassable.

4.1 Standard Module string

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:

digits
The string’0123456789’ .

hexdigits
The string’0123456789abcdefABCDEF’ .

letters
The concatenation of the stringslowercase() anduppercase() described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
’abcdefghijklmnopqrstuvwxyz’ . Do not change its definition — the effect on the routinesupper()
andswapcase() is undefined.

octdigits
The string’01234567’ .

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the routineslower()
andswapcase() is undefined.

61

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

The functions defined in this module are:

atof (s)
Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sign (‘+’ or ‘ - ’). Note that this behaves identical to the built-in function
float() when passed a string.

atoi (s[, base])
Convert strings to an integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sign): ‘0x ’ or ‘ 0X’ means 16, ‘0’ means 8, anything else
means 10. Ifbaseis 16, a leading ‘0x ’ or ‘ 0X’ is always accepted. Note that when invoked withoutbaseor
with baseset to 10, this behaves identical to the built-in functionint() when passed a string. (Also note: for
a more flexible interpretation of numeric literals, use the built-in functioneval() .)

atol (s[, base])
Convert strings to a long integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The baseargument has the same meaning as foratoi() . A trailing ‘ l ’ or ‘ L’
is not allowed, except if the base is 0. Note that when invoked withoutbaseor with baseset to 10, this behaves
identical to the built-in functionlong() when passed a string.

capitalize (word)
Capitalize the first character of the argument.

capwords (s)
Split the argument into words usingsplit() , capitalize each word usingcapitalize() , and join the
capitalized words usingjoin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s, tabsize)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences.

find (s, sub[, start[,end]])
Return the lowest index inswhere the substringsubis found such thatsubis wholly contained ins[start: end] .
Return-1 on failure. Defaults forstart andendand interpretation of negative values is the same as for slices.

rfind (s, sub[, start[, end]])
Like find() but find the highest index.

index (s, sub[, start[, end]])
Like find() but raiseValueError when the substring is not found.

rindex (s, sub[, start[, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substringsubin strings[start: end] . Defaults forstart
andendand interpretation of negative values is the same as for slices.

lower (s)
Convert letters to lower case.

maketrans (from, to)
Return a translation table suitable for passing totranslate() or regex.compile() , that will map each

62 Chapter 4. String Services

character infrom into the character at the same position into; from andto must have the same length.

split (s[, sep[, maxsplit]])
Return a list of the words of the strings. If the optional second argumentsepis absent orNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and notNone, it specifies a string to be used as the word separator. The returned list
will then have one more items than the number of non-overlapping occurrences of the separator in the string.
The optional third argumentmaxsplitdefaults to 0. If it is nonzero, at mostmaxsplitnumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have at mostmaxsplit+1
elements).

splitfields (s[, sep[, maxsplit]])
This function behaves identically tosplit() . (In the past,split() was only used with one argument, while
splitfields() was only used with two arguments.)

join (words[, sep])
Concatenate a list or tuple of words with intervening occurrences ofsep. The default value forsepis a single
space character. It is always true that ‘string.join(string.split(s, sep), sep) ’ equalss.

joinfields (words[, sep])
This function behaves identical tojoin() . (In the past,join() was only used with one argument, while
joinfields() was only used with two arguments.)

lstrip (s)
Remove leading whitespace from the strings.

rstrip (s)
Remove trailing whitespace from the strings.

strip (s)
Remove leading and trailing whitespace from the strings.

swapcase (s)
Convert lower case letters to upper case and vice versa.

translate (s, table[, deletechars])
Delete all characters froms that are indeletechars(if present), and then translate the characters usingtable,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (s)
Convert letters to upper case.

ljust (s, width)
rjust (s, width)
center (s, width)

These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastwidth characters wide, created by padding the strings with spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, new[, maxsplit])
Return a copy of stringstr with all occurrences of substringold replaced bynew. If the optional argument
maxsplitis given, the firstmaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldneverimport the latter module directly. Whenstring discovers thatstrop exists,
it transparently replaces parts of itself with the implementation fromstrop . After initialization, there isnooverhead
in usingstring instead ofstrop .

4.1. Standard Module string 63

4.2 Built-in Module re

This module provides regular expression matching operations similar to those found in Perl. It’s 8-bit clean: the strings
being processed may contain both null bytes and characters whose high bit is set. Regular expression patterns may not
contain null bytes, but they may contain characters with the high bit set. There module is always available.

Regular expressions use the backslash character (‘\ ’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write’\\\\’ as the pattern
string, because the regular expression must be ‘\\ ’, and each backslash must be expressed as ‘\\ ’ inside a regular
Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ‘r ’. So r"\n" is a two-character string containing ‘\ ’ and ‘n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; ifA andB are both regular expressions,
thenAB is also an regular expression. If a stringp matches A and another stringq matches B, the stringpqwill match
AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ‘A’, ‘ a’, or
‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so dlast cmatches the string’last’ . (In the rest of this section, we’ll write RE’s indthis special style c,
usually without quotes, and strings to be matched’in single quotes’ .)

Some characters, like ‘| ’ or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘ . ’ (Dot.) In the default mode, this matches any character except a newline. If theDOTALLflag has been
specified, this matches any character including a newline.

‘ ˆ ’ (Caret.) Matches the start of the string, and inMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string, and inMULTILINE mode also matches before a newline.dfoo cmatches
both ’foo’ and ’foobar’, while the regular expressiondfoo$ cmatches only ’foo’.

‘* ’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.dab* cwill match ’a’, ’ab’, or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE.dab+cwill match ’a’ followed
by any non-zero number of ’b’s; it will not match just ’a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.dab?cwill match either ’a’ or
’ab’.

64 Chapter 4. String Services

? , +?, ?? The ‘ ’, ‘ +’, and ‘?’ qualifiers are allgreedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the REd<.*> c is matched against’<H1>title</H1>’ , it will match the
entire string, and not just’<H1>’ . Adding ‘?’ after the qualifier makes it perform the match innon-
greedyor minimal fashion; asfew characters as possible will be matched. Usingd.*? c in the previous
expression will match only’<H1>’ .

{ m, n} Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example,da{3,5} cwill match from 3 to 5 ‘a’ characters. Omittingm
is the same as specifying 0 for the lower bound; omittingn specifies an infinite upper bound.

{ m, n}? Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string’aaaaaa’ , da{3,5} cwill match 5 ‘a’ characters, whileda{3,5}? cwill only match
3 characters.

‘ \ ’ Either escapes special characters (permitting you to match characters like ‘* ’, ‘ ?’, and so forth), or signals
a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it’s highly recommended that you use raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by a ‘- ’. Special characters are not active
inside sets. For example,d[akm$] cwill match any of the characters ‘a’, ‘ k ’, ‘ m’, or ‘$’; d[a-z] cwill
match any lowercase letter, and[a-zA-Z0-9] matches any letter or digit. Character classes such as\w
or \S (defined below) are also acceptable inside a range. If you want to include a ‘] ’ or a ‘- ’ inside a
set, precede it with a backslash, or place it as the first character. The patternd[]] cwill match ’]’ , for
example.

You can match the characters not within a range bycomplementingthe set. This is indicated by including
a ‘ˆ ’ as the first character of the set; ‘ˆ ’ elsewhere will simply match the ‘ˆ ’ character. For example,
d[ˆ5] cwill match any character except ‘5’.

‘ | ’ A|B , where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
This can be used inside groups (see below) as well. To match a literal ‘| ’, used\| c, or enclose it inside a
character class, as ind[|] c.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with thed\ numbercspecial sequence, described below. To match the literals ‘(’ or ‘ ’) ’, used\(cor
d\) c, or enclose them inside a character class:d[(] [)] c.

(?...) This is an extension notation (a ‘?’ following a ‘ (’ is not meaningful otherwise). The first character after
the ‘?’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group;d(?P< name>...) c is the only exception to this rule. Following are the currently
supported extensions.

(?iLmsx) (One or more letters from the set ‘i ’, ‘ L’, ‘ m’, ‘ s ’, ‘ x ’.) The group matches the empty string; the letters
set the corresponding flags (re.I , re.L , re.M , re.S , re.X) for the entire regular expression. This is
useful if you wish to include the flags as part of the regular expression, instead of passing aflagargument
to thecompile() function.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the groupcannotbe retrieved after performing a match or referenced
later in the pattern.

4.2. Built-in Module re 65

(?P< name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group namename. Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named ’id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern isd(?P<id>[a-zA-Z]\w*) c, the group can be referenced by its name
in arguments to methods of match objects, such asm.group(’id’) or m.end(’id’) , and also by
name in pattern text (e.g.d(?P=id) c) and replacement text (e.g.\g<id>).

(?P= name) Matches whatever text was matched by the earlier group namedname.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches ifd... cmatches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example,dIsaac (?=Asimov) cwill match ’Isaac ’ only if it’s followed by ’Asimov’ .

(?!...) Matches if d... c doesn’t match next. This is a negative lookahead assertion. For example,
dIsaac (?!Asimov) cwill match ’Isaac ’ only if it’s not followed by ’Asimov’ .

The special sequences consist of ‘\ ’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example,d\$ cmatches the character ‘$’.

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example,d(.+) \1 cmatches’the the’ or ’55 55’ , but not’the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valuenumber. Inside the ‘[’ and ‘] ’ of a character class, all numeric escapes are
treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character range,d\b c represents the backspace character, for compatibility with Python’s string
literals.

\B Matches the empty string, but only when it isnot at the beginning or end of a word.

\d Matches any decimal digit; this is equivalent to the setd[0-9] c.

\D Matches any non-digit character; this is equivalent to the setd[ˆ0-9] c.

\s Matches any whitespace character; this is equivalent to the setd[\t\n\r\f\v] c.

\S Matches any non-whitespace character; this is equivalent to the setd[ˆ \t\n\r\f\v] c.

\w When theLOCALEflag is not specified, matches any alphanumeric character; this is equivalent to the set
d[a-zA-Z0-9] c. With LOCALE, it will match the setd[0-9] cplus whatever characters are defined as
letters for the current locale.

\W When theLOCALEflag is not specified, matches any non-alphanumeric character; this is equivalent to
the setd[ˆa-zA-Z0-9] c. With LOCALE, it will match any character not in the setd[0-9] c, and not
defined as a letter for the current locale.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

66 Chapter 4. String Services

Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern[, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifying aflagsvalue. Values can be any of the following
variables, combined using bitwise OR (the| operator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingcompile() is more efficient when the expression will be used several times in a single
program.

I
IGNORECASE

Perform case-insensitive matching; expressions liked[A-Z] c will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE

Maked\wc, d\Wc, d\b c, d\B c, dependent on the current locale.

M
MULTILINE

When specified, the pattern character ‘ˆ ’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ‘$’ matches at the end of the string and at
the end of each line (immediately preceding each newline). By default, ‘ˆ ’ matches only at the beginning of the
string, and ‘$’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S
DOTALL

Make the ‘. ’ special character match any character at all, including a newline; without this flag, ‘. ’ will match
anythingexcepta newline.

X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ‘#’ neither
in a character class or preceded by an unescaped backslash, all characters from the leftmost such ‘#’ through
the end of the line are ignored.

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

match (pattern, string[, flags])
If zero or more characters at the beginning ofstringmatch the regular expressionpattern, return a corresponding
MatchObject instance. ReturnNone if the string does not match the pattern; note that this is different from
a zero-length match.

4.2. Built-in Module re 67

search (pattern, string[, flags])
Scan throughstring looking for a location where the regular expressionpatternproduces a match, and return a
correspondingMatchObject instance. ReturnNone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

split (pattern, string,[, maxsplit = 0])
Split string by the occurrences ofpattern. If capturing parentheses are used in pattern, then occurrences of
patterns or subpatterns are also returned. Ifmaxsplitis nonzero, at mostmaxsplitsplits occur, and the remainder
of the string is returned as the final element of the list. (Incompatibility note: in the original Python 1.5 release,
maxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(’[\W]+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]
>>> re.split(’([\W]+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]
>>> re.split(’[\W]+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

This function combines and extends the functionality of the oldregsub.split() andregsub.splitx() .

sub (pattern, repl, string[, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrences ofpattern in string by the
replacementrepl. If the pattern isn’t found,string is returned unchanged.repl can be a string or a function; if a
function, it is called for every non-overlapping occurance ofpattern. The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
.... if matchobj.group(0) == ’-’: return ’ ’
.... else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use
a regex object, or use embedded modifiers in a pattern; e.g. ‘sub("(?i)b+", "x", "bbbb BBBB") ’
returns’x x’ .

The optional argumentcount is the maximum number of pattern occurrences to be replaced;countmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous match, so
‘sub(’x*’, ’-’, ’abc’) ’ returns’-a-b-c-’ .

If repl is a string, any backslash escapes in it are processed. That is, ‘\n ’ is converted to a single newline charac-
ter, ‘\r ’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j ’ are left alone. Backreferences,
such as ‘\6 ’, are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described above, ‘\g<name> ’ will use the substring
matched by the group named ‘name’, as defined by thed(?P<name>...) c syntax. ‘\g<number> ’ uses the
corresponding group number; ‘\g<2> ’ is therefore equivalent to ‘\2 ’, but isn’t ambiguous in a replacement
such as ‘\g<2>0 ’. ‘ \20 ’ would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal character ‘0’.

subn (pattern, repl, string[, count = 0])
Perform the same operation assub() , but return a tuple(newstring, numberof subsmade) .

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

68 Chapter 4. String Services

Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos][, endpos])
If zero or more characters at the beginning ofstring match this regular expression, return a corresponding
MatchObject instance. ReturnNone if the string does not match the pattern; note that this is different from
a zero-length match.

The optional second parameterposgives an index in the string where the search is to start; it defaults to0. The
‘ ˆ ’ pattern character will not match at the index where the search is to start.

The optional parameterendposlimits how far the string will be searched; it will be as if the string isendpos
characters long, so only the characters fromposto endposwill be searched for a match.

search (string[, pos][, endpos])
Scan throughstring looking for a location where this regular expression produces a match. ReturnNone if no
position in the string matches the pattern; note that this is different from finding a zero-length match at some
point in the string.

The optionalposandendposparameters have the same meaning as for thematch() method.

split (string,[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

sub (repl, string[, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string[, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compiled, or0 if no flags were provided.

groupindex
A dictionary mapping any symbolic group names defined byd(?P< id>) c to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

Match Objects

MatchObject instances support the following methods and attributes:

group ([group1, group2, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there
are multiple arguments, the result is a tuple with one item per argument. Without arguments,group1defaults
to zero (i.e. the whole match is returned). If agroupN argument is zero, the corresponding return value is
the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result isNone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses thed(?P< name>...) csyntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, anIndexError
exception is raised.

A moderately complicated example:

4.2. Built-in Module re 69

m = re.match(r"(?P<int>\d+)\.(\d*)", ’3.14’)

After performing this match,m.group(1) is ’3’ , as ism.group(’int’) , andm.group(2) is ’14’ .

groups ()
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
Groups that did not participate in the match have values ofNone. (Incompatibility note: in the original Python
1.5 release, if the tuple was one element long, a string would be returned instead. In later versions, a singleton
tuple is returned in such cases.)

start ([group])
end ([group])

Return the indices of the start and end of the substring matched bygroup; groupdefaults to zero (meaning the
whole matched substring). ReturnNone if groupexists but did not contribute to the match. For a match objectm,
and a groupg that did contribute to the match, the substring matched by groupg (equivalent tom.group(g))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equal m.end(group) if group matched a null string. For example, af-
ter m = re.search(’b(c?)’, ’cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) and
m.end(1) are both 2, andm.start(2) raises anIndexError exception.

span ([group])
ForMatchObject m, return the 2-tuple(m.start(group), m.end(group)) . Note that ifgroupdid not
contribute to the match, this is(None, None) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to thesearch() or match() function. This is the index into the string at
which the regex engine started looking for a match.

endpos
The value ofendposwhich was passed to thesearch() or match() function. This is the index into the
string beyond which the regex engine will not go.

re
The regular expression object whosematch() or search() method produced thisMatchObject instance.

string
The string passed tomatch() or search() .

See Also:

Jeffrey Friedl,Mastering Regular Expressions, O’Reilly. The Python material in this book dates from before there
module, but it covers writing good regular expression patterns in great detail.

4.3 Built-in Module regex

This module provides regular expression matching operations similar to those found in Emacs.

Obsolescence note:This module is obsolete as of Python version 1.5; it is still being maintained because much
existing code still uses it. All new code in need of regular expressions should use the newre module, which supports
the more powerful and regular Perl-style regular expressions. Existing code should be converted. The standard library
modulereconvert helps in convertingregex style regular expressions tore style regular expressions. (For more
conversion help, see Andrew Kuchling’s “regex-to-re HOWTO” at http://www.python.org/doc/howto/regex-to-
re/.)

By default the patterns are Emacs-style regular expressions (with one exception). There is a way to change the syntax
to match that of several well-known UNIX utilities. The exception is that Emacs’ ‘\s ’ pattern is not supported, since

70 Chapter 4. String Services

the original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters whose high bit is set.

Please note:There is a little-known fact about Python string literals which means that you don’t usually have to
worry about doubling backslashes, even though they are used to escape special characters in string literals as well as
in regular expressions. This is because Python doesn’t remove backslashes from string literals if they are followed
by an unrecognized escape character.However, if you want to include a literalbackslashin a regular expression
represented as a string literal, you have toquadrupleit or enclose it in a singleton character class. E.g. to extract
LATEX ‘ \section{ . . .} ’ headers from a document, you can use this pattern:’[\]section{\(.*\)}’ . Another
exception:the escape sequece ‘\b ’ is significant in string literals (where it means the ASCII bell character) as well as
in Emacs regular expressions (where it stands for a word boundary), so in order to search for a word boundary, you
should use the pattern’\\b’ . Similarly, a backslash followed by a digit 0-7 should be doubled to avoid interpretation
as an octal escape.

Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; ifA andB are both regular expressions, then
AB is also an regular expression. If a stringp matches A and another stringq matches B, the stringpqwill match AB.
Thus, complex expressions can easily be constructed from simpler ones like the primitives described here. For details
of the theory and implementation of regular expressions, consult almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordinary characters, like ’A’, ’ a’, or ’0’, are
the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so ’last ’
matches the characters ’last’. (In the rest of this section, we’ll write RE’s inthis special font , usually without
quotes, and strings to be matched ’in single quotes’.)

Special characters either stand for classes of ordinary characters, or affect how the regular expressions around them
are interpreted.

The special characters are:

. (Dot.) Matches any character except a newline.

ˆ (Caret.) Matches the start of the string.

$ Matches the end of the string.foo matches both ’foo’ and ’foobar’, while the regular expression ’foo$ ’
matches only ’foo’.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE.ab* will match ’a’, ’ab’, or ’a’
followed by any number of ’b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE.ab+ will match ’a’ followed by
any non-zero number of ’b’s; it will not match just ’a’.

? Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.ab? will match either ’a’ or ’ab’.

\ Either escapes special characters (permitting you to match characters like ’*?+&$’), or signals a special se-
quence; special sequences are discussed below. Remember that Python also uses the backslash as an escape
sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and subse-
quent character are included in the resulting string. However, if Python would recognize the resulting sequence,
the backslash should be repeated twice.

4.3. Built-in Module regex 71

[] Used to indicate a set of characters. Characters can be listed individually, or a range is indicated by giving two
characters and separating them by a ’-’. Special characters are not active inside sets. For example,[akm$] will
match any of the characters ’a’, ’k’, ’m’, or ’$’;[a-z] will match any lowercase letter.

If you want to include a] inside a set, it must be the first character of the set; to include a- , place it as the first
or last character.

Charactersnot within a range can be matched by including aˆ as the first character of the set;ˆ elsewhere will
simply match the ’̂ ’ character.

The special sequences consist of ’\ ’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example,\$ matches the character ’$’. Ones where the
backslash should be doubled in string literals are indicated.

\| A\|B , where A and B can be arbitrary REs, creates a regular expression that will match either A or B. This can
be used inside groups (see below) as well.

\(\) Indicates the start and end of a group; the contents of a group can be matched later in the string with the\[1-9]
special sequence, described next.

\\1, ... \\7, \8, \9
Matches the contents of the group of the same number. For example,\(.+\) \\1 matches ’the the’ or ’55
55’, but not ’the end’ (note the space after the group). This special sequence can only be used to match one of
the first 9 groups; groups with higher numbers can be matched using the\v sequence. (\8 and\9 don’t need a
double backslash because they are not octal digits.)

\\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.

\B Matches the empty string, but when it isnot at the beginning or end of a word.

\v Must be followed by a two digit decimal number, and matches the contents of the group of the same number.
The group number must be between 1 and 99, inclusive.

\w Matches any alphanumeric character; this is equivalent to the set[a-zA-Z0-9] .

\W Matches any non-alphanumeric character; this is equivalent to the set[ˆa-zA-Z0-9] .

\< Matches the empty string, but only at the beginning of a word. A word is defined as a sequence of alphanumeric
characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.

\> Matches the empty string, but only at the end of a word.

\\\\ Matches a literal backslash.

\‘ Like ˆ , this only matches at the start of the string.

\\’ Like $, this only matches at the end of the string.

Module Contents

The module defines these functions, and an exception:

match (pattern, string)
Return how many characters at the beginning ofstring match the regular expressionpattern. Return-1 if the
string does not match the pattern (this is different from a zero-length match!).

72 Chapter 4. String Services

search (pattern, string)
Return the first position instring that matches the regular expressionpattern. Return-1 if no position in the
string matches the pattern (this is different from a zero-length match anywhere!).

compile (pattern[, translate])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below. The optional argumenttranslate, if present, must
be a 256-character string indicating how characters (both of the pattern and of the strings to be matched) are
translated before comparing them; thei-th element of the string gives the translation for the character withASCII

codei. This can be used to implement case-insensitive matching; see thecasefold data item below.

The sequence

prog = regex.compile(pat)
result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

but the version usingcompile() is more efficient when multiple regular expressions are used concurrently in a
single program. (The compiled version of the last pattern passed toregex.match() or regex.search()
is cached, so programs that use only a single regular expression at a time needn’t worry about compiling regular
expressions.)

set syntax (flags)
Set the syntax to be used by future calls tocompile() , match() and search() . (Already compiled
expression objects are not affected.) The argument is an integer which is the OR of several flag bits. The
return value is the previous value of the syntax flags. Names for the flags are defined in the standard module
regex syntax ; read the file ‘regex syntax.py’ for more information.

get syntax ()
Returns the current value of the syntax flags as an integer.

symcomp(pattern[, translate])
This is like compile() , but supports symbolic group names: if a parenthesis-enclosed group begins with
a group name in angular brackets, e.g.’\(<id>[a-z][a-z0-9]*\)’ , the group can be referenced by
its name in arguments to thegroup() method of the resulting compiled regular expression object, like this:
p.group(’id’) . Group names may contain alphanumeric characters and’ ’ only.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. (It is never an error if a
string contains no match for a pattern.)

casefold
A string suitable to pass as thetranslateargument tocompile() to map all upper case characters to their
lowercase equivalents.

Compiled regular expression objects support these methods:

match (string[, pos])
Return how many characters at the beginning ofstringmatch the compiled regular expression. Return-1 if the
string does not match the pattern (this is different from a zero-length match!).

The optional second parameter,pos, gives an index in the string where the search is to start; it defaults to0.
This is not completely equivalent to slicing the string; the’ˆ’ pattern character matches at the real begin of the
string and at positions just after a newline, not necessarily at the index where the search is to start.

search (string[, pos])
Return the first position instring that matches the regular expressionpattern . Return-1 if no position in the

4.3. Built-in Module regex 73

string matches the pattern (this is different from a zero-length match anywhere!).

The optional second parameter has the same meaning as for thematch() method.

group (index, index, ...)
This method is only valid when the last call to thematch() or search() method found a match. It returns
one or more groups of the match. If there is a singleindexargument, the result is a single string; if there are
multiple arguments, the result is a tuple with one item per argument. If theindex is zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the
corresponding parenthesized group (using the default syntax, groups are parenthesized using\(and\)). If no
such group exists, the corresponding result isNone.

If the regular expression was compiled bysymcomp() instead ofcompile() , theindexarguments may also
be strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs
When the last call to thematch() or search() method found a match, this is a tuple of pairs of indexes
corresponding to the beginning and end of all parenthesized groups in the pattern. Indices are relative to the
string argument passed tomatch() or search() . The 0-th tuple gives the beginning and end or the whole
pattern. When the last match or search failed, this isNone.

last
When the last call to thematch() or search() method found a match, this is the string argument passed to
that method. When the last match or search failed, this isNone.

translate
This is the value of thetranslateargument toregex.compile() that created this regular expression object.
If the translateargument was omitted in theregex.compile() call, this isNone.

givenpat
The regular expression pattern as passed tocompile() or symcomp() .

realpat
The regular expression after stripping the group names for regular expressions compiled withsymcomp() .
Same asgivenpat otherwise.

groupindex
A dictionary giving the mapping from symbolic group names to numerical group indexes for regular expressions
compiled withsymcomp() . None otherwise.

4.4 Standard Module regsub

This module defines a number of functions useful for working with regular expressions (see built-in moduleregex).

Warning: these functions are not thread-safe.

Obsolescence note:This module is obsolete as of Python version 1.5; it is still being maintained because much
existing code still uses it. All new code in need of regular expressions should use the newre module, which supports
the more powerful and regular Perl-style regular expressions. Existing code should be converted. The standard library
modulereconvert helps in convertingregex style regular expressions tore style regular expressions. (For more
conversion help, see Andrew Kuchling’s “regex-to-re HOWTO” athttp://www.python.org/doc/howto/regex-to-re/.)

sub (pat, repl, str)
Replace the first occurrence of patternpat in stringstr by replacementrepl. If the pattern isn’t found, the string is
returned unchanged. The pattern may be a string or an already compiled pattern. The replacement may contain
references ‘\ digit’ to subpatterns and escaped backslashes.

gsub (pat, repl, str)

74 Chapter 4. String Services

Replace all (non-overlapping) occurrences of patternpat in stringstr by replacementrepl. The same rules as for
sub() apply. Empty matches for the pattern are replaced only when not adjacent to a previous match, so e.g.
gsub(’’, ’-’, ’abc’) returns’-a-b-c-’ .

split (str, pat[, maxsplit])
Split the stringstr in fields separated by delimiters matching the patternpat, and return a list containing the
fields. Only non-empty matches for the pattern are considered, so e.g.split(’a:b’, ’:*’) returns
[’a’, ’b’] andsplit(’abc’, ’’) returns[’abc’] . The maxsplitdefaults to 0. If it is nonzero,
only maxsplitnumber of splits occur, and the remainder of the string is returned as the final element of the list.

splitx (str, pat[, maxsplit])
Split the stringstr in fields separated by delimiters matching the patternpat, and return a list containing the
fields as well as the separators. For example,splitx(’a:::b’, ’:*’) returns[’a’, ’:::’, ’b’] .
Otherwise, this function behaves the same assplit .

capwords (s[, pat])
Capitalize words separated by optional patternpat. The default pattern uses any characters except letters, digits
and underscores as word delimiters. Capitalization is done by changing the first character of each word to upper
case.

clear cache ()
The regsub module maintains a cache of compiled regular expressions, keyed on the regular expression string
and the syntax of the regex module at the time the expression was compiled. This function clears that cache.

4.5 Built-in Module struct

This module performs conversions between Python values and C structs represented as Python strings. It usesformat
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,. . .)
Return a string containing the valuesv1, v2, . . . packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed bypack(fmt, . . .)) according to the given format. The result is a tuple
even if it contains exactly one item. The string must contain exactly the amount of data required by the format
(i.e. len(string) must equalcalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

4.5. Built-in Module struct 75

Format C Type Python
‘x ’ pad byte no value
‘c ’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘ i ’ int integer
‘ I ’ unsigned int integer
‘ l ’ long integer
‘L’ unsigned long integer
‘ f ’ float float
‘d’ double float
‘s ’ char[] string

A format character may be preceded by an integral repeat count; e.g. the format string’4h’ means exactly the same
as’hhhh’ .

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the’s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.g.’10s’ means a single 10-byte string, while’10c’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special case,’0s’ means a single, empty string (while’0c’ means
0 characters).

For the’I’ and’L’ format characters, the return value is a Python long integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character Byte order Size and alignment
‘@’ native native
‘=’ native standard
‘<’ little-endian standard
‘>’ big-endian standard
‘ ! ’ network (= big-endian) standard

If the first character is not one of these,’@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes); short
is 2 bytes; int and long are 4 bytes. Float and double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference between’@’ and ’=’ : both use native byte order, but the size and alignment of the latter is
standardized.

The form ’!’ is available for those poor souls who claim they can’t remember whether network byte order is big-
endian or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice of’<’ or
’>’ .

76 Chapter 4. String Services

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *
>>> pack(’hhl’, 1, 2, 3)
’\000\001\000\002\000\000\000\003’
>>> unpack(’hhl’, ’\000\001\000\002\000\000\000\003’)
(1, 2, 3)
>>> calcsize(’hhl’)
8
>>>

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero, e.g. the format’llh0l’ specifies two pad bytes at the end, assuming longs
are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See Also:

5.5: Modulearray (packed binary storage of homogeneous data)

4.6 Standard Module StringIO

This module implements a file-like class,StringIO , that reads and writes a string buffer (also known asmemory
files). See the description on file objects for operations.

StringIO ([buffer])
When aStringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, theStringIO will start empty.

The following methods ofStringIO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before theStringIO object’sclose() method is called.

close ()
Free the memory buffer.

4.7 Built-in Module cStringIO

The modulecStringIO provides an interface similar to that of theStringIO module. Heavy use ofStrin-
gIO.StringIO objects can be made more efficient by using the functionStringIO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the originalStringIO module in that case.

4.6. Standard Module StringIO 77

78

CHAPTER

FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

math — Mathematical functions (sin() etc.).

cmath — Mathematical functions for complex numbers.

whrandom — Floating point pseudo-random number generator.

random — Generate pseudo-random numbers with various common distributions.

array — Efficient arrays of uniformly typed numeric values.

fileinput — Perl-like iteration over lines from multiple input streams, with “save in place” capability.

5.1 Built-in Module math

This module is always available. It provides access to the mathematical functions defined by the C standard. They are:

acos (x)
Return the arc cosine ofx.

asin (x)
Return the arc sine ofx.

atan (x)
Return the arc tangent ofx.

atan2 (x, y)
Returnatan(x / y) .

ceil (x)
Return the ceiling ofx as a real.

cos (x)
Return the cosine ofx.

cosh (x)
Return the hyperbolic cosine ofx.

exp (x)
Returne** x.

fabs (x)
Return the absolute value of the realx.

79

floor (x)
Return the floor ofx as a real.

fmod (x, y)
Returnx % y.

frexp (x)
Return the matissa and exponent forx. The mantissa is positive.

hypot (x, y)
Return the Euclidean distance,sqrt(x* x + y* y) .

ldexp (x, i)
Returnx * (2** i) .

log (x)
Return the natural logarithm ofx.

log10 (x)
Return the base-10 logarithm ofx.

modf (x)
Return the fractional and integer parts ofx. Both results carry the sign ofx. The integer part is returned as a real.

pow(x, y)
Returnx** y.

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)
Return the square root ofx.

tan (x)
Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

Note thatfrexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constantpi.

e
The mathematical constante.

See Also:

5.2: Modulecmath (Complex number versions of many of these functions.)

5.2 Built-in Module cmath

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

80 Chapter 5. Miscellaneous Services

acos (x)
Return the arc cosine ofx.

acosh (x)
Return the hyperbolic arc cosine ofx.

asin (x)
Return the arc sine ofx.

asinh (x)
Return the hyperbolic arc sine ofx.

atan (x)
Return the arc tangent ofx.

atanh (x)
Return the hyperbolic arc tangent ofx.

cos (x)
Return the cosine ofx.

cosh (x)
Return the hyperbolic cosine ofx.

exp (x)
Return the exponential valuee** x.

log (x)
Return the natural logarithm ofx.

log10 (x)
Return the base-10 logarithm ofx.

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)
Return the square root ofx.

tan (x)
Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

The module also defines two mathematical constants:

pi
The mathematical constantpi, as a real.

e
The mathematical constante, as a real.

Note that the selection of functions is similar, but not identical, to that in modulemath . The reason for having two
modules is, that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather havemath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.2. Built-in Module cmath 81

5.3 Standard Module whrandom

This module implements a Wichmann-Hill pseudo-random number generator class that is also namedwhrandom .
Instances of thewhrandom class have the following methods:

choice (seq)
Chooses a random element from the non-empty sequenceseqand returns it.

randint (a, b)
Returns a random integerN such thata<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (x, y, z)
Initializes the random number generator from the integersx, y andz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numberN such thata<=N<b.

When imported, thewhrandom module also creates an instance of thewhrandom class, and makes the methods of
that instance available at the module level. Therefore one can write eitherN = whrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

See Also:

5.4: Modulerandom (generators for various random distributions)

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics31 (1982) 188-190

5.4 Standard Module random

This module implements pseudo-random number generators for various distributions: on the real line, there are func-
tions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta distributions. For generating
distribution of angles, the circular uniform and von Mises distributions are available.

The module exports the following functions, which are exactly equivalent to those in thewhrandom module:
choice() , randint() , random() anduniform() . See the documentation for thewhrandom module for
these functions.

The following functions specific to therandom module are also defined, and all return real values. Function pa-
rameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical
practice; most of these equations can be found in any statistics text.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters arealpha >- 1 andbeta > -1 . Returned values will range
between 0 and 1.

cunifvariate (mean, arc)
Circular uniform distribution.meanis the mean angle, andarc is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range between 0 andπ. Returned values will
range betweenmean - arc/2 andmean + arc/2 .

expovariate (lambd)

82 Chapter 5. Miscellaneous Services

Exponential distribution.lambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values will range from 0 to positive infinity.

gamma(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters arealpha > -1 andbeta > 0.

gauss (mu, sigma)
Gaussian distribution.mu is the mean, andsigma is the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with meanmuand standard deviationsigma. mucan have any value, andsigmamust be greater than zero.

normalvariate (mu, sigma)
Normal distribution.mu is the mean, andsigmais the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and pi, andkappais the concentration parameter, which
must be greater then or equal to zero. Ifkappais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to2π.

paretovariate (alpha)
Pareto distribution.alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution.alpha is the scale parameter andbetais the shape parameter.

See Also:

5.3: Modulewhrandom (the standard Python random number generator)

5.5 Built-in Module array

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using atype code, which is a single
character. The following type codes are defined:

Type code C Type Minimum size in bytes
’c’ character 1
’b’ signed integer 1
’B’ unsigned integer 1
’h’ signed integer 2
’H’ unsigned integer 2
’i’ signed integer 2
’I’ unsigned integer 2
’l’ signed integer 4
’L’ unsigned integer 4
’f’ floating point 4
’d’ floating point 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through theitemsizeattribute. The values stored for’L’ and’I’ items will
be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the full
range of C’s unsigned (long) integers.

The module defines the following function and type object:

5.5. Built-in Module array 83

array (typecode[, initializer])
Return a new array whose items are restricted bytypecode, and initialized from the optionalinitializer value,
which must be a list or a string. The list or string is passed to the new array’sfromlist() or fromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returned byarray() .

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with valuex to the end of the array.

buffer info ()
Return a tuple(address, length) giving the current memory address and the length in bytes of the buffer used
to hold array’s contents. This is occasionally useful when working with low-level (and inherently unsafe) I/O
interfaces that require memory addresses, such as certainioctl() operations. The returned numbers are valid
as long as the array exists and no length-changing operations are applied to it.

byteswap (x)
“Byteswap” all items of the array. This is only supported for integer values. It is useful when reading data from
a file written on a machine with a different byte order.

fromfile (f, n)
Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.f
must be a real built-in file object; something else with aread() method won’t do.

fromlist (list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x) ’ except that if there is a
type error, the array is unchanged.

fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had been read
from a file using thefromfile() method).

insert (i, x)
Insert a new item with valuex in the array before positioni.

read (f, n)
Deprecated since release 1.5.1.Use thefromfile() method.

Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.f
must be a real built-in file object; something else with aread() method won’t do.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file objectf .

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes

84 Chapter 5. Miscellaneous Services

that would be written to a file by thetofile() method.)

write (f)
Deprecated since release 1.5.1.Use thetofile() method.

Write all items (as machine values) to the file objectf .

When an array object is printed or converted to a string, it is represented asarray(typecode, initializer) . The
initializer is omitted if the array is empty, otherwise it is a string if thetypecodeis ’c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes (‘‘). Examples:

array(’l’)
array(’c’, ’hello world’)
array(’l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

See Also:

4.5: Modulestruct (Packing and unpacking of heterogeneous binary data.)

5.6 Standard Module fileinput

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():

process(line)

This iterates over the lines of all files listed insys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is’-’ , it is also replaced bysys.stdin . To specify an alternative list of filenames, pass it as the first
argument toinput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading a file,IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. usingsys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([files[, inplace[, backup]]])
Create an instance of theFileInput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration.

The following functions use the global state created byinput() ; if there is no active state,RuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, returnsNone.

lineno ()

5.6. Standard Module fileinput 85

Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno ()
Return the line number in the current file. Before the first line has been read, returns0. After the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline ()
Return true iff the line just read is the first line of its file.

isstdin ()
Returns true iff the last line was read fromsys.stdin .

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

FileInput ([files[, inplace[, backup]]])
ClassFileInput is the implementation; its methodsfilename() , lineno() , fileline() , is-
firstline() , isstdin() , nextfile() andclose() correspond to the functions of the same name in
the module. In addition it has areadline() method which returns the next input line, and agetitem ()
method which implements the sequence behavior. The sequence must be accessed in strictly sequential order;
random access andreadline() cannot be mixed.

Optional in-place filtering: if the keyword argumentinplace=1 is passed toinput() or to theFileInput con-
structor, the file is moved to a backup file and standard output is directed to the input file. This makes it possible to
write a filter that rewrites its input file in place. If the keyword argumentbackup=’.<some extension>’ is also
given, it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
’.bak’ and it is deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

86 Chapter 5. Miscellaneous Services

CHAPTER

SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modelled after the UNIX or C interfaces but
they are available on most other systems as well. Here’s an overview:

os — Miscellaneous OS interfaces.

time — Time access and conversions.

getopt — Parser for command line options.

tempfile — Generate temporary file names.

errno — Standard errno system symbols.

glob — UNIX shell style pathname pattern expansion.

fnmatch — UNIX shell style pathname pattern matching.

locale — Internationalization services.

6.1 Standard Module os

This module provides a more portable way of using operating system (OS) dependent functionality than importing an
OS dependent built-in module likeposix .

When the optional built-in moduleposix is available, this module exports the same functions and data asposix ;
otherwise, it searches for an OS dependent built-in module likemac and exports the same functions and data as
found there. The design of all Python’s built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the functionos.stat(file) returns stat info aboutfile in a format
compatible with the POSIX interface.

Extensions peculiar to a particular OS are also available through theos module, but using them is of course a threat
to portability!

Note that after the first timeos is imported, there isno performance penalty in using functions fromos instead of
directly from the OS dependent built-in module, so there should beno reason not to useos !

In addition to whatever the correct OS dependent module exports, the following variables and functions are always
exported byos :

name
The name of the OS dependent module imported. The following names have currently been registered:
’posix’ , ’nt’ , ’dos’ , ’mac’ .

87

path
The corresponding OS dependent standard module for pathname operations, e.g.,posixpath or mac-
path . Thus, (given the proper imports),os.path.split(file) is equivalent to but more portable than
posixpath.split(file) .

curdir
The constant string used by the OS to refer to the current directory, e.g.’.’ for POSIX or ’:’ for the
Macintosh.

pardir
The constant string used by the OS to refer to the parent directory, e.g.’..’ for POSIX or ’::’ for the
Macintosh.

sep
The character used by the OS to separate pathname components, e.g.’/’ for POSIX or ’:’ for the Mac-
intosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — better use
os.path.split() andos.path.join() —but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname components, orNone if only one separator
character exists. This is set to’/’ on DOS/Windows systems wheresep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in$PATH), e.g.’:’ for
POSIX or’;’ for MS-DOS.

defpath
The default search path used byexec*p*() if the environment doesn’t have a’PATH’ key.

execl (path, arg0, arg1, ...)
This is equivalent toexecv(path, (arg0, arg1, ...)) .

execle (path, arg0, arg1, ..., env)
This is equivalent toexecve(path, (arg0, arg1, ...), env) .

execlp (path, arg0, arg1, ...)
This is equivalent toexecvp(path, (arg0, arg1, ...)) .

execvp (path, args)
This is likeexecv(path, args) but duplicates the shell’s actions in searching for an executable file in a list of
directories. The directory list is obtained fromenviron[’PATH’] .

execvpe (path, args, env)
This is a cross betweenexecve() andexecvp() . The directory list is obtained fromenv[’PATH’] .

(The functionsexecv() andexecve() are not documented here, since they are implemented by the OS dependent
module. If the OS dependent module doesn’t define either of these, the functions that rely on it will raise an exception.
They are documented in the section on moduleposix , together with all other functions thatos imports from the OS
dependent module.)

6.2 Built-in Module time

This module provides various time-related functions. It is always available.

An explanation of some terminology and conventions is in order.

• Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For UNIX , the epoch is 1970. To find out what the epoch is, look atgmtime(0) .

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time). The acronym UTC is not a

88 Chapter 6. Generic Operating System Services

mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

• The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on most UNIX systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

• On the other hand, the precision oftime() andsleep() is better than their UNIX equivalents: times are
expressed as floating point numbers,time() returns the most accurate time available (using UNIX get-
timeofday() where available), andsleep() will accept a time with a nonzero fraction (UNIX select()
is used to implement this, where available).

• The time tuple as returned bygmtime() and localtime() , or as accpted bymktime() is a tuple of 9
integers: year (e.g. 1993), month (1–12), day (1–31), hour (0–23), minute (0–59), second (0–59), weekday (0–
6, monday is 0), Julian day (1–366) and daylight savings flag (-1, 0 or 1). Note that unlike the C structure, the
month value is a range of 1-12, not 0-11. A year value less than 100 will typically be silently converted to 1900
plus the year value. A-1 argument as daylight savings flag, passed tomktime() will usually result in the
correct daylight savings state to be filled in.

The module defines the following functions and data items:

altzone
The offset of the local DST timezone, in seconds west of the 0th meridian, if one is defined. Negative if the local
DST timezone is east of the 0th meridian (as in Western Europe, including the UK). Only use this ifdaylight
is nonzero.

asctime (tuple)
Convert a tuple representing a time as returned bygmtime() or localtime() to a 24-character string of the
following form: ’Sun Jun 20 23:21:05 1993’ . Note: unlike the C function of the same name, there is
no trailing newline.

clock ()
Return the current CPU time as a floating point number expressed in seconds. The precision, and in fact the
very definiton of the meaning of “CPU time”, depends on that of the C function of the same name, but in any
case, this is the function to use for benchmarking Python or timing algorithms.

ctime (secs)
Convert a time expressed in seconds since the epoch to a string representing local time.ctime(secs) is
equivalent toasctime(localtime(secs)) .

daylight
Nonzero if a DST timezone is defined.

gmtime (secs)
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag is always zero.
Fractions of a second are ignored.

localtime (secs)
Like gmtime() but converts to local time. The dst flag is set to1 when DST applies to the given time.

mktime (tuple)
This is the inverse function oflocaltime . Its argument is the full 9-tuple (since the dst flag is needed
— pass-1 as the dst flag if it is unknown) which expresses the time inlocal time, not UTC. It returns a
floating point number, for compatibility withtime() . If the input value cannot be represented as a valid time,
OverflowError is raised.

6.2. Built-in Module time 89

sleep (secs)
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time.

strftime (format, tuple)
Convert a tuple representing a time as returned bygmtime() or localtime() to a string as specified by the
format argument.

The following directives, shown without the optional field width and precision specification, are replaced by the
indicated characters:

Directive Meaning
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61].
%U Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone exists).
%% %

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial%of a
directive in the following order; this is also not portable. The field width is normally 2 except for%j where it is
3.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than
1 second.

timezone
The offset of the local (non-DST) timezone, in seconds west of the 0th meridian (i.e. negative in most of Western
Europe, positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

90 Chapter 6. Generic Operating System Services

6.3 Standard Module getopt

This module helps scripts to parse the command line arguments insys.argv . It supports the same conventions as
the UNIX getopt() function (including the special meanings of arguments of the form ‘- ’ and ‘-- ’). Long options
similar to those supported by GNU software may be used as well via an optional third argument. This module provides
a single function and an exception:

getopt (args, options[, long options])
Parses command line options and parameter list.args is the argument list to be parsed, without the leading
reference to the running program. Typically, this means ‘sys.argv[1:] ’. options is the string of option
letters that the script wants to recognize, with options that require an argument followed by a colon (i.e., the
same format that UNIX getopt() uses). If specified,long optionsis a list of strings with the names of the
long options which should be supported. The leading’--’ characters should not be included in the option
name. Options which require an argument should be followed by an equal sign (’=’).

The return value consists of two elements: the first is a list of(option, value) pairs; the second is the list
of program arguments left after the option list was stripped (this is a trailing slice of the first argument). Each
option-and-value pair returned has the option as its first element, prefixed with a hyphen (e.g.,’-x’), and the
option argument as its second element, or an empty string if the option has no argument. The options occur in
the list in the same order in which they were found, thus allowing multiple occurrences. Long and short options
may be mixed.

error
This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised.

An example using only UNIX style options:

>>> import getopt, string
>>> args = string.split(’-a -b -cfoo -d bar a1 a2’)
>>> args
[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’abc:d:’)
>>> optlist
[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]
>>> args
[’a1’, ’a2’]
>>>

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’
>>> args = string.split(s)
>>> args
[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’x’, [
... ’condition=’, ’output-file=’, ’testing’])
>>> optlist
[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,

’’)]
>>> args
[’a1’, ’a2’]
>>>

6.3. Standard Module getopt 91

6.4 Standard Module tempfile

This module generates temporary file names. It is not UNIX specific, but it may require some help on non-UNIX

systems.

Note: the modules does not create temporary files, nor does it automatically remove them when the current process
exits or dies.

The module defines a single user-callable function:

mktemp()
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at the time the
call is made. No two calls will return the same filename.

The module uses two global variables that tell it how to construct a temporary name. The caller may assign values to
them; by default they are initialized at the first call tomktemp() .

tempdir
When set to a value other thanNone, this variable defines the directory in which filenames returned bymk-
temp() reside. The default is taken from the environment variableTMPDIR; if this is not set, either ‘/usr/tmp’
is used (on UNIX), or the current working directory (all other systems). No check is made to see whether its
value is valid.

template
When set to a value other thanNone, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of decimal digits is added to generate unique filenames. The default is either
‘@pid.’ wherepid is the current process ID (on UNIX), or ‘tmp’ (all other systems).

Warning: if a UNIX process usesmktemp() , then callsfork() and both parent and child continue to usemk-
temp() , the processes will generate conflicting temporary names. To resolve this, the child process should assign
None to template , to force recomputing the default on the next call tomktemp() .

6.5 Standard Module errno

This module makes available standard errno system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed from ‘linux/include/errno.h’, which should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcode[errno.EPERM] maps to’EPERM’ .

To translate a numeric error code to an error message, useos.strerror() .

Of the following list, symbols that are not used on the current platform are not defined by the module. Symbols
available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

92 Chapter 6. Generic Operating System Services

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

6.5. Standard Module errno 93

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

94 Chapter 6. Generic Operating System Services

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

6.5. Standard Module errno 95

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

96 Chapter 6. Generic Operating System Services

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

6.5. Standard Module errno 97

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.6 Standard Module glob

Theglob module finds all the pathnames matching a specified pattern according to the rules used by the UNIX shell.
No tilde expansion is done, but* , ?, and character ranges expressed with[] will be correctly matched. This is done by
using theos.listdir() andfnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, useos.path.expanduser() andos.path.expandvars() .)

glob (pathname)
Returns a possibly-empty list of path names that matchpathname, which must be a string containing a path spec-
ification. pathnamecan be either absolute (like ‘/usr/src/Python-1.5/Makefile’) or relative (like ‘../../Tools/*.gif’),
and can contain shell-style wildcards.

For example, consider a directory containing only the following files: ‘1.gif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

>>> import glob
>>> glob.glob(’./[0-9].*’)
[’./1.gif’, ’./2.txt’]
>>> glob.glob(’*.gif’)
[’1.gif’, ’card.gif’]
>>> glob.glob(’?.gif’)
[’1.gif’]

6.7 Standard Module fnmatch

This module provides support for UNIX shell-style wildcards, which arenot the same as regular expressions (which
are documented in there module). The special characters used in shell-style wildcards are:

* matches everything

? matches any single character

[seq] matches any character inseq

98 Chapter 6. Generic Operating System Services

[! seq] matches any character not inseq

Note that the filename separator (’/’ on UNIX) is not special to this module. See moduleglob for pathname
expansion (glob usesfnmatch() to match filename segments).

fnmatch (filename, pattern)
Test whether thefilenamestring matches thepatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparision is
performed. If you require a case-sensitive comparision regardless of whether that’s standard for your operating
system, usefnmatchcase() instead.

fnmatchcase (filename, pattern)
Test whetherfilenamematchespattern, returning true or false; the comparision is case-sensitive.

See Also:

6.6: Moduleglob (Shell-style path expansion)

6.8 Standard Module locale

The locale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows applications to integrate certain cultural aspects into an applications, without requiring the programmer to know
all the specifics of each country where the software is executed.

The locale module is implemented on top of thelocale module, which in turn uses an ANSI C locale imple-
mentation if available.

The locale module defines the following exception and functions:

setlocale (category[, value])
If valueis specified, modifies the locale setting for thecategory. The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the exceptionError is raised. If successful, the new locale setting is returned.

If no valueis specified, the current setting for thecategoryis returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL,"")

This sets the locale for all categories to the user’s default setting (typically specified in theLANGenvironment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Error
Exception raised whensetlocale() fails.

localeconv ()
Returns the database of of the local conventions as a dictionary. This dictionary has the following strings as
keys:

•decimal point specifies the decimal point used in floating point number representations for the
LC NUMERICcategory.

•grouping is a sequence of numbers specifying at which relative positions thethousands sep is
expected. If the sequence is terminated withlocale.CHAR MAX, no further grouping is performed. If
the sequence terminates with a0, the last group size is repeatedly used.

•thousands sep is the character used between groups.

•int curr symbol specifies the international currency symbol from theLC MONETARYcategory.

6.8. Standard Module locale 99

•currency symbol is the local currency symbol.

•mon decimal point is the decimal point used in monetary values.

•mon thousands sep is the separator for grouping of monetary values.

•mon grouping has the same format as thegrouping key; it is used for monetary values.

•positive sign andnegative sign gives the sign used for positive and negative monetary quanti-
ties.

•int frac digits andfrac digits specify the number of fractional digits used in the international
and local formatting of monetary values.

•p cs precedes andn cs precedes specifies whether the currency symbol precedes the value for
positive or negative values.

•p sep by space andn sep by space specifies whether there is a space between the positive or neg-
ative value and the currency symbol.

•p sign posn andn sign posn indicate how the sign should be placed for positive and negative mon-
etary values.

The possible values forp sign posn andn sign posn are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.

LC MAX Nothing is specified in this locale.

strcoll (string1,string2)
Compares two strings according to the currentLC COLLATEsetting. As any other compare function, returns a
negative, or a positive value, or0, depending on whetherstring1collates before or afterstring2or is equal to it.

strxfrm (string)
Transforms a string to one that can be used for the built-in functioncmp() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format (format, val,[grouping = 0])
Formats a numberval according to the currentLC NUMERICsetting. The format follows the conventions of the
%operator. For floating point values, the decimal point is modified if appropriate. Ifgroupingis true, also takes
the grouping into account.

str (float)
Formats a floating point number using the same format as the built-in functionstr(float) , but takes the decimal
point into account.

atof (string)
Converts a string to a floating point number, following theLC NUMERICsettings.

atoi (string)
Converts a string to an integer, following theLC NUMERICconventions.

LC CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
modulestring dealing with case change their behaviour.

LC COLLATE
Locale category for sorting strings. The functionsstrcoll() andstrxfrm() of the locale module are
affected.

100 Chapter 6. Generic Operating System Services

LC TIME
Locale category for the formatting of time. The functiontime.strftime() follows these conventions.

LC MONETARY
Locale category for formatting of monetary values. The available options are available from thelocale-
conv() function.

LC MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those returned byos.strerror() might be affected
by this category.

LC NUMERIC
Locale category for formatting numbers. The functionsformat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHARMAX
This is a symbolic constant used for different values returned bylocaleconv() .

Example:

>>> import locale
>>> loc = locale.setlocale(locale.LC_ALL) # get current locale
>>> locale.setlocale(locale.LC_ALL, "de") # use German locale
>>> locale.strcoll("f\344n", "foo") # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, "") # use user’s preferred locale
>>> locale.setlocale(locale.LC_ALL, "C") # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the ‘C’ locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by callingsetlocale(LC ALL, "") .

It is generally a bad idea to callsetlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by the
locale (e.g.string.lower() , or certain formats used withtime.strftime())), you will have to find a way to
do it without using the standard library routine. Even better is convincing yourself that using locale settings is okay.
Only as a last resort should you document that your module is not compatible with non-‘C’ locale settings.

The case conversion functions in thestring and strop modules are affected by the locale settings. When
a call to thesetlocale() function changes theLC CTYPE settings, the variablesstring.lowercase ,
string.uppercase andstring.letters (and their counterparts instrop) are recalculated. Note that this
code that uses these variable through ‘from ... import ...’, e.g. from string import letters , is not af-

6.8. Standard Module locale 101

fected by subsequentsetlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() , atoi() , format() , str() .

For extension writers and programs that embed Python

Extension modules should never callsetlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale is ‘C’).

When Python is embedded in an application, if the application sets the locale to something specific before initializing
Python, that is generally okay, and Python will use whatever locale is set,exceptthat theLC NUMERIClocale should
always be ‘C’.

Thesetlocale() function in thelocale module contains gives the Python progammer the impression that you
can manipulate theLC NUMERIClocale setting, but this not the case at the C level: C code will always find that
the LC NUMERIClocale setting is ‘C’. This is because too much would break when the decimal point character is
set to something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding
Python’s global interpreter lock may occasionally find that the numeric locale setting differs; this is because the only
portable way to implement this feature is to set the numeric locale settings to what the user requests, extract the relevant
characteristics, and then restore the ‘C’ numeric locale.

When Python code uses thelocale module to change the locale, this also affect the embedding application. If the
embedding application doesn’t want this to happen, it should remove thelocale extension module (which does
all the work) from the table of built-in modules in the ‘config.c’ file, and make sure that thelocale module is not
accessible as a shared library.

102 Chapter 6. Generic Operating System Services

CHAPTER

SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modelled after the UNIX or C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

signal — Set handlers for asynchronous events.

socket — Low-level networking interface.

select — Wait for I/O completion on multiple streams.

thread — Create multiple threads of control within one namespace.

Queue — A stynchronized queue class.

anydbm — Generic interface to DBM-style database modules.

whichdb — Guess which DBM-style module created a given database.

zlib

gzip — Compression and decompression compatible with thegzip program (zlib is the low-level interface,gzip
the high-level one).

7.1 Built-in Module signal

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals
handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported by all UNIX

flavors).

• Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can only
occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on large bodies of text) may be delayed
for an arbitrary amount of time.

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an exception after
the signal handler returns. This is dependent on the underlying UNIX system’s semantics regarding interrupted
system calls.

103

• Because the C signal handler always returns, it makes little sense to catch synchronous errors likeSIGFPE or
SIGSEGV.

• Python installs a small number of signal handlers by default:SIGPIPE is ignored (so write errors on pipes and
sockets can be reported as ordinary Python exceptions),SIGINT is translated into aKeyboardInterrupt
exception, andSIGTERMis caught so that necessary cleanup (especiallysys.exitfunc) can be performed
before actually terminating. All of these can be overridden.

• Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always performsignal() operations in the main
thread of execution. Any thread can perform analarm() , getsignal() , orpause() ; only the main thread
can set a new signal handler, and the main thread will be the only one to receive signals (this is enforced by the
Pythonsignal module, even if the underlying thread implementation supports sending signals to individual
threads). This means that signals can’t be used as a means of interthread communication. Use locks instead.

The variables defined in thesignal module are:

SIG DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action forSIGQUIT is to dump core and exit, while the default action
for SIGCLD is to simply ignore it.

SIG IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined assig-
nal.SIGHUP ; the variable names are identical to the names used in C programs, as found in ‘¡signal.h¿’.
The UNIX man page for ‘signal() ’ lists the existing signals (on some systems this issignal(2), on others the
list is in signal(7)). Note that not all systems define the same set of signal names; only those names defined by
the system are defined by this module.

NSIG
One more than the number of the highest signal number.

Thesignal module defines the following functions:

alarm (time)
If time is non-zero, this function requests that aSIGALRMsignal be sent to the process intimeseconds. Any
previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any time). The returned value
is then the number of seconds before any previously set alarm was to have been delivered. Iftime is zero, no
alarm id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds remaining
before a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled. (See the UNIX

man pagealarm(2).)

getsignal (signalnum)
Return the current signal handler for the signalsignalnum. The returned value may be a callable Python object,
or one of the special valuessignal.SIG IGN, signal.SIG DFL or None. Here,signal.SIG IGN
means that the signal was previously ignored,signal.SIG DFL means that the default way of handling the
signal was previously in use, andNone means that the previous signal handler was not installed from Python.

pause ()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.
(See the UNIX man pagesignal(2).)

signal (signalnum, handler)
Set the handler for signalsignalnumto the functionhandler. handlercan be any callable Python object, or one
of the special valuessignal.SIG IGN or signal.SIG DFL. The previous signal handler will be returned
(see the description ofgetsignal() above). (See the UNIX man pagesignal(2).)

104 Chapter 7. Optional Operating System Services

When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause aValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame
object; see the reference manual for a description of frame objects).

7.2 Built-in Module socket

This module provides access to the BSDsocketinterface. It is available on UNIX systems that support this interface.

For an introduction to socket programming (in C), see the following papers:An Introductory 4.3BSD Interprocess
Communication Tutorial, by Stuart Sechrest andAn Advanced 4.3BSD Interprocess Communication Tutorial, by
Samuel J. Leffler et al, both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and
PS1:8). The UNIX manual pages for the various socket-related system calls are also a valuable source of information
on the details of socket semantics.

The Python interface is a straightforward transliteration of the UNIX system call and library interface for sockets
to Python’s object-oriented style: thesocket() function returns asocket objectwhose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interface: as withread() and
write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit
on send operations.

Socket addresses are represented as a single string for theAF UNIX address family and as a pair(host, port) for
the AF INET address family, wherehost is a string representing either a hostname in Internet domain notation like
’daring.cwi.nl’ or an IP address like’100.50.200.5’ , andport is an integral port number. Other address
families are currently not supported. The address format required by a particular socket object is automatically selected
based on the address family specified when the socket object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string representsINADDRANY,
and the string"<broadcast>" representsINADDRBROADCAST.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errors related to socket or address semantics raise the errorsocket.error .

Non-blocking mode is supported through thesetblocking() method.

The modulesocket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either a string telling
what went wrong or a pair(errno, string) representing an error returned by a system call, similar to the value
accompanyingos.error . See the moduleerrno , which contains names for the error codes defined by the
underlying operating system.

AF UNIX
AF INET

These constants represent the address (and protocol) families, used for the first argument tosocket() . If the
AF UNIX constant is not defined then this protocol is unsupported.

SOCKSTREAM
SOCKDGRAM
SOCKRAW
SOCKRDM
SOCKSEQPACKET

These constants represent the socket types, used for the second argument tosocket() . (Only SOCKSTREAM
andSOCKDGRAMappear to be generally useful.)

SO*
SOMAXCONN

7.2. Built-in Module socket 105

MSG*
SOL *
IPPROTO*
IPPORT *
INADDR*
IP *

Many constants of these forms, documented in the UNIX documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to thesetsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the UNIX

header files are defined; for a few symbols, default values are provided.

gethostbyname (hostname)
Translate a host name to IP address format. The IP address is returned as a string, e.g.,’100.50.200.5’ . If
the host name is an IP address itself it is returned unchanged.

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently executing.
If you want to know the current machine’s IP address, usegethostbyname(gethostname()) .
Note: gethostname() doesn’t always return the fully qualified domain name; use
gethostbyaddr(gethostname()) (see below).

gethostbyaddr (ip address)
Return a triple(hostname, aliaslist, ipaddrlist) wherehostnameis the primary host name responding to the
givenip address, aliaslist is a (possibly empty) list of alternative host names for the same address, andipaddrlist
is a list of IP addresses for the same interface on the same host (most likely containing only a single address).
To find the fully qualified domain name, checkhostnameand the items ofaliaslist for an entry containing at
least one period.

getprotobyname (protocolname)
Translate an Internet protocol name (e.g.’icmp’) to a constant suitable for passing as the (optional) third argu-
ment to thesocket() function. This is usually only needed for sockets opened in “raw” mode (SOCKRAW);
for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

getservbyname (servicename, protocolname)
Translate an Internet service name and protocol name to a port number for that service. The protocol name
should be’tcp’ or ’udp’ .

socket (family, type[, proto])
Create a new socket using the given address family, socket type and protocol number. The address family should
beAF INET or AF UNIX. The socket type should beSOCKSTREAM, SOCKDGRAMor perhaps one of the other
‘SOCK’ constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, type[, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file object’sfileno()
method). Address family, socket type and protocol number are as for thesocket function above. The file
descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the
file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by the UNIX inet daemon).

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same as

106 Chapter 7. Optional Operating System Services

network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

SocketType
This is a Python type object that represents the socket object type. It is the same astype(socket(...)) .

Socket Objects

Socket objects have the following methods. Except formakefile() these correspond to UNIX system calls appli-
cable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn, address) whereconnis anewsocket object usable to send and receive data on the connection,
andaddressis the address bound to the socket on the other end of the connection.

bind (address)
Bind the socket toaddress. The socket must not already be bound. (The format ofaddressdepends on the
address family — see above.)

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect (address)
Connect to a remote socket ataddress. (The format ofaddressdepends on the address family — see above.)

connect ex (address)
Like connect(address) , but return an error indicator instead of raising an exception. The error indicator is
0 if the operation succeeded, otherwise the value of theerrno variable. This is useful, e.g., for asynchronous
connects.

fileno ()
Return the socket’s file descriptor (a small integer). This is useful withselect.select() .

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IP socket, for instance. (The format of the address returned depends on the address family — see above.)
On some systems this function is not supported.

getsockname ()
Return the socket’s own address. This is useful to find out the port number of an IP socket, for instance. (The
format of the address returned depends on the address family — see above.)

getsockopt (level, optname[, buflen])
Return the value of the given socket option (see the UNIX man pagegetsockopt(2)). The needed symbolic
constants (SO* etc.) are defined in this module. Ifbuflenis absent, an integer option is assumed and its integer
value is returned by the function. Ifbuflenis present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a string. It is up to the caller to decode the contents of the
buffer (see the optional built-in modulestruct for a way to decode C structures encoded as strings).

listen (backlog)
Listen for connections made to the socket. Thebacklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile ([mode[, bufsize]])
Return afile objectassociated with the socket. (File objects were described earlier in 2.1, “File Objects.”) The

7.2. Built-in Module socket 107

file object references adup() ped version of the socket file descriptor, so the file object and socket object may
be closed or garbage-collected independently. The optionalmodeandbufsizearguments are interpreted the same
way as by the built-inopen() function.

recv (bufsize[, flags])
Receive data from the socket. The return value is a string representing the data received. The maximum amount
of data to be received at once is specified bybufsize. See the UNIX manual pagerecv(2) for the meaning of the
optional argumentflags; it defaults to zero.

recvfrom (bufsize[, flags])
Receive data from the socket. The return value is a pair(string, address) wherestring is a string representing
the data received andaddressis the address of the socket sending the data. The optionalflagsargument has the
same meaning as forrecv() above. (The format ofaddressdepends on the address family — see above.)

send (string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optionalflagsargument has the
same meaning as forrecv() above. Returns the number of bytes sent.

sendto (string[, flags], address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified byaddress. The optionalflagsargument has the same meaning as forrecv() above. Return the
number of bytes sent. (The format ofaddressdepends on the address family — see above.)

setblocking (flag)
Set blocking or non-blocking mode of the socket: ifflag is 0, the socket is set to non-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking mode, if arecv() call doesn’t find any data,
or if a send call can’t immediately dispose of the data, aerror exception is raised; in blocking mode, the
calls block until they can proceed.

setsockopt (level, optname, value)
Set the value of the given socket option (see the UNIX man pagesetsockopt(2)). The needed symbolic constants
are defined in thesocket module (SO* etc.). The value can be an integer or a string representing a buffer.
In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional built-in
modulestruct for a way to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connection. Ifhowis 0, further receives are disallowed. Ifhowis 1, further
sends are disallowed. Ifhow is 2, further sends and receives are disallowed.

Note that there are no methodsread() or write() ; userecv() andsend() withoutflagsargument instead.

Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the sequencesocket() , bind() ,
listen() , accept() (possibly repeating theaccept() to service more than one client), while a client only
needs the sequencesocket() , connect() . Also note that the server does notsend() /recv() on the socket it
is listening on but on the new socket returned byaccept() .

108 Chapter 7. Optional Operating System Services

Echo server program
from socket import *
HOST = ’’ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged server
s = socket(AF_INET, SOCK_STREAM)
s.bind(HOST, PORT)
s.listen(1)
conn, addr = s.accept()
print ’Connected by’, addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
from socket import *
HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = socket(AF_INET, SOCK_STREAM)
s.connect(HOST, PORT)
s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, ‘data‘

See Also:

11.22: ModuleSocketServer (classes that simplify writing network servers)

7.3 Built-in Module select

This module provides access to the functionselect() available in most UNIX versions. It defines the following:

error
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error code
from errno and the corresponding string, as would be printed by the C functionperror() .

select (iwtd, owtd, ewtd[, timeout])
This is a straightforward interface to the UNIX select() system call. The first three arguments are lists of
‘waitable objects’: either integers representing UNIX file descriptors or objects with a parameterless method
namedfileno() returning such an integer. The three lists of waitable objects are for input, output and
‘exceptional conditions’, respectively. Empty lists are allowed. The optionaltimeoutargument specifies a time-
out as a floating point number in seconds. When thetimeoutargument is omitted the function blocks until at
least one file descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objects (e.g.sys.stdin , or objects returned
by open() or os.popen()), socket objects returned bysocket.socket() , and the modulestdwin
which happens to define a functionfileno() for just this purpose. You may also define awrapper class
yourself, as long as it has an appropriatefileno() method (that really returns a UNIX file descriptor, not just
a random integer).

7.3. Built-in Module select 109

7.4 Built-in Module thread

This module provides low-level primitives for working with multiple threads (a.k.a.light-weight processesor tasks)
— multiple threads of control sharing their global data space. For synchronization, simple locks (a.k.a.mutexesor
binary semaphores) are provided.

The module is optional. It is supported on Windows NT and ’95, SGI IRIX, Solaris 2.x, as well as on systems that
have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

error
Raised on thread-specific errors.

start new thread (func, arg)
Start a new thread. The thread executes the functionfuncwith the argument listarg (which must be a tuple).
When the function returns, the thread silently exits. When the function terminates with an unhandled exception,
a stack trace is printed and then the thread exits (but other threads continue to run).

exit ()
This is a shorthand forexit thread() .

exit thread ()
Raise theSystemExit exception. When not caught, this will cause the thread to exit silently.

allocate lock ()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get ident ()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence), and
returnsNone. If the integerwaitflagargument is present, the action depends on its value: if it is zero, the lock
is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as before. If an argument is present, the return value is1 if the lock is acquired successfully,0
if not.

release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

locked ()
Return the status of the lock:1 if it has been acquired by some thread,0 if not.

Caveats:

• Threads interact strangely with interrupts: theKeyboardInterrupt exception will be received by an arbi-
trary thread. (When thesignal module is available, interrupts always go to the main thread.)

• Callingsys.exit() or raising theSystemExit exception is equivalent to callingexit thread() .

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep() , file.read() , select.select()) work as expected.)

• It is not possible to interrupt theacquire() method on a lock — theKeyboardInterrupt exception will
happen after the lock has been acquired.

110 Chapter 7. Optional Operating System Services

• When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without executingtry ...
finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except thattry ... finally clauses are
honored), and the standard I/O files are not flushed.

7.5 Standard Module Queue

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple threads. TheQueue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python.

TheQueue module defines the following class and exception:

Queue(maxsize)
Constructor for the class.maxsizeis an integer that sets the upperbound limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsizeis less than or equal to zero, the queue size is infinite.

Empty
Exception raised when non-blocking get (e.g.get nowait()) is called on aQueue object which is empty,
or for which the emptyiness cannot be determined (i.e. because the appropriate locks cannot be acquired).

Queue Objects

ClassQueue implements queue objects and has the methods described below. This class can be derived from in order
to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See the source
code for details. The public methods are:

qsize ()
Returns the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Returns1 if the queue is empty,0 otherwise. Because of multithreading semantics, this is not reliable.

full ()
Returns1 if the queue is full,0 otherwise. Because of multithreading semantics, this is not reliable.

put (item)
Putsitem into the queue.

get ()
Gets and returns an item from the queue, blocking if necessary until one is available.

get nowait ()
Gets and returns an item from the queue if one is immediately available. Raises anEmpty exception if the
queue is empty or if the queue’s emptiness cannot be determined.

7.6 Standard Module anydbm

anydbm is a generic interface to variants of the DBM database —dbhash , gdbm, or dbm. If none of these modules
is installed, the slow-but-simple implementation in moduledumbdbmwill be used.

open (filename[, flag[, mode]])
Open the database filefilenameand return a corresponding object. The optionalflag argument can be’r’ to

7.5. Standard Module Queue 111

open an existing database for reading only,’w’ to open an existing database for reading and writing,’c’ to
create the database if it doesn’t exist, or’n’ , which will always create a new empty database. If not specified,
the default value is’r’ .

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 (and will be modified by the prevailing umask).

error
An alternate name for theerror exception defined by the underlying database implementation.

The object returned byopen() supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, and thehas key() andkeys() methods are available. Keys and values
must always be strings.

7.7 Standard Module dumbdbm

A simple and slow database implemented entirely in Python. This should only be used when no other DBM-style
database is available.

open (filename[, flag[, mode]])
Open the database filefilenameand return a corresponding object. The optionalflag argument can be’r’ to
open an existing database for reading only,’w’ to open an existing database for reading and writing,’c’ to
create the database if it doesn’t exist, or’n’ , which will always create a new empty database. If not specified,
the default value is’r’ .

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 (and will be modified by the prevailing umask).

error
Raised for errors not reported asKeyError errors.

7.8 Standard Module whichdb

The single function in this module attempts to guess which of the several simple database modules available–dbm,
gdbm, or dbhash–should be used to open a given file.

whichdb (filename)
Returns one of the following values:None if the file can’t be opened because it’s unreadable or doesn’t exist;
the empty string ("") if the file’s format can’t be guessed; or a string containing the required module name, such
as"dbm" or "gdbm" .

7.9 Built-in Module zlib

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home page athttp://www.cdrom.com/pub/infozip/zlib/. Version 1.0.4
is the most recent version as of December, 1997; use a later version if one is available.

The available exception and functions in this module are:

error
Exception raised on compression and decompression errors.

adler32 (string[, value])
Computes a Adler-32 checksum ofstring. (An Adler-32 checksum is almost as reliable as a CRC32 but can be
computed much more quickly.) Ifvalueis present, it is used as the starting value of the checksum; otherwise,

112 Chapter 7. Optional Operating System Services

a fixed default value is used. This allows computing a running checksum over the concatenation of several
input strings. The algorithm is not cryptographically strong, and should not be used for authentication or digital
signatures.

compress (string[, level])
Compresses the data instring, returning a string contained compressed data.level is an integer from1 to 9
controlling the level of compression;1 is fastest and produces the least compression,9 is slowest and produces
the most. The default value is6. Raises theerror exception if any error occurs.

compressobj ([level])
Returns a compression object, to be used for compressing data streams that won’t fit into memory at once.level
is an integer from1 to 9 controlling the level of compression;1 is fastest and produces the least compression,
9 is slowest and produces the most. The default value is6.

crc32 (string[, value])
Computes a CRC (Cyclic Redundancy Check) checksum ofstring. If valueis present, it is used as the starting
value of the checksum; otherwise, a fixed default value is used. This allows computing a running checksum over
the concatenation of several input strings. The algorithm is not cryptographically strong, and should not be used
for authentication or digital signatures.

decompress (string)
Decompresses the data instring, returning a string containing the uncompressed data. Raises theerror excep-
tion if any error occurs.

decompressobj ([wbits])
Returns a compression object, to be used for decompressing data streams that won’t fit into memory at once.
Thewbitsparameter controls the size of the window buffer; usually this can be left alone.

Compression objects support the following methods:

compress (string)
Compressstring, returning a string containing compressed data for at least part of the data instring. This data
should be concatenated to the output produced by any preceding calls to thecompress() method. Some input
may be kept in internal buffers for later processing.

flush ()
All pending input is processed, and an string containing the remaining compressed output is returned. After
calling flush() , thecompress() method cannot be called again; the only realistic action is to delete the
object.

Decompression objects support the following methods:

decompress (string)
Decompressstring, returning a string containing the uncompressed data corresponding to at least part of the
data instring. This data should be concatenated to the output produced by any preceding calls to thedecom-
press() method. Some of the input data may be preserved in internal buffers for later processing.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
calling flush() , thedecompress() method cannot be called again; the only realistic action is to delete the
object.

See Also:

7.10: Modulegzip (reading and writinggzip-format files)

7.10 Standard Module gzip

7.10. Standard Module gzip 113

The data compression provided by thezlib module is compatible with that used by the GNU compression program
gzip. Accordingly, thegzip module provides theGzipFile class to read and writegzip-format files, automatically
compressing or decompressing the data so it looks like an ordinary file object.

GzipFile objects simulate most of the methods of a file object, though it’s not possible to use theseek() and
tell() methods to access the file randomly.

open (fileobj[, filename[, mode[, compresslevel]]])
Returns a newGzipFile object on top offileobj, which can be a regular file, aStringIO object, or any
object which simulates a file.

Thegzip file format includes the original filename of the uncompressed file; when opening aGzipFile object
for writing, it can be set by thefilenameargument. The default value is an empty string.

modecan be either’r’ or ’w’ depending on whether the file will be read or written.compresslevelis an
integer from1 to 9 controlling the level of compression;1 is fastest and produces the least compression, and9
is slowest and produces the most compression. The default value ofcompresslevelis 9.

Calling aGzipFile object’sclose() method does not closefileobj, since you might wish to append more
material after the compressed data. This also allows you to pass aStringIO object opened for writing as
fileobj, and retrieve the resulting memory buffer using theStringIO object’sgetvalue() method.

See Also:

7.9: Modulezlib (the basic data compression module)

114 Chapter 7. Optional Operating System Services

CHAPTER

EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique to the UNIX operating system, or
in some cases to some or many variants of it. Here’s an overview:

posix — The most common POSIX system calls (normally used via moduleos).

posixpath — Common POSIX pathname manipulations (normally used viaos.path).

pwd — The password database (getpwnam() and friends).

grp — The group database (getgrnam() and friends).

crypt — Thecrypt() function used to check UNIX passwords.

dbm — The standard “database” interface, based onndbm.

gdbm — GNU’s reinterpretation of dbm.

termios — POSIX style tty control.

TERMIOS — The symbolic constants required to use thetermios module.

fcntl — Thefcntl() andioctl() system calls.

posixfile — A file-like object with support for locking.

resource — An interface to provide resource usage information on the current process.

syslog — An interface to the UNIX syslog library routines.

stat — Constants and functions for interpreting the results ofos.stat() , os.lstat() andos.fstat() .

commands — Wrapper functions foros.popen() .

8.1 Built-in Module posix

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguised UNIX interface).

Do not import this module directly. Instead, import the moduleos , which provides aportable version of this
interface. On UNIX , theos module provides a superset of theposix interface. On non-UNIX operating systems the
posix module is not available, but a subset is always available through theos interface. Onceos is imported, there
is no performance penalty in using it instead ofposix . In addition,os provides some additional functionality, such
as automatically callingputenv() when an entry inos.environ is changed.

115

The descriptions below are very terse; refer to the corresponding UNIX manual (or POSIX documentation) entry for
more information. Arguments calledpathrefer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raiseerror , described below.

Moduleposix defines the following data items:

environ
A dictionary representing the string environment at the time the interpreter was started. For example,
posix.environ[’HOME’] is the pathname of your home directory, equivalent togetenv("HOME") in
C.

Modifying this dictionary does not affect the string environment passed on byexecv() , popen() or sys-
tem() ; if you need to change the environment, passenviron to execve() or add variable assignments and
export statements to the command string forsystem() or popen() .

However: If you are using this module via theos module (as you should – see the introduction above),
environ is a a mapping object that behaves almost like a dictionary but invokesputenv() automatically
called whenever an item is changed.

error
This exception is raised when a POSIX function returns a POSIX-related error (e.g., not for illegal argument
types). The accompanying value is a pair containing the numeric error code fromerrno and the corresponding
string, as would be printed by the C functionperror() . See the moduleerrno , which contains names for
the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attributes,errno andstrerror . The first holds the
value of the Cerrno variable, and the latter holds the corresponding error message fromstrerror() .

When exceptions are strings, the string for the exception is’os.error’ ; this reflects the more portable access
to the exception through theos module.

It defines the following functions and constants:

chdir (path)
Change the current working directory topath.

chmod(path, mode)
Change the mode ofpathto the numericmode.

chown (path, uid, gid)
Change the owner and group id ofpathto the numericuid andgid. (Not on MS-DOS.)

close (fd)
Close file descriptorfd.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To close a “file object” returned by the built-in functionopen() or by popen() or fdopen() ,
use itsclose() method.

dup (fd)
Return a duplicate of file descriptorfd.

dup2 (fd, fd2)
Duplicate file descriptorfd to fd2, closing the latter first if necessary.

execv (path, args)
Execute the executablepathwith argument listargs, replacing the current process (i.e., the Python interpreter).
The argument list may be a tuple or list of strings. (Not on MS-DOS.)

execve (path, args, env)
Execute the executablepath with argument listargs, and environmentenv, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. The environment must be a dictionary

116 Chapter 8. Unix Specific Services

mapping strings to strings. (Not on MS-DOS.)

exit (n)
Exit to the system with statusn, without calling cleanup handlers, flushing stdio buffers, etc. (Not on MS-DOS.)

Note: the standard way to exit issys.exit(n) . exit() should normally only be used in the child process
after afork() .

fdopen (fd[, mode[, bufsize]])
Return an open file object connected to the file descriptorfd. Themodeandbufsizearguments have the same
meaning as the corresponding arguments to the built-inopen() function.

fork ()
Fork a child process. Return0 in the child, the child’s process id in the parent. (Not on MS-DOS.)

fstat (fd)
Return status for file descriptorfd, like stat() .

ftruncate (fd, length)
Truncate the file corresponding to file descriptorfd, so that it is at mostlengthbytes in size.

getcwd ()
Return a string representing the current working directory.

getegid ()
Return the current process’ effective group id. (Not on MS-DOS.)

geteuid ()
Return the current process’ effective user id. (Not on MS-DOS.)

getgid ()
Return the current process’ group id. (Not on MS-DOS.)

getpgrp ()
Return the current process group id. (Not on MS-DOS.)

getpid ()
Return the current process id. (Not on MS-DOS.)

getppid ()
Return the parent’s process id. (Not on MS-DOS.)

getuid ()
Return the current process’ user id. (Not on MS-DOS.)

kill (pid, sig)
Kill the processpid with signalsig. (Not on MS-DOS.)

link (src, dst)
Create a hard link pointing tosrcnameddst. (Not on MS-DOS.)

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not include
the special entries’.’ and’..’ even if they are present in the directory.

lseek (fd, pos, how)
Set the current position of file descriptorfd to positionpos, modified byhow: 0 to set the position relative to the
beginning of the file;1 to set it relative to the current position;2 to set it relative to the end of the file.

lstat (path)
Like stat() , but do not follow symbolic links. (On systems without symbolic links, this is identical to
stat() .)

mkfifo (path[, mode])
Create a FIFO (a POSIX named pipe) namedpathwith numeric modemode. The defaultmodeis 0666 (octal).

8.1. Built-in Module posix 117

The current umask value is first masked out from the mode. (Not on MS-DOS.)

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Note thatmkfifo() doesn’t open the
FIFO — it just creates the rendezvous point.

mkdir (path[, mode])
Create a directory namedpathwith numeric modemode. The defaultmodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out.

nice (increment)
Add incrementto the process’ “niceness”. Return the new niceness. (Not on MS-DOS.)

open (file, flags[, mode])
Open the filefile and set various flags according toflagsand possibly its mode according tomode. The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file.

For a description of the flag and mode values, see the UNIX or C run-time documentation; flag constants (like
O RDONLYandO WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in functionopen() , which
returns a “file object” withread() andwrite() methods (and many more).

pipe ()
Create a pipe. Return a pair of file descriptors(r, w) usable for reading and writing, respectively. (Not on
MS-DOS.)

plock (op)
Lock program segments into memory. The value ofop (defined in<sys/lock.h>) determines which seg-
ments are locked. (Not on MS-DOS.)

popen (command[, mode[, bufsize]])
Open a pipe to or fromcommand. The return value is an open file object connected to the pipe, which can be read
or written depending on whethermodeis ’r’ (default) or’w’ . Thebufsizeargument has the same meaning as
the corresponding argument to the built-inopen() function. The exit status of the command (encoded in the
format specified forwait()) is available as the return value of theclose() method of the file object. (Not
on MS-DOS.)

putenv (varname, value)
Set the environment variable namedvarnameto the stringvalue. Such changes to the environment affect subpro-
cesses started withos.system() , os.popen() or os.fork() andos.execv() . (Not on all systems.)

Whenputenv() is supported, assignments to items inos.environ are automatically translated into cor-
responding calls toputenv() ; however, calls toputenv() don’t updateos.environ , so it is actually
preferable to assign to items ofos.environ .

strerror (code)
Return the error message corresponding to the error code incode.

read (fd, n)
Read at mostn bytes from file descriptorfd. Return a string containing the bytes read.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To read a “file object” returned by the built-in functionopen() or by popen() or fdopen() ,
or sys.stdin , use itsread() or readline() methods.

readlink (path)
Return a string representing the path to which the symbolic link points. (On systems without symbolic links,
this always raiseserror .)

remove (path)

118 Chapter 8. Unix Specific Services

Remove the filepath. Seermdir() below to remove a directory. This is identical to theunlink() function
documented below.

rename (src, dst)
Rename the file or directorysrc to dst.

rmdir (path)
Remove the directorypath.

setgid (gid)
Set the current process’ group id. (Not on MS-DOS.)

setpgrp ()
Calls the system callsetpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).
See the UNIX manual for the semantics. (Not on MS-DOS.)

setpgid (pid, pgrp)
Calls the system callsetpgid() . See the UNIX manual for the semantics. (Not on MS-DOS.)

setsid ()
Calls the system callsetsid() . See the UNIX manual for the semantics. (Not on MS-DOS.)

setuid (uid)
Set the current process’ user id. (Not on MS-DOS.)

stat (path)
Perform astat() system call on the given path. The return value is a tuple of at least 10 integers giving
the most important (and portable) members of thestat structure, in the orderst mode, st ino , st dev ,
st nlink , st uid , st gid , st size , st atime , st mtime , st ctime . More items may be added at
the end by some implementations. (On MS-DOS, some items are filled with dummy values.)

Note: The standard modulestat defines functions and constants that are useful for extracting information from
a stat structure.

symlink (src, dst)
Create a symbolic link pointing tosrc nameddst. (On systems without symbolic links, this always raises
error .)

system (command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C functionsys-
tem() , and has the same limitations. Changes toposix.environ , sys.stdin etc. are not reflected in the
environment of the executed command. The return value is the exit status of the process encoded in the format
specified forwait() .

tcgetpgrp (fd)
Return the process group associated with the terminal given byfd (an open file descriptor as returned by
open()). (Not on MS-DOS.)

tcsetpgrp (fd, pg)
Set the process group associated with the terminal given byfd (an open file descriptor as returned byopen())
to pg. (Not on MS-DOS.)

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’s user time, children’s system time, and elapsed real time since a fixed
point in the past, in that order. See the UNIX manual pagetimes(2). (Not on MS-DOS.)

umask(mask)
Set the current numeric umask and returns the previous umask. (Not on MS-DOS.)

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysname, nodename, release, version, machine) . Some systems truncate the nodename to 8 charac-

8.1. Built-in Module posix 119

ters or to the leading component; a better way to get the hostname issocket.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . (Not on MS-DOS, nor on older UNIX systems.)

unlink (path)
Remove the filepath. This is the same function asremove ; theunlink name is its traditional UNIX name.

utime (path,(atime, mtime))
Set the access and modified time of the file to the given values. (The second argument is a tuple of two items.)

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced. (Not on MS-DOS.)

waitpid (pid, options)
Wait for completion of a child process given by proces id, and return a tuple containing its pid and exit status
indication (encoded as forwait()). The semantics of the call are affected by the value of the integeroptions,
which should be0 for normal operation. (If the system does not supportwaitpid() , this always raises
error . Not on MS-DOS.)

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To write a “file object” returned by the built-in functionopen() or by popen() or fdopen() ,
or sys.stdout or sys.stderr , use itswrite() method.

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately.

O RDONLY
O WRONLY
O RDWR
O NDELAY
O NONBLOCK
O APPEND
O DSYNC
O RSYNC
O SYNC
O NOCTTY
O CREAT
O EXCL
O TRUNC

Options for theflag argument to theopen() function. These can be bit-wise OR’d together.

8.2 Standard Module posixpath

This module implements some useful functions on POSIX pathnames.

Do not import this module directly. Instead, import the moduleos and useos.path .

basename (p)
Return the base name of pathnamep. This is the second half of the pair returned byposixpath.split(p) .

commonprefix (list)
Return the longest string that is a prefix of all strings inlist. If list is empty, return the empty string (’’).

exists (p)
Return true ifp refers to an existing path.

120 Chapter 8. Unix Specific Services

expanduser (p)
Return the argument with an initial component of ‘˜ ’ or ‘ ˜ user’ replaced by thatuser’s home directory. An
initial ‘ ˜ ’ is replaced by the environment variable$HOME; an initial ‘˜ user’ is looked up in the password
directory through the built-in modulepwd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged.

expandvars (p)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or ‘ ${ name} ’ are
replaced by the value of environment variablename. Malformed variable names and references to non-existing
variables are left unchanged.

isabs (p)
Return true ifp is an absolute pathname (begins with a slash).

isfile (p)
Return true ifp is an existing regular file. This follows symbolic links, so bothislink() andisfile() can
be true for the same path.

isdir (p)
Return true ifp is an existing directory. This follows symbolic links, so bothislink() andisdir() can be
true for the same path.

islink (p)
Return true ifp refers to a directory entry that is a symbolic link. Always false if symbolic links are not
supported.

ismount (p)
Return true if pathnamep is a mount point: a point in a file system where a different file system has been
mounted. The function checks whetherp’s parent, ‘p/..’, is on a different device thanp, or whether ‘p/..’ and p
point to the same i-node on the same device — this should detect mount points for all UNIX and POSIX variants.

join (p[, q[, ...]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenation ofp, and optionallyq, etc., with
exactly one slash (’/’) inserted between components, unlessp is empty.

normcase (p)
Normalize the case of a pathname. On UNIX , this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (p)
Normalize a pathname. This collapses redundant separators and up-level references, e.g.A//B , A/./B and
A/foo/../B all becomeA/B . It does not normalize the case (usenormcase() for that). On Windows, it
does converts forward slashes to backward slashes.

samefile (p, q)
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception if aos.stat() call on either pathname fails.

split (p)
Split the pathnamep in a pair(head, tail) , wheretail is the last pathname component andheadis everything
leading up to that. Thetail part will never contain a slash; ifp ends in a slash,tail will be empty. If there is no
slash inp, headwill be empty. If p is empty, bothheadandtail are empty. Trailing slashes are stripped from
headunless it is the root (one or more slashes only). In nearly all cases,join(head, tail) equalsp (the only
exception being when there were multiple slashes separatingheadfrom tail).

splitext (p)
Split the pathnamep in a pair(root, ext) such thatroot + ext == p, andextis empty or begins with a period
and contains at most one period.

walk (p, visit, arg)

8.2. Standard Module posixpath 121

Calls the functionvisit with arguments(arg, dirname, names) for each directory in the directory tree rooted
at p (includingp itself, if it is a directory). The argumentdirnamespecifies the visited directory, the argument
nameslists the files in the directory (gotten fromos.listdir(dirname)). Thevisit function may modify
namesto influence the set of directories visited belowdirname, e.g., to avoid visiting certain parts of the tree.
(The object referred to bynamesmust be modified in place, usingdel or slice assignment.)

8.3 Built-in Module pwd

This module provides access to the UNIX password database. It is available on all UNIX versions.

Password database entries are reported as 7-tuples containing the following items from the password database (see
‘ ¡pwd.h¿’), in order: pw name, pw passwd , pw uid , pw gid , pw gecos , pw dir , pw shell . The uid and gid
items are integers, all others are strings. AKeyError exception is raised if the entry asked for cannot be found.

It defines the following items:

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam (name)
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

8.4 Built-in Module grp

This module provides access to the UNIX group database. It is available on all UNIX versions.

Group database entries are reported as 4-tuples containing the following items from the group database (see ‘¡grp.h¿’),
in order: gr name, gr passwd , gr gid , gr mem. The gid is an integer, name and password are strings, and the
member list is a list of strings. (Note that most users are not explicitly listed as members of the group they are in
according to the password database.) AKeyError exception is raised if the entry asked for cannot be found.

It defines the following items:

getgrgid (gid)
Return the group database entry for the given numeric group ID.

getgrnam (name)
Return the group database entry for the given group name.

getgrall ()
Return a list of all available group entries, in arbitrary order.

8.5 Built-in Module crypt

This module implements an interface to thecrypt(3) routine, which is a one-way hash function based upon a modified
DES algorithm; see the UNIX man page for further details. Possible uses include allowing Python scripts to accept
typed passwords from the user, or attempting to crack UNIX passwords with a dictionary.

crypt (word, salt)
word will usually be a user’s password.salt is a 2-character string which will be used to select one of 4096
variations of DES. The characters insalt must be either. , / , or an alphanumeric character. Returns the hashed
password as a string, which will be composed of characters from the same alphabet as the salt.

122 Chapter 8. Unix Specific Services

The module and documentation were written by Steve Majewski.

8.6 Built-in Module dbm

Thedbmmodule provides an interface to the UNIX (n)dbm library. Dbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a dbm object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

See also thegdbm module, which provides a similar interface using the GNU GDBM library.

The module defines the following constant and functions:

error
Raised on dbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like specify-
ing an incorrect key.

open (filename,[flag,[mode]])
Open a dbm database and return a dbm object. Thefilenameargument is the name of the database file (without
the ‘.dir’ or ‘ .pag’ extensions).

The optionalflagargument can be’r’ (to open an existing database for reading only — default),’w’ (to open
an existing database for reading and writing),’c’ (which creates the database if it doesn’t exist), or’n’ (which
always creates a new empty database).

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 .

8.7 Built-in Module gdbm

This module is quite similar to thedbm module, but usesgdbm instead to provide some additional functionality.
Please note that the file formats created bygdbm anddbmare incompatible.

Thegdbmmodule provides an interface to the GNU DBM library.gdbmobjects behave like mappings (dictionaries),
except that keys and values are always strings. Printing agdbm object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

The module defines the following constant and functions:

error
Raised ongdbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like speci-
fying an incorrect key.

open (filename,[flag,[mode]])
Open agdbm database and return agdbm object. Thefilenameargument is the name of the database file.

The optionalflagargument can be’r’ (to open an existing database for reading only — default),’w’ (to open
an existing database for reading and writing),’c’ (which creates the database if it doesn’t exist), or’n’ (which
always creates a new empty database).

Appendingf to the flag opens the database in fast mode; altered data will not automatically be written to the
disk after every change. This results in faster writes to the database, but may result in an inconsistent database
if the program crashes while the database is still open. Use thesync() method to force any unwritten data to
be written to the disk.

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 .

In addition to the dictionary-like methods,gdbm objects have the following methods:

8.6. Built-in Module dbm 123

firstkey ()
It’s possible to loop over every key in the database using this method and thenextkey() method. The
traversal is ordered bygdbm’s internal hash values, and won’t be sorted by the key values. This method returns
the starting key.

nextkey (key)
Returns the key that followskeyin the traversal. The following code prints every key in the databasedb , without
having to create a list in memory that contains them all:

k=db.firstkey()
while k!=None:

print k
k=db.nextkey(k)

reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used by thegdbmfile, this routine will
reorganize the database.gdbm will not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key,value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

8.8 Built-in Module termios

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls, see
the POSIX or UNIX manual pages. It is only available for those UNIX versions that support POSIXtermiosstyle tty
I/O control (and then only if configured at installation time).

All functions in this module take a file descriptorfd as their first argument. This must be an integer file descriptor,
such as returned bysys.stdin.fileno() .

This module should be used in conjunction with theTERMIOSmodule, which defines the relevant symbolic constants
(see the next section).

The module defines the following functions:

tcgetattr (fd)
Return a list containing the tty attributes for file descriptorfd, as follows: [iflag, oflag, cflag, lflag, ispeed,
ospeed, cc] wherecc is a list of the tty special characters (each a string of length 1, except the items with indices
TERMIOS.VMINandTERMIOS.VTIME, which are integers when these fields are defined). The interpretation
of the flags and the speeds as well as the indexing in thecc array must be done using the symbolic constants
defined in theTERMIOSmodule.

tcsetattr (fd, when, attributes)
Set the tty attributes for file descriptorfd from the attributes, which is a list like the one returned by
tcgetattr() . The when argument determines when the attributes are changed:TERMIOS.TCSANOW
to change immediately,TERMIOS.TCSADRAIN to change after transmitting all queued output, or
TERMIOS.TCSAFLUSHto change after transmitting all queued output and discarding all queued input.

tcsendbreak (fd, duration)
Send a break on file descriptorfd. A zerodurationsends a break for 0.25–0.5 seconds; a nonzerodurationhas
a system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptorfd has been transmitted.

tcflush (fd, queue)

124 Chapter 8. Unix Specific Services

Discard queued data on file descriptorfd. Thequeueselector specifies which queue:TERMIOS.TCIFLUSH
for the input queue,TERMIOS.TCOFLUSHfor the output queue, orTERMIOS.TCIOFLUSHfor both queues.

tcflow (fd, action)
Suspend or resume input or output on file descriptorfd. Theactionargument can beTERMIOS.TCOOFFto sus-
pend output,TERMIOS.TCOONto restart output,TERMIOS.TCIOFF to suspend input, orTERMIOS.TCION
to restart input.

Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separatetcge-
tattr() call and atry ... finally statement to ensure that the old tty attributes are restored exactly no matter
what happens:

def getpass(prompt = "Password: "):
import termios, TERMIOS, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & ˜TERMIOS.ECHO # lflags
try:

termios.tcsetattr(fd, TERMIOS.TCSADRAIN, new)
passwd = raw_input(prompt)

finally:
termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)

return passwd

8.9 Standard Module TERMIOS

This module defines the symbolic constants required to use thetermios module (see the previous section). See the
POSIX or UNIX manual pages (or the source) for a list of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library directory. You may have to
generate it for your particular system using the script ‘Tools/scripts/h2py.py’.

8.10 Built-in Module fcntl

This module performs file control and I/O control on file descriptors. It is an interface to thefcntl() andioctl()
UNIX routines. File descriptors can be obtained with thefileno() method of a file or socket object.

The module defines the following functions:

fcntl (fd, op[, arg])
Perform the requested operation on file descriptorfd. The operation is defined byop and is operating system
dependent. Typically these codes can be retrieved from the library moduleFCNTL. The argumentarg is optional,
and defaults to the integer value0. When present, it can either be an integer value, or a string. With the argument
missing or an integer value, the return value of this function is the integer return value of the Cfcntl() call.
When the argument is a string it represents a binary structure, e.g. created bystruct.pack() . The binary
data is copied to a buffer whose address is passed to the Cfcntl() call. The return value after a successful
call is the contents of the buffer, converted to a string object. In case thefcntl() fails, anIOError is raised.

ioctl (fd, op, arg)

8.9. Standard Module TERMIOS 125

This function is identical to thefcntl() function, except that the operations are typically defined in the library
moduleIOCTL.

flock (fd, op)
Perform the lock operationopon file descriptorfd. See the UNIX manualflock(3) for details. (On some systems,
this function is emulated usingfcntl() .)

lockf (fd, code,[len,[start,[whence]]])
This is a wrapper around theFCNTL.F SETLKandFCNTL.F SETLKW fcntl() calls. See the UNIX manual
for details.

If the library modulesFCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fcntl.h> and <sys/ioctl.h> . You can create the modules yourself with theh2py script, found in
the ‘Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):

import struct, FCNTL

file = open(...)
rv = fcntl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack(’hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variablerv will hold an integer value; in the second example it will hold
a string value. The structure lay-out for thelockdatavariable is system dependent — therefore using theflock()
call may be better.

8.11 Standard Module posixfile

Note: This module will become obsolete in a future release. The locking operation that it provides is done better and
more portably by thefcntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it implements file
locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new file
object, the posixfile object. It has all the standard file object methods and adds the methods described below. This
module only works for certain flavors of UNIX , since it usesfcntl.fcntl() for file locking.

To instantiate a posixfile object, use theopen() function in theposixfile module. The resulting object looks and
feels roughly the same as a standard file object.

Theposixfile module defines the following constants:

SEEKSET
Offset is calculated from the start of the file.

SEEKCUR
Offset is calculated from the current position in the file.

SEEKEND
Offset is calculated from the end of the file.

Theposixfile module defines the following functions:

open (filename[, mode[, bufsize]])
Create a new posixfile object with the given filename and mode. Thefilename, modeandbufsizearguments are
interpreted the same way as by the built-inopen() function.

126 Chapter 8. Unix Specific Services

fileopen (fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

The posixfile object defines the following additional methods:

lock (fmt,[len[, start[, whence]]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a table.
The len argument specifies the length of the section that should be locked. The default is0. start specifies the
starting offset of the section, where the default is0. Thewhenceargument specifies where the offset is relative
to. It accepts one of the constantsSEEKSET, SEEKCURor SEEKEND. The default isSEEKSET. For more
information about the arguments refer to thefcntl(2) manual page on your system.

flags ([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Without theflagsargument a string
indicating the current flags is returned (this is the same as the ‘?’ modifier). For more information about the
flags refer to thefcntl(2) manual page on your system.

dup ()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it
were newly opened.

dup2 (fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the given
file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file ()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods raiseIOError when the request fails.

Format characters for thelock() method have the following meaning:

Format Meaning
‘u’ unlock the specified region
‘ r ’ request a read lock for the specified section
‘w’ request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘ | ’ wait until the lock has been granted
‘?’ return the first lock conflicting with the requested lock, orNone if there is no conflict. (1)

Note:

(1) The lock returned is in the format(mode, len, start, whence, pid) wheremodeis a character representing
the type of lock (’r’ or ’w’). This modifier prevents a request from being granted; it is for query purposes only.

Format characters for theflags() method have the following meanings:

Format Meaning
‘a’ append only flag
‘c ’ close on exec flag
‘n’ no delay flag (also called non-blocking flag)
‘s ’ synchronization flag

8.11. Standard Module posixfile 127

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘ ! ’ turn the specified flags ’off’, instead of the default ’on’ (1)
‘=’ replace the flags, instead of the default ’OR’ operation (1)
‘?’ return a string in which the characters represent the flags that are set.(2)

Note:

(1) The ‘! ’ and ‘=’ modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:

import posixfile

file = posixfile.open(’/tmp/test’, ’w’)
file.lock(’w|’)
...
file.lock(’u’)
file.close()

8.12 Built-in Module resource

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

A single exception is defined for errors:

error
The functions described below may raise this error if the underlying system call failures unexpectedly.

Resource Limits

Resources usage can be limited using thesetrlimit() function described below. Each resource is controlled by
a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in thegetrlimit(2) man page. The
resources listed below are supported when the underlying operating system supports them; resources which cannot be
checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit (resource)
Returns a tuple(soft, hard) with the current soft and hard limits ofresource. RaisesValueError if an
invalid resource is specified, orerror if the underyling system call fails unexpectedly.

setrlimit (resource, limits)
Sets new limits of consumption ofresource. Thelimits argument must be a tuple(soft, hard) of two integers
describing the new limits. A value of-1 can be used to specify the maximum possible upper limit.

RaisesValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a

128 Chapter 8. Unix Specific Services

process tries to raise its hard limit (unless the process has an effective UID of super-user). Can also raiseerror
if the underyling system call fails.

These symbols define resources whose consumption can be controlled using thesetrlimit() andgetrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The UNIX man page forgetrlimit(2) lists the available resources. Note that not all systems use the same symbol or
same value to denote the same resource.

RLIMIT CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation of
a partial core file if a larger core would be required to contain the entire process image.

RLIMIT CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceeded, aSIGXCPU
signal is sent to the process. (See thesignal module documentation for information about how to catch this
signal and do something useful, e.g. flush open files to disk.)

RLIMIT FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in a
multi-threaded process.

RLIMIT DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT RSS
The maximum resident set size that should be made available to the process.

RLIMIT NPROC
The maximum number of processes the current process may create.

RLIMIT NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT OFILE
The BSD name forRLIMIT NOFILE.

RLIMIT MEMLOC
The maximm address space which may be locked in memory.

RLIMIT VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT AS
The maximum area (in bytes) of address space which may be taken by the process.

Resource Usage

These functiona are used to retrieve resource usage information:

getrusage (who)
This function returns a large tuple that describes the resources consumed by either the current process or its
children, as specified by thewhoparameter. Thewhoparameter should be specified using one of theRUSAGE*
constants described below.

The elements of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some values
are dependent on the clock tick internal, e.g. the amount of memory the process is using.

8.12. Built-in Module resource 129

The first two elements of the return value are floating point values representing the amount of time spent execut-
ing in user mode and the amount of time spent executing in system mode, respectively. The remaining values
are integers. Consult thegetrusage(2) man page for detailed information about these values. A brief summary
is presented here:

Offset Resource
0 time in user mode (float)
1 time in system mode (float)
2 maximum resident set size
3 shared memory size
4 unshared memory size
5 unshared stack size
6 page faults not requiring I/O
7 page faults requiring I/O
8 number of swap outs
9 block input operations

10 block output operations
11 messages sent
12 messages received
13 signals received
14 voluntary context switches
15 involuntary context switches

This function will raise aValueError if an invalid who parameter is specified. It may also raiseerror
exception in unusual circumstances.

getpagesize ()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of the
tuple returned bygetrusage() describes memory usage in pages; multiplying by page size produces number
of bytes.

The followingRUSAGE* symbols are passed to thegetrusage() function to specify which processes information
should be provided for.

RUSAGESELF
RUSAGESELF should be used to request information pertaining only to the process itself.

RUSAGECHILDREN
Pass togetrusage() to request resource information for child processes of the calling process.

RUSAGEBOTH
Pass togetrusage() to request resources consumed by both the current process and child processes. May
not be available on all systems.

8.13 Built-in Module syslog

This module provides an interface to the UNIX syslog library routines. Refer to the UNIX manual pages for a
detailed description of thesyslog facility.

The module defines the following functions:

syslog ([priority,] message)
Send the stringmessageto the system logger. A trailing newline is added if necessary. Each message is
tagged with a priority composed of afacility and alevel. The optionalpriority argument, which defaults to
(LOG USER | LOGINFO) , determines the message priority.

openlog (ident[, logopt[, facility]])

130 Chapter 8. Unix Specific Services

Logging options other than the defaults can be set by explicitly opening the log file withopenlog() prior to
calling syslog() . The defaults are (usually)ident= ‘syslog ’, logopt= 0, facility = LOGUSER. The ident
argument is a string which is prepended to every message. The optionallogoptargument is a bit field - see below
for possible values to combine. The optionalfacility argument sets the default facility for messages which do
not have a facility explicitly encoded.

closelog ()
Close the log file.

setlogmask (maskpri)
This function set the priority mask tomaskpriand returns the previous mask value. Calls tosyslog with a
priority level not set inmaskpriare ignored. The default is to log all priorities. The functionLOGMASK(pri)
calculates the mask for the individual prioritypri. The functionLOGUPTO(pri) calculates the mask for all
priorities up to and includingpri.

The module defines the following constants:

Priority levels (high to low): LOGEMERG, LOGALERT, LOGCRIT, LOGERR, LOGWARNING, LOGNOTICE,
LOGINFO, LOGDEBUG.

Facilities: LOGKERN, LOGUSER, LOGMAIL, LOGDAEMON, LOGAUTH, LOGLPR, LOGNEWS, LOGUUCP,
LOGCRONandLOGLOCAL0to LOGLOCAL7.

Log options: LOGPID , LOGCONS, LOGNDELAY, LOGNOWAITandLOGPERRORif defined in ‘syslog.h’.

8.14 Standard Module stat

Thestat module defines constants and functions for interpreting the results ofos.stat() andos.lstat() (if
they exist). For complete details about thestat() andlstat() system calls, consult your local man pages.

Thestat module defines the following functions:

S ISDIR (mode)
Return non-zero if the mode was gotten from a directory.

S ISCHR(mode)
Return non-zero if the mode was gotten from a character special device.

S ISBLK (mode)
Return non-zero if the mode was gotten from a block special device.

S ISREG(mode)
Return non-zero if the mode was gotten from a regular file.

S ISFIFO (mode)
Return non-zero if the mode was gotten from a FIFO.

S ISLNK (mode)
Return non-zero if the mode was gotten from a symbolic link.

S ISSOCK(mode)
Return non-zero if the mode was gotten from a socket.

All the data items below are simply symbolic indexes into the 10-tuple returned byos.stat() or os.lstat() .

ST MODE
Inode protection mode.

ST INO
Inode number.

8.14. Standard Module stat 131

ST DEV
Device inode resides on.

ST NLINK
Number of links to the inode.

ST UID
User id of the owner.

ST GID
Group id of the owner.

ST SIZE
File size in bytes.

ST ATIME
Time of last access.

ST MTIME
Time of last modification.

ST CTIME
Time of last status change (see manual pages for details).

Example:

import os, sys
from stat import *

def process(dir, func):
’’’recursively descend the directory rooted at dir, calling func for

each regular file’’’

for f in os.listdir(dir):
mode = os.stat(’%s/%s’ % (dir, f))[ST_MODE]
if S_ISDIR(mode):

recurse into directory
process(’%s/%s’ % (dir, f), func)

elif S_ISREG(mode):
func(’%s/%s’ % (dir, f))

else:
print ’Skipping %s/%s’ % (dir, f)

def f(file):
print ’frobbed’, file

if __name__ == ’__main__’: process(sys.argv[1], f)

8.15 Standard Module commands

Thecommands module contains wrapper functions foros.popen() which take a system command as a string and
return any output generated by the command and, optionally, the exit status.

The commands module is only usable on systems which supportos.popen() (currently UNIX). It defines the
following functions:

getstatusoutput (cmd)

132 Chapter 8. Unix Specific Services

Execute the stringcmd in a shell withos.popen() and return a 2-tuple(status, output) . cmd is actually
run as{ cmd ; }2>&1 , so that the returned output will contain output or error messages. A trailing newline
is stripped from the output. The exit status for the command can be interpreted according to the rules for the C
functionwait() .

getoutput (cmd)
Like getstatusoutput() , except the exit status is ignored and the return value is a string containing the
command’s output.

getstatus (file)
Return the output of ‘ls -ld file’ as a string. This function uses thegetoutput() function, and properly
escapes backslashes and dollar signs in the argument.

Example:

>>> import commands
>>> commands.getstatusoutput(’ls /bin/ls’)
(0, ’/bin/ls’)
>>> commands.getstatusoutput(’cat /bin/junk’)
(256, ’cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput(’/bin/junk’)
(256, ’sh: /bin/junk: not found’)
>>> commands.getoutput(’ls /bin/ls’)
’/bin/ls’
>>> commands.getstatus(’/bin/ls’)
’-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

8.15. Standard Module commands 133

134

CHAPTER

NINE

The Python Debugger

The modulepdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control.

The debugger is extensible — it is actually defined as a classPdb. This is currently undocumented but easily
understood by reading the source. The extension interface uses the (also undocumented) modulesbdb andcmd.

A primitive windowing version of the debugger also exists — this is modulewdb, which requiresstdwin (see the
chapter on STDWIN specific modules).

The debugger’s prompt is ‘(Pdb) ’. Typical usage to run a program under control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run(’mymodule.test()’)
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: ’spam’
> <string>(1)?()
(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /usr/local/lib/python1.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

135

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (innermost last):

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test

test2()
File "./mymodule.py", line 3, in test2

print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run (statement[, globals[, locals]])
Execute thestatement(given as a string) under debugger control. The debugger prompt appears before any code
is executed; you can set breakpoints and typecontinue , or you can step through the statement usingstep
or next (all these commands are explained below). The optionalglobalsand locals arguments specify the
environment in which the code is executed; by default the dictionary of the modulemain is used. (See the
explanation of theexec statement or theeval() built-in function.)

runeval (expression[, globals[, locals]])
Evaluate theexpression(given as a a string) under debugger control. Whenruneval() returns, it returns the
value of the expression. Otherwise this function is similar torun() .

runcall (function[, argument, ...])
Call the function (a function or method object, not a string) with the given arguments. Whenruncall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

set trace ()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post mortem (traceback)
Enter post-mortem debugging of the giventracebackobject.

pm()
Enter post-mortem debugging of the traceback found insys.last traceback .

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
“h(elp) ” means that either “h” or “ help ” can be used to enter the help command (but not “he” or “ hel ”, nor
“H” or “ Help or “HELP”). Arguments to commands must be separated by whitespace (spaces or tabs). Optional
arguments are enclosed in square brackets (“[] ”) in the command syntax; the square brackets must not be typed.
Alternatives in the command syntax are separated by a vertical bar (“| ”).

Entering a blank line repeats the last command entered. Exception: if the last command was a “list ” command, the
next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamation point (“! ”). This is a
powerful way to inspect the program being debugged; it is even possible to change a variable or call a function. When

136 Chapter 9. The Python Debugger

an exception occurs in such a statement, the exception name is printed but the debugger’s state is not changed.

h(elp) [command] Without argument, print the list of available commands. With acommandas argument, print help
about that command. ‘help pdb ’ displays the full documentation file; if the environment variablePAGERis
defined, the file is piped through that command instead. Since thecommandargument must be an identifier,
‘help exec ’ must be entered to get help on the ‘! ’ command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an older frame).

u(p) Move the current frame one level up in the stack trace (to a newer frame).

b(reak) [lineno| function[, ’ condition’]] With a lineno argument, set a break there in the current file. With a
function argument, set a break at the entry of that function. Without argument, list all breaks. If a second
argument is present, it is a string (included in string quotes!) specifying an expression which must evaluate to
true before the breakpoint is honored.

cl(ear) [lineno] With a linenoargument, clear that break in the current file. Without argument, clear all breaks (but
first ask confirmation).

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or on the next line
in the current function).

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference between
next andstep is thatstep stops inside a called function, whilenext executes called functions at (nearly)
full speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

l(ist) [first[, last]] List source code for the current file. Without arguments, list 11 lines around the current line or
continue the previous listing. With one argument, list 11 lines around at that line. With two arguments, list the
given range; if the second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expressionEvaluate theexpressionin the current context and print its value. (Note:print can also be used, but is
not a debugger command — this executes the Pythonprint statement.)

[!]statementExecute the (one-line)statementin the context of the current stack frame. The exclamation point can
be omitted unless the first word of the statement resembles a debugger command. To set a global variable, you
can prefix the assignment command with a “global ” command on the same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]
(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

• sys.settrace(func) sets the global trace function

9.2. How It Works 137

• there can also a local trace function (see later)

Trace functions have three arguments:frame, event, andarg. frame is the current stack frame.eventis a string:
’call’ , ’line’ , ’return’ or ’exception’ . arg depends on the event type.

The global trace function is invoked (witheventset to’call’) whenever a new local scope is entered; it should
return a reference to the local trace function to be used that scope, orNone if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that scope), or
None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called; arg is the
argument list to the function; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one line exist).
The local trace function is called; arg in None; the return value specifies the new local trace function.

’return’ A function (or other code block) is about to return. The local trace function is called; arg is the value that
will be returned. The trace function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg is a triple (exception, value,
traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callers, an’exception’ event is generated at each level.

For more information on code and frame objects, refer to thePython Reference Manual.

138 Chapter 9. The Python Debugger

CHAPTER

TEN

The Python Profiler

Copyright c© 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind.1

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any purpose
(subject to the restriction in the following sentence) without fee is hereby granted, provided that the above copyright
notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. This permission is explicitly restricted to the copying and modifi-
cation of the software to remain in Python, compiled Python, or other languages (such as C) wherein the modified or
derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably clumsy code, but I
don’t know for sure yet ’cause I’m a beginner :-). I did work hard to make the code run fast, so that profiling would
be a reasonable thing to do. I tried not to repeat code fragments, but I’m sure I did some stuff in really awkward ways
at times. Please send suggestions for improvements to:jar@netscape.com. I won’t promiseany support. ...but I’d
appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modulesprofile andpstats . This profiler
providesdeterministic profilingof any Python programs. It also provides a series of report generation tools to allow
users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU time. It’s not a
trade-off, it’s a trade-up.

1Updated and converted to LATEX by Guido van Rossum. The references to the old profiler are left in the text, although it no longer exists.

139

To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct functions.

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for platform is supported,
file reads are not donebyprofilerduringprofiling (and charged to user’s code!).

Speed increased:Overhead CPU cost was reduced by more than a factor of two (perhaps a factor of five), lightweight
profiler module is all that must be loaded, and the report generating module (pstats) is not needed during
profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; recursive entries are
counted.

Large growth in report generating UI: Distinct profiles runs can be added together forming a comprehensive re-
port; functions that import statistics take arbitrary lists of files; sorting criteria is now based on keywords (in-
stead of 4 integer options); reports shows what functions were profiled as well as what profile file was referenced;
output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows a
user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of ‘foo() ’, you would add the following to your module:

import profile
profile.run(’foo()’)

The above action would cause ‘foo() ’ to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profile into
a file for later examination, you can supply a file name as the second argument to therun() function:

import profile
profile.run(’foo()’, ’fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /usr/local/lib/python1.5/profile.py myscript.py

When you wish to review the profile, you should use the methods in thepstats module. Typically you would load
the statistics data as follows:

import pstats
p = pstats.Stats(’fooprof’)

The classStats (the above code just created an instance of this class) has a variety of methods for manipulating and
printing the data that was just read into ‘p’. When you ranprofile.run() above, what was printed was the result
of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries

140 Chapter 10. The Python Profiler

according to the standard module/line/name string that is printed (this is to comply with the semantics of the old
profiler). The third method printed out all the statistics. You might try the following sort calls:

p.sort_stats(’name’)
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

This will sort all the statistics by file name, and then print out statistics for only the class init methods (’cause they are
spelled with ‘ init ’ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out some
of the statistics. To be specific, the list is first culled down to 50% (re: ‘.5 ’) of its original size, then only lines
containinginit are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (‘p’ is still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:

p.print_callees()
p.add(’fooprof’)

10.4 What Is Deterministic Profiling?

Deterministic profilingis meant to reflect the fact that allfunction call, function return, andexceptionevents are
monitored, and precise timings are made for the intervals between these events (during which time the user’s code
is executing). In contrast,statistical profiling(which is not done by this module) randomly samples the effective

10.4. What Is Deterministic Profiling? 141

instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to
do deterministic profiling. Python automatically provides ahook(optional callback) for each event. In addition, the
interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to only add
small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet
provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global functionprofile.run() . It is typically used to create any
profile information. The reports are formatted and printed using methods of the classpstats.Stats . The following
is a description of all of these standard entry points and functions. For a more in-depth view of some of the code,
consider reading the later section on Profiler Extensions, which includes discussion of how to derive “better” profilers
from the classes presented, or reading the source code for these modules.

run (string[, filename[, ...]])
This function takes a single argument that has can be passed to theexec statement, and an optional file name.
In all cases this routine attempts toexec its first argument, and gather profiling statistics from the execution. If
no file name is present, then this function automatically prints a simple profiling report, sorted by the standard
name string (file/line/function-name) that is presented in each line. The following is a typical output from such
a call:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

The first line indicates that this profile was generated by the call:
profile.run(’main()’) , and hence the exec’ed string is’main()’ . The second line indicates that
2706 calls were monitored. Of those calls, 2004 wereprimitive. We defineprimitive to mean that the call was
not induced via recursion. The next line:Ordered by: standard name , indicates that the text string in
the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),

percall is the quotient oftottime divided byncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till exit). This figure is accurate
evenfor recursive functions.

percall is the quotient ofcumtime divided by primitive calls

filename:lineno(function)provides the respective data of each function

142 Chapter 10. The Python Profiler

When there are two numbers in the first column (e.g.: ‘43/3 ’), then the latter is the number of primitive calls,
and the former is the actual number of calls. Note that when the function does not recurse, these two values are
the same, and only the single figure is printed.

Analysis of the profiler data is done using this class from thepstats module:

Stats (filename[, ...])
This class constructor creates an instance of a “statistics object” from afilename(or set of filenames).Stats
objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding version ofprofile .
To be specific, there isno file compatibility guaranteed with future versions of this profiler, and there is no
compatibility with files produced by other profilers (e.g., the old system profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an overall view of
several processes can be considered in a single report. If additional files need to be combined with data in an
existingStats object, theadd() method can be used.

The Stats Class

strip dirs ()
This method for theStats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries in a
“random” order, as it was just after object initialization and loading. Ifstrip dirs() causes two function
names to be indistinguishable (i.e., they are on the same line of the same filename, and have the same function
name), then the statistics for these two entries are accumulated into a single entry.

add (filename[, ...])
This method of theStats class accumulates additional profiling information into the current profiling object.
Its arguments should refer to filenames created by the corresponding version ofprofile.run() . Statistics
for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.

sort stats (key[, ...])
This method modifies theStats object by sorting it according to the supplied criteria. The argument is typically
a string identifying the basis of a sort (example:’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when the there is
equality in all keys selected before them. For example, ‘sort stats(’name’, ’file’) ’ will sort all the
entries according to their function name, and resolve all ties (identical function names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are
the keys currently defined:

Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name,
file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction between’nfl’
and’stdname’ is that the standard name is a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same)

10.5. Reference Manual 143

appear in the string order 20, 3 and 40. In contrast,’nfl’ does a numeric compare of the line numbers. In fact,
sort stats(’nfl’) is the same assort stats(’name’, ’file’, ’line’) .

For compatibility with the old profiler, the numeric arguments-1 , 0, 1, and2 are permitted. They are interpreted
as’stdname’ , ’calls’ , ’time’ , and’cumulative’ respectively. If this old style format (numeric) is
used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.

reverse order ()
This method for theStats class reverses the ordering of the basic list within the object. This method is
provided primarily for compatibility with the old profiler. Its utility is questionable now that ascending vs
descending order is properly selected based on the sort key of choice.

print stats (restriction[, ...])
This method for theStats class prints out a report as described in theprofile.run() definition.

The order of the printing is based on the lastsort stats() operation done on the object (subject to caveats
in add() andstrip dirs() .

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is
taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines),
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to
pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression
syntax defined by there module). If several restrictions are provided, then they are applied sequentially. For
example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename
‘ .*foo: ’. In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names ‘.*foo: ’, and then proceed to only print the first 10% of
them.

print callers (restrictions[, ...])
This method for theStats class prints a list of all functions that called each function in the profiled database.
The ordering is identical to that provided byprint stats() , and the definition of the restricting argument
is also identical. For convenience, a number is shown in parentheses after each caller to show how many times
this specific call was made. A second non-parenthesized number is the cumulative time spent in the function at
the right.

print callees (restrictions[, ...])
This method for theStats class prints a list of all function that were called by the indicated function. Aside
from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to
theprint callers() method.

ignore ()
Deprecated since release 1.5.1.This is not needed in modern versions of Python.2

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to dispatch
call, return, andexceptionevents. Compiled C code does not get interpreted, and hence is “invisible” to the profiler.
All time spent in C code (including built-in functions) will be charged to the Python function that invoked the C code.
If the C code calls out to some native Python code, then those calls will be profiled properly.

2This was once necessary, when Python would print any unused expression result that was notNone. The method is still defined for backward
compatibility.

144 Chapter 10. The Python Profiler

The second limitation has to do with accuracy of timing information. There is a fundamental problem with determin-
istic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate that that underlying clock. If enough
measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a
second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time
actuallygetsthe state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
a result, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (i.e., less than one clock tick), but it
canaccumulate and become very significant. This profiler provides a means of calibrating itself for a given platform
so that this error can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are exceptionally
low, and the gods of probability work against you :-).) DoNOT be alarmed by negative numbers in the profile. They
shouldonlyappear if you have calibrated your profiler, and the results are actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate for the overhead
of calling the time function, and socking away the results. The following procedure can be used to obtain this constant
for a given platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
print pr.calibrate(100)
print pr.calibrate(100)
print pr.calibrate(100)

The argument tocalibrate() is the number of times to try to do the sample calls to get the CPU times. If your
computer isveryfast, you might have to do:

pr.calibrate(1000)

or even:

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you are ready to use
that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the magical number is about .00053.
If you have a choice, you are better off with a smaller constant, and your results will “less often” show up as negative
in profile statistics.

The following shows how the tracedispatch() method in the Profile class should be modified to install the calibration
constant on a Sun Sparcstation 1000:

10.7. Calibration 145

def trace_dispatch(self, frame, event, arg):
t = self.timer()
t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):
t = self.timer()
self.t = t[0] + t[1]

else:
r = self.timer()
self.t = r[0] + r[1] - t # put back unrecorded delta

return

Note that if there is no calibration constant, then the line containing the callibration constant should simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally fast!!), but the
above method is the simplest to use. I could have made the profiler “self calibrating”, but it would have made the
initialization of the profiler class slower, and would have required someveryfancy coding, or else the use of a variable
where the constant ‘.00053 ’ was placed in the code shown. This is aVERY critical performance section, and there
is no reason to use a variable lookup at this point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

TheProfile class of moduleprofile was written so that derived classes could be developed to extend the profiler.
Rather than describing all the details of such an effort, I’ll just present the following two examples of derived classes
that can be used to do profiling. If the reader is an avid Python programmer, then it should be possible to use these as
a model and create similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic class has an
option for that in the constructor for the class. Consider passing the name of a function to call into the constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will callyour time func() instead ofos.times() . The function should return either a
single number or a list of numbers (like whatos.times() returns). If the function returns a single time number, or
the list of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

Be warned that youshouldcalibrate the profiler class for the timer function that you choose. For most machines, a timer
that returns a lone integer value will provide the best results in terms of low overhead during profiling. (os.times()
is prettybad, ’cause it returns a tuple of floating point values, so all arithmetic is floating point in the profiler!). If you
want to substitute a better timer in the cleanest fashion, you should derive a class, and simply put in the replacement
dispatch method that better handles your timer call, along with the appropriate calibration constant :-).

OldProfile Class

The following derived profiler simulates the old style profiler, providing errant results on recursive functions. The
reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the old profiler. It still creates all
the caller stats, and is quite useful when there isno recursion in the user’s code. It is also a lot more accurate than the
old profiler, as it does not charge all its overhead time to the user’s code.

146 Chapter 10. The Python Profiler

class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rct, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
fn = ‘frame.f_code‘

self.cur = (t, 0, 0, fn, frame, self.cur)
if self.timings.has_key(fn):

tt, ct, callers = self.timings[fn]
self.timings[fn] = tt, ct, callers

else:
self.timings[fn] = 0, 0, {}

return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, rct, rfn, frame, rcur = self.cur
rtt = rtt + t
sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur
self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]
if callers.has_key(pfn):

callers[pfn] = callers[pfn] + 1
else:

callers[pfn] = 1
self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():

tt, ct, callers = self.timings[func]
nor_func = self.func_normalize(func)
nor_callers = {}
nc = 0
for func_caller in callers.keys():

nor_callers[self.func_normalize(func_caller)] = \
callers[func_caller]

nc = nc + callers[func_caller]
self.stats[nor_func] = nc, nc, tt, ct, nor_callers

HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and does not
calculate cumulative time under a function. It only calculates time spent in a function, so it runs very quickly (re: very
low overhead). In truth, the basic profiler is so fast, that is probably not worth the savings to give up the data, but this
class still provides a nice example.

10.8. Extensions — Deriving Better Profilers 147

class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
self.cur = (t, 0, frame, self.cur)
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f_code‘

pt, ptt, pframe, pcur = rcur
self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):
nc, tt = self.timings[rfn]
self.timings[rfn] = nc + 1, rt + rtt + tt

else:
self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():

nc, tt = self.timings[func]
nor_func = self.func_normalize(func)
self.stats[nor_func] = nc, nc, tt, 0, {}

148 Chapter 10. The Python Profiler

CHAPTER

ELEVEN

Internet and WWW Services

The modules described in this chapter provide various services to World-Wide Web (WWW) clients and/or services,
and a few modules related to news and email. They are all implemented in Python. Some of these modules require the
presence of the system-dependent modulesockets , which is currently only fully supported on UNIX and Windows
NT. Here is an overview:

cgi — Common Gateway Interface, used to interpret forms in server-side scripts.

urllib — Open an arbitrary object given by URL (requires sockets).

httplib — HTTP protocol client (requires sockets).

ftplib — FTP protocol client (requires sockets).

gopherlib — Gopher protocol client (requires sockets).

imaplib — IMAP4 protocol client (requires sockets).

nntplib — NNTP protocol client (requires sockets).

urlparse — Parse a URL string into a tuple (addressing scheme identifier, network location, path, parameters, query
string, fragment identifier).

sgmllib — Only as much of an SGML parser as needed to parse HTML.

htmllib — A parser for HTML documents.

xmllib — A parser for XML documents.

formatter — Generic output formatter and device interface.

rfc822 — Parse RFC 822 style mail headers.

mimetools — Tools for parsing MIME style message bodies.

binhex — Encode and decode files in binhex4 format.

uu — Encode and decode files in uuencode format.

binascii — Tools for converting between binary and various ascii-encoded binary representation

xdrlib — The External Data Representation Standard as described in RFC 1014, written by Sun Microsystems, Inc.
June 1987.

mailcap — Mailcap file handling. See RFC 1524.

base64— Encode/decode binary files using the MIME base64 encoding.

149

quopri — Encode/decode binary files using the MIME quoted-printable encoding.

SocketServer — A framework for network servers.

mailbox — Read various mailbox formats.

mimify — Mimification and unmimification of mail messages.

BaseHTTPServer — Basic HTTP server (base class for SimpleHTTPServer and CGIHTTPServer).

11.1 Standard Module cgi

Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML<FORM>or
<ISINPUT> element.

Most often, CGI scripts live in the server’s special ‘cgi-bin’ directory. The HTTP server places all sorts of information
about the request (such as the client’s hostname, the requested URL, the query string, and lots of other goodies) in the
script’s shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the form
data is passed via the “query string” part of the URL. This module is intended to take care of the different cases and
provide a simpler interface to the Python script. It also provides a number of utilities that help in debugging scripts,
and the latest addition is support for file uploads from a form (if your browser supports it — Grail 0.3 and Netscape
2.0 do).

The output of a CGI script should consist of two sections, separated by a blank line. The first section contains a number
of headers, telling the client what kind of data is following. Python code to generate a minimal header section looks
like this:

print "Content-type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

(It may not be fully legal HTML according to the letter of the standard, but any browser will understand it.)

Using the cgi module

Begin by writing ‘import cgi ’. Do not use ‘from cgi import * ’ — the module defines all sorts of names
for its own use or for backward compatibility that you don’t want in your namespace.

It’s best to use theFieldStorage class. The other classes defined in this module are provided mostly for backward
compatibility. Instantiate it exactly once, without arguments. This reads the form contents from standard input or the

150 Chapter 11. Internet and WWW Services

environment (depending on the value of various environment variables set according to the CGI standard). Since it
may consume standard input, it should be instantiated only once.

The FieldStorage instance can be accessed as if it were a Python dictionary. For instance, the following code
(which assumes that thecontent-type header and blank line have already been printed) checks that the fields
name andaddr are both set to a non-empty string:

form = cgi.FieldStorage()
form_ok = 0
if form.has_key("name") and form.has_key("addr"):

if form["name"].value != "" and form["addr"].value != "":
form_ok = 1

if not form_ok:
print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return

...further form processing here...

Here the fields, accessed through ‘form[key] ’, are themselves instances ofFieldStorage (or MiniField-
Storage , depending on the form encoding).

If the submitted form data contains more than one field with the same name, the object retrieved by ‘form[key] ’ is
not aFieldStorage or MiniFieldStorage instance but a list of such instances. If you expect this possibility
(i.e., when your HTML form comtains multiple fields with the same name), use thetype() function to determine
whether you have a single instance or a list of instances. For example, here’s code that concatenates any number of
username fields, separated by commas:

username = form["username"]
if type(username) is type([]):

Multiple username fields specified
usernames = ""
for item in username:

if usernames:
Next item -- insert comma
usernames = usernames + "," + item.value

else:
First item -- don’t insert comma
usernames = item.value

else:
Single username field specified
usernames = username.value

If a field represents an uploaded file, the value attribute reads the entire file in memory as a string. This may not be
what you want. You can test for an uploaded file by testing either the filename attribute or the file attribute. You can
then read the data at leasure from the file attribute:

fileitem = form["userfile"]
if fileitem.file:

It’s an uploaded file; count lines
linecount = 0
while 1:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

11.1. Standard Module cgi 151

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-likeFieldStorage item. This can be deter-
mined by testing itstype attribute, which should bemultipart/form-data (or perhaps another MIME type matching
multipart/*). It this case, it can be iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of typeapplication/x-www-
form-urlencoded), the items will actually be instances of the classMiniFieldStorage . In this case, the list, file
and filename attributes are alwaysNone.

Old classes

These classes, present in earlier versions of thecgi module, are still supported for backward compatibility. New
applications should use theFieldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in the form
only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values). Useful if
your form contains multiple fields with the same name.

Other classes (FormContent , InterpFormContentDict) are present for backwards compatibility with really
old applications only. If you still use these and would be inconvenienced when they disappeared from a next version
of this module, drop me a note.

Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

parse (fp)
Parse a query in the environment or from a file (defaultsys.stdin).

parse qs (qs)
Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded).

parse multipart (fp, pdict)
Parse input of typemultipart/form-data (for file uploads). Arguments arefp for the input file andpdict for the
dictionary containing other parameters ofcontent-type header

Returns a dictionary just likeparse qs() keys are the field names, each value is a list of values for that field.
This is easy to use but not much good if you are expecting megabytes to be uploaded — in that case, use the
FieldStorage class instead which is much more flexible. Note thatcontent-type is the raw, unparsed
contents of thecontent-type header.

Note that this does not parse nested multipart parts — useFieldStorage for that.

parse header (string)
Parse a header likecontent-type into a main content-type and a dictionary of parameters.

test ()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the script in HTML form.

print environ ()
Format the shell environment in HTML.

print form (form)
Format a form in HTML.

152 Chapter 11. Internet and WWW Services

print directory ()
Format the current directory in HTML.

print environ usage ()
Print a list of useful (used by CGI) environment variables in HTML.

escape (s[, quote])
Convert the characters ‘&’, ‘ <’ and ‘>’ in string s to HTML-safe sequences. Use this if you need to display text
that might contain such characters in HTML. If the optional flagquoteis true, the double quote character (‘" ’)
is also translated; this helps for inclusion in an HTML attribute value, e.g. in .

Caring about security

There’s one important rule: if you invoke an external program (e.g. via theos.system() or os.popen() func-
tions), make very sure you don’t pass arbitrary strings received from the client to the shell. This is a well-known
security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script to invoke arbitrary shell
commands. Even parts of the URL or field names cannot be trusted, since the request doesn’t have to come from your
form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only alphanumeric characters, dashes, underscores, and periods.

Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGI scripts should be installed; usually this is in a directory ‘cgi-bin’ in the server tree.

Make sure that your script is readable and executable by “others”; the UNIX file mode should be0755 octal (use
‘chmod 0755 filename ’). Make sure that the first line of the script contains#! starting in column 1 followed by
the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others” — their
mode should be0644 for readable and0666 for writable. This is because, for security reasons, the HTTP server
executes your script as user “nobody”, without any special privileges. It can only read (write, execute) files that
everybody can read (write, execute). The current directory at execution time is also different (it is usually the server’s
cgi-bin directory) and the set of environment variables is also different from what you get at login. In particular, don’t
count on the shell’s search path for executables ($PATH) or the Python module search path ($PYTHONPATH) to be
set to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can change the
path in your script, before importing other modules, e.g.:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-UNIX systems will vary; check your HTTP server’s documentation (it will usually have a section
on CGI scripts).

11.1. Standard Module cgi 153

Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There’s one reason why you should
still test your script from the command line: if it contains a syntax error, the Python interpreter won’t execute it at all,
and the HTTP server will most likely send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section.

Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script carefully can
save you a lot of time. If you wonder whether you have understood the installation procedure correctly, try installing a
copy of this module file (‘cgi.py’) as a CGI script. When invoked as a script, the file will dump its environment and the
contents of the form in HTML form. Give it the right mode etc, and send it a request. If it’s installed in the standard
‘cgi-bin’ directory, it should be possible to send it a request by entering a URL into your browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a different directory.
If it gives another error (e.g. 500), there’s an installation problem that you should fix before trying to go any further.
If you get a nicely formatted listing of the environment and form content (in this example, the fields should be listed
as “addr” with value “At Home” and “name” with value “Joe Blow”), the ‘cgi.py’ script has been installed correctly.
If you follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call thecgi module’stest() function from your script: replace its main code with the
single statement

cgi.test()

This should produce the same results as those gotten from installing the ‘cgi.py’ file itself.

When an ordinary Python script raises an unhandled exception (e.g. because of a typo in a module name, a file that
can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter will still
do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP server’s
log file, or be discarded altogether.

Fortunately, once you have managed to get your script to executesomecode, it is easy to catch exceptions and cause
a traceback to be printed. Thetest() function below in this module is an example. Here are the rules:

1. Import the traceback module before entering thetry ... except statement

2. Assignsys.stderr to besys.stdout

3. Make sure you finish printing the headers and the blank line early

4. Wrap all remaining code in atry ... except statement

5. In the except clause, calltraceback.print exc()

For example:

154 Chapter 11. Internet and WWW Services

import sys
import traceback
print "Content-type: text/html"
print
sys.stderr = sys.stdout
try:

...your code here...
except:

print "\n\n<PRE>"
traceback.print_exc()

Notes: The assignment tosys.stderr is needed because the traceback prints tosys.stderr . The
print "\n\n<PRE>" statement is necessary to disable the word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you can use an even more robust
approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print "Content-type: text/plain"
print
...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text, which
disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it raises an
exception, most likely after the first two lines have been printed, a traceback will be displayed. Because no HTML
interpretation is going on, the traceback will readable.

Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is not
possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (‘tail -f logfile ’ in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like ‘python script.py ’.

• When using any of the debugging techniques, don’t forget to add ‘import sys ’ to the top of the script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute path names
— $PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by every user on the system.

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security liability as
well.

11.2 Standard Module urllib

This module provides a high-level interface for fetching data across the World-Wide Web. In particular, theur-
lopen() function is similar to the built-in functionopen() , but accepts Universal Resource Locators (URLs)

11.2. Standard Module urllib 155

instead of filenames. Some restrictions apply — it can only open URLs for reading, and no seek operations are
available.

It defines the following public functions:

urlopen (url)
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier, or if it has
‘file:’ as its scheme identifier, this opens a local file; otherwise it opens a socket to a server somewhere on the
network. If the connection cannot be made, or if the server returns an error code, theIOError exception is
raised. If all went well, a file-like object is returned. This supports the following methods:read() , read-
line() , readlines() , fileno() , close() andinfo() . Except for the last one, these methods have
the same interface as for file objects — see section 2.1 in this manual. (It is not a built-in file object, however,
so it can’t be used at those few places where a true built-in file object is required.)

The info() method returns an instance of the classmimetools.Message containing the headers received
from the server, if the protocol uses such headers (currently the only supported protocol that uses this is HTTP).
See the description of themimetools module.

urlretrieve (url)
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file, or a valid
cached copy of the object exists, the object is not copied. Return a tuple(filename, headers) wherefilename
is the local file name under which the object can be found, andheadersis eitherNone (for a local object) or
whatever theinfo() method of the object returned byurlopen() returned (for a remote object, possibly
cached). Exceptions are the same as forurlopen() .

urlcleanup ()
Clear the cache that may have been built up by previous calls tourlretrieve() .

quote (string[, addsafe])
Replace special characters instring using the ‘%xx’ escape. Letters, digits, and the characters ‘,.- ’ are never
quoted. The optionaladdsafeparameter specifies additional characters that should not be quoted — its default
value is’/’ .

Example:quote(’/˜connolly/’) yields ’/%7econnolly/’ .

quote plus (string[, addsafe])
Like quote() , but also replaces spaces by plus signs, as required for quoting HTML form values.

unquote (string)
Replace ‘%xx’ escapes by their single-character equivalent.

Example:unquote(’/%7Econnolly/’) yields ’/˜connolly/’ .

unquote plus (string)
Like unquote() , but also replaces plus signs by spaces, as required for unquoting HTML form values.

Restrictions:

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but not Gopher-+),
FTP, and local files.

• The caching feature ofurlretrieve() has been disabled until I find the time to hack proper processing of
Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL is
re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• Theurlopen() andurlretrieve() functions can cause arbitrarily long delays while waiting for a net-
work connection to be set up. This means that it is difficult to build an interactive web client using these functions
without using threads.

156 Chapter 11. Internet and WWW Services

• The data returned byurlopen() or urlretrieve() is the raw data returned by the server. This may be
binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol provides type information in
the reply header, which can be inspected by looking at thecontent-type header. For the Gopher protocol,
type information is encoded in the URL; there is currently no easy way to extract it. If the returned data is
HTML, you can use the modulehtmllib to parse it.

• Although theurllib module contains (undocumented) routines to parse and unparse URL strings, the recom-
mended interface for URL manipulation is in moduleurlparse .

11.3 Standard Module httplib

This module defines a class which implements the client side of the HTTP protocol. It is normally not used directly
— the moduleurllib uses it to handle URLs that use HTTP.

The module defines one class,HTTP:

HTTP([host[, port]])
An HTTP instance represents one transaction with an HTTP server. It should be instantiated passing it a host
and optional port number. If no port number is passed, the port is extracted from the host string if it has the
form host: port, else the default HTTP port (80) is used. If no host is passed, no connection is made, and the
connect() method should be used to connect to a server. For example, the following calls all create instances
that connect to the server at the same host and port:

>>> h1 = httplib.HTTP(’www.cwi.nl’)
>>> h2 = httplib.HTTP(’www.cwi.nl:80’)
>>> h3 = httplib.HTTP(’www.cwi.nl’, 80)

Once anHTTPinstance has been connected to an HTTP server, it should be used as follows:

1.Make exactly one call to theputrequest() method.

2.Make zero or more calls to theputheader() method.

3.Call theendheaders() method (this can be omitted if step 4 makes no calls).

4.Optional calls to thesend() method.

5.Call thegetreply() method.

6.Call thegetfile() method and read the data off the file object that it returns.

HTTP Objects

HTTPinstances have the following methods:

set debuglevel (level)
Set the debugging level (the amount of debugging output printed). The default debug level is0, meaning no
debugging output is printed.

connect (host[, port])
Connect to the server given byhostandport. See the intro for the default port. This should be called directly
only if the instance was instantiated without passing a host.

send (data)
Send data to the server. This should be used directly only after theendheaders() method has been called
and beforegetreply() has been called.

putrequest (request, selector)
This should be the first call after the connection to the server has been made. It sends a line to the server
consisting of therequeststring, theselectorstring, and the HTTP version (HTTP/1.0).

11.3. Standard Module httplib 157

putheader (header, argument[, ...])
Send an RFC 822 style header to the server. It sends a line to the server consisting of the header, a colon and a
space, and the first argument. If more arguments are given, continuation lines are sent, each consisting of a tab
and an argument.

endheaders ()
Send a blank line to the server, signalling the end of the headers.

getreply ()
Complete the request by shutting down the sending end of the socket, read the reply from the server, and return a
triple (replycode, message, headers) . Here,replycodeis the integer reply code from the request (e.g.200 if
the request was handled properly);messageis the message string corresponding to the reply code; andheaders
is an instance of the classmimetools.Message containing the headers received from the server. See the
description of themimetools module.

getfile ()
Return a file object from which the data returned by the server can be read, using theread() , readline()
or readlines() methods.

Example

Here is an example session:

>>> import httplib
>>> h = httplib.HTTP(’www.cwi.nl’)
>>> h.putrequest(’GET’, ’/index.html’)
>>> h.putheader(’Accept’, ’text/html’)
>>> h.putheader(’Accept’, ’text/plain’)
>>> h.endheaders()
>>> errcode, errmsg, headers = h.getreply()
>>> print errcode # Should be 200
>>> f = h.getfile()
>>> data = f.read() # Get the raw HTML
>>> f.close()

11.4 Standard Module ftplib

This module defines the classFTP and a few related items. TheFTP class implements the client side of the FTP
protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as mirroring
other ftp servers. It is also used by the moduleurllib to handle URLs that use FTP. For more information on FTP
(File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using theftplib module:

158 Chapter 11. Internet and WWW Services

>>> from ftplib import FTP
>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port
>>> ftp.login() # user anonymous, passwd user@hostname
>>> ftp.retrlines(’LIST’) # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

.

.

.
>>> ftp.quit()

The module defines the following items:

FTP([host[, user[, passwd[, acct]]]])
Return a new instance of theFTP class. Whenhostis given, the method callconnect(host) is made. When
user is given, additionally the method calllogin(user, passwd, acct) is made (wherepasswdandacct
default to the empty string when not given).

all errors
The set of all exceptions (as a tuple) that methods ofFTP instances may raise as a result of problems with the
FTP connection (as opposed to programming errors made by the caller). This set includes the four exceptions
listed below as well assocket.error andIOError .

error reply
Exception raised when an unexpected reply is received from the server.

error temp
Exception raised when an error code in the range 400–499 is received.

error perm
Exception raised when an error code in the range 500–599 is received.

error proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.

FTP Objects

FTP instances have the following methods:

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request. A value of2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

connect (host[, port])
Connect to the given host and port. The default port number is21 , as specified by the FTP protocol specification.
It is rarely needed to specify a different port number. This function should be called only once for each instance;
it should not be called at all if a host was given when the instance was created. All other methods can only be
used after a connection has been made.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

login ([user[, passwd[, acct]]])

11.4. Standard Module ftplib 159

Log in as the givenuser. Thepasswdandacct parameters are optional and default to the empty string. If no
user is specified, it defaults to’anonymous’ . If user is anonymous , the defaultpasswdis ‘realuser@host’
whererealuseris the real user name (glanced from the $LOGNAME or $USER environment variable) andhost
is the hostname as returned bysocket.gethostname() . This function should be called only once for each
instance, after a connection has been established; it should not be called at all if a host and user were given when
the instance was created. Most FTP commands are only allowed after the client has logged in.

abort ()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd (command)
Send a simple command string to the server and return the response string.

voidcmd (command)
Send a simple command string to the server and handle the response. Return nothing if a response code in the
range 200–299 is received. Raise an exception otherwise.

retrbinary (command, callback[, maxblocksize])
Retrieve a file in binary transfer mode.commandshould be an appropriate ‘RETR’ command, i.e.
’RETR filename’ . The callback function is called for each block of data received, with a single string ar-
gument giving the data block. The optionalmaxblocksizeargument specifies the maximum chunk size to read
on the low-level socket object created to do the actual transfer (which will also be the largest size of the data
blocks passed tocallback). A reasonable default is chosen.

retrlines (command[, callback])
Retrieve a file or directory listing inASCII transfer mode.commandshould be an appropriate ‘RETR’ command
(seeretrbinary() or a ‘LIST ’ command (usually just the string’LIST’). Thecallbackfunction is called
for each line, with the trailing CRLF stripped. The defaultcallbackprints the line tosys.stdout .

storbinary (command, file, blocksize)
Store a file in binary transfer mode. command should be an appropriate ‘STOR’ command, i.e.
"STOR filename" . file is an open file object which is read untilEOF using itsread() method in blocks
of sizeblocksizeto provide the data to be stored.

storlines (command, file)
Store a file in ASCII transfer mode. command should be an appropriate ‘STOR’ command (see
storbinary()). Lines are read untilEOF from the open file objectfile using itsreadline() method
to privide the data to be stored.

nlst (argument[, . . .])
Return a list of files as returned by the ‘NLST’ command. The optionalargumentis a directory to list (default
is the current server directory). Multiple arguments can be used to pass non-standard options to the ‘NLST’
command.

dir (argument[, . . .])
Return a directory listing as returned by the ‘LIST ’ command, as a list of lines. The optionalargumentis a
directory to list (default is the current server directory). Multiple arguments can be used to pass non-standard
options to the ‘LIST ’ command. If the last argument is a function, it is used as acallback function as for
retrlines() .

rename (fromname, toname)
Rename filefromnameon the server totoname.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

160 Chapter 11. Internet and WWW Services

quit ()
Send a ‘QUIT’ command to the server and close the connection. This is the “polite” way to close a connection,
but it may raise an exception of the server reponds with an error to the ‘QUIT’ command.

close ()
Close the connection unilaterally. This should not be applied to an already closed connection (e.g. after a
successful call toquit() .

11.5 Standard Module gopherlib

This module provides a minimal implementation of client side of the the Gopher protocol. It is used by the module
urllib to handle URLs that use the Gopher protocol.

The module defines the following functions:

send selector (selector, host[, port])
Send aselectorstring to the gopher server athostandport (default70). Returns an open file object from which
the returned document can be read.

send query (selector, query, host[, port])
Send aselectorstring and aquerystring to a gopher server athostandport (default70). Returns an open file
object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character of the selector
string. If the data is text (first character of the selector is ‘0’), lines are terminated by CRLF, and the data is terminated
by a line consisting of a single ‘. ’, and a leading ‘. ’ should be stripped from lines that begin with ‘.. ’. Directory
listings (first character of the selector is ‘1’) are transferred using the same protocol.

11.6 Standard Module imaplib

This module defines a class,IMAP4, which encapsulates a connection to an IMAP4 server and implements the
IMAP4rev1 client protocol as defined in RFC 2060. It is backward compatible with IMAP4 (RFC 1730) servers,
but note that the ‘STATUS’ command is not supported in IMAP4.

A single class is provided by theimaplib module:

IMAP4([host[, port]])
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4 or
IMAP4rev1) is determined when the instance is initialized. Ifhost is not specified,’’ (the local host) is used.
If port is omitted, the standard IMAP4 port (143) is used.

Two exceptions are defined as attributes of theIMAP4 class:

IMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

IMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class ofIMAP4.error . Note that closing
the instance and instantiating a new one will usually allow recovery from this exception.

The following utility functions are defined:

Internaldate2tuple (datestr)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returns atime module tuple.

Int2AP (num)
Converts an integer into a string representation using characters from the set [A .. P].

11.5. Standard Module gopherlib 161

ParseFlags (flagstr)
Converts an IMAP4 ‘FLAGS’ response to a tuple of individual flags.

Time2Internaldate (date time)
Converts atime module tuple to an IMAP4 ‘INTERNALDATE’ representation. Returns a string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMM"(including double-quotes).

IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

Each command returns a tuple:(type, [data, ...]) wheretype is usually’OK’ or ’NO’ , anddata is either the text
from the command response, or mandated results from the command.

An IMAP4 instance has the following methods:

append (mailbox, flags, datetime, message)
Append message to named mailbox.

authenticate (func)
Authenticate command — requires response processing. This is currently unimplemented, and raises an excep-
tion.

check ()
Checkpoint mailbox on server.

close ()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command before ‘LOGOUT’.

copy (messageset, newmailbox)
Copymessagesetmessages onto end ofnewmailbox.

create (mailbox)
Create new mailbox namedmailbox.

delete (mailbox)
Delete old mailbox namedmailbox.

expunge ()
Permanently remove deleted items from selected mailbox. Generates an ‘EXPUNGE’ response for each deleted
message. Returned data contains a list of ‘EXPUNGE’ message numbers in order received.

fetch (messageset, messageparts)
Fetch (parts of) messages. Returned data are tuples of message part envelope and data.

list ([directory[, pattern]])
List mailbox names indirectory matchingpattern. directory defaults to the top-level mail folder, andpattern
defaults to match anything. Returned data contains a list of ‘LIST ’ responses.

login (user, password)
Identify the client using a plaintext password.

logout ()
Shutdown connection to server. Returns server ‘BYE’ response.

lsub ([directory[, pattern]])
List subscribed mailbox names in directory matching pattern.directorydefaults to the top level directory and
patterndefaults to match any mailbox. Returned data are tuples of message part envelope and data.

recent ()
Prompt server for an update. Returned data isNone if no new messages, else value of ‘RECENT’ response.

162 Chapter 11. Internet and WWW Services

rename (oldmailbox, newmailbox)
Rename mailbox namedoldmailboxto newmailbox.

response (code)
Return data for responsecodeif received, orNone. Returns the given code, instead of the usual type.

search (charset, criteria)
Search mailbox for matching messages. Returned data contains a space separated list of matching message
numbers.

select ([mailbox[, readonly]])
Select a mailbox. Returned data is the count of messages inmailbox(‘EXISTS’ response). The defaultmailbox
is ’INBOX’ . If the readonlyflag is set, modifications to the mailbox are not allowed.

status (mailbox, names)
Request named status conditions formailbox.

store (messageset, command, flaglist)
Alters flag dispositions for messages in mailbox.

subscribe (mailbox)
Subscribe to new mailbox.

uid (command, args)
Execute command args with messages identified by UID, rather than message number. Returns response appro-
priate to command.

unsubscribe (mailbox)
Unsubscribe from old mailbox.

xatom (name[, arg1[, arg2]])
Allow simple extension commands notified by server in ‘CAPABILITY ’ response.

The following attributes are defined on instances ofIMAP4:

PROTOCOLVERSION
The most recent supported protocol in the ‘CAPABILITY ’ response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module variableDebug. Values
greater than three trace each command.

IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib, string
M = imaplib.IMAP4()
M.LOGIN(getpass.getuser(), getpass.getpass())
M.SELECT()
typ, data = M.SEARCH(None, ’ALL’)
for num in string.split(data[0]):

typ, data - M.FETCH(num, ’(RFC822)’)
print ’Message %s\n%s\n’ % (num, data[0][1])

M.LOGOUT()

Note that IMAP4 message numbers change as the mailbox changes, so it is highly advisable to use UIDs instead, with
the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

11.6. Standard Module imaplib 163

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found at the
University of Washington’sIMAP Information Center(http://www.cac.washington.edu/imap/).

11.7 Standard Module nntplib

This module defines the classNNTPwhich implements the client side of the NNTP protocol. It can be used to
implement a news reader or poster, or automated news processors. For more information on NNTP (Network News
Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of
the last 10 articles:

>>> s = NNTP(’news.cwi.nl’)
>>> resp, count, first, last, name = s.group(’comp.lang.python’)
>>> print ’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last
Group comp.lang.python has 59 articles, range 3742 to 3803
>>> resp, subs = s.xhdr(’subject’, first + ’-’ + last)
>>> for id, sub in subs[-10:]: print id, sub
...
3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?
3794 Emacs and doc strings
3795 a few questions about the Mac implementation
3796 Re: executable python scripts
3797 Re: executable python scripts
3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules
3802 Re: executable python scripts
3803 Re: \POSIX{} wait and SIGCHLD
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(’news.cwi.nl’)
>>> f = open(’/tmp/article’)
>>> s.post(f)
’240 Article posted successfully.’
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

NNTP(host[, port])
Return a new instance of theNNTPclass, representing a connection to the NNTP server running on hosthost,
listening at portport. The defaultport is 119.

error reply
Exception raised when an unexpected reply is received from the server.

error temp
Exception raised when an error code in the range 400–499 is received.

error perm

164 Chapter 11. Internet and WWW Services

Exception raised when an error code in the range 500–599 is received.

error proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.

NNTP Objects

NNTP instances have the following methods. Theresponsethat is returned as the first item in the return tuple of almost
all methods is the server’s response: a string beginning with a three-digit code. If the server’s response indicates an
error, the method raises one of the above exceptions.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request or response. A value of2 or higher produces the maximum amount of debugging output,
logging each line sent and received on the connection (including message text).

newgroups (date, time)
Send a ‘NEWGROUPS’ command. Thedateargument should be a string of the form" yymmdd" indicating the
date, andtimeshould be a string of the form" hhmmss" indicating the time. Return a pair(response, groups)
wheregroupsis a list of group names that are new since the given date and time.

newnews(group, date, time)
Send a ‘NEWNEWS’ command. Here,group is a group name or’*’ , anddateandtimehave the same meaning
as fornewgroups() . Return a pair(response, articles) wherearticles is a list of article ids.

list ()
Send a ‘LIST ’ command. Return a pair(response, list) wherelist is a list of tuples. Each tuple has the form
(group, last, first, flag) , wheregroup is a group name,last andfirst are the last and first article numbers
(as strings), andflag is ’y’ if posting is allowed,’n’ if not, and’m’ if the newsgroup is moderated. (Note the
ordering:last, first.)

group (name)
Send a ‘GROUP’ command, wherenameis the group name. Return a tuple(response, count, first, last,
name) wherecount is the (estimated) number of articles in the group,first is the first article number in the
group, last is the last article number in the group, andnameis the group name. The numbers are returned as
strings.

help ()
Send a ‘HELP’ command. Return a pair(response, list) wherelist is a list of help strings.

stat (id)
Send a ‘STAT’ command, whereid is the message id (enclosed in ‘<’ and ‘>’) or an article number (as a string).
Return a triple(response, number, id) wherenumberis the article number (as a string) andid is the article
id (enclosed in ‘<’ and ‘>’).

next ()
Send a ‘NEXT’ command. Return as forstat() .

last ()
Send a ‘LAST’ command. Return as forstat() .

head (id)
Send a ‘HEAD’ command, whereid has the same meaning as forstat() . Return a pair(response, list)
wherelist is a list of the article’s headers (an uninterpreted list of lines, without trailing newlines).

11.7. Standard Module nntplib 165

body (id)
Send a ‘BODY’ command, whereid has the same meaning as forstat() . Return a pair(response, list)
wherelist is a list of the article’s body text (an uninterpreted list of lines, without trailing newlines).

article (id)
Send a ‘ARTICLE’ command, whereid has the same meaning as forstat() . Return a pair(response, list)
wherelist is a list of the article’s header and body text (an uninterpreted list of lines, without trailing newlines).

slave ()
Send a ‘SLAVE’ command. Return the server’sresponse.

xhdr (header, string)
Send an ‘XHDR’ command. This command is not defined in the RFC but is a common extension. Theheader
argument is a header keyword, e.g.’subject’ . Thestringargument should have the form" first- last" where
first andlast are the first and last article numbers to search. Return a pair(response, list) , wherelist is a list
of pairs(id, text) , whereid is an article id (as a string) andtext is the text of the requested header for that
article.

post (file)
Post an article using the ‘POST’ command. Thefile argument is an open file object which is read until EOF
using itsreadline() method. It should be a well-formed news article, including the required headers. The
post() method automatically escapes lines beginning with ‘. ’.

ihave (id, file)
Send an ‘IHAVE’ command. If the response is not an error, treatfile exactly as for thepost() method.

date ()
Return a triple(response, date, time) , containing the current date and time in a form suitable for the
newnews() andnewgroups() methods. This is an optional NNTP extension, and may not be supported by
all servers.

xgtitle (name)
Process an ‘XGTITLE’ command, returning a pair(response, list) , wherelist is a list of tuples containing
(name, title) . This is an optional NNTP extension, and may not be supported by all servers.

xover (start, end)
Return a pair(resp, list) . list is a list of tuples, one for each article in the range delimited by thestart and
endarticle numbers. Each tuple is of the form(article number, subject, poster, date, id, references, size,
lines) . This is an optional NNTP extension, and may not be supported by all servers.

xpath (id)
Return a pair(resp, path) , wherepath is the directory path to the article with message IDid. This is an
optional NNTP extension, and may not be supported by all servers.

quit ()
Send a ‘QUIT’ command and close the connection. Once this method has been called, no other methods of the
NNTP object should be called.

11.8 Standard Module urlparse

This module defines a standard interface to break URL strings up in components (addessing scheme, network location,
path etc.), to combine the components back into a URL string, and to convert a “relative URL” to an absolute URL
given a “base URL”.

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and discovered a
bug in an earlier draft!). Refer to RFC 1808 for details on relative URLs and RFC 1738 for information on basic URL
syntax.

It defines the following functions:

166 Chapter 11. Internet and WWW Services

urlparse (urlstring[, defaultscheme[, allow fragments]])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
scheme:// netloc/ path; parameters?query#fragment. Each tuple item is a string, possibly empty. The com-
ponents are not broken up in smaller parts (e.g. the network location is a single string), and % escapes are not
expanded. The delimiters as shown above are not part of the tuple items, except for a leading slash in thepath
component, which is retained if present.

Example:

urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

(’http’, ’www.cwi.nl:80’, ’/%7Eguido/Python.html’, ’’, ’’, ’’)

If the default schemeargument is specified, it gives the default addressing scheme, to be used only if the URL
string does not specify one. The default value for this argument is the empty string.

If the allow fragmentsargument is zero, fragment identifiers are not allowed, even if the URL’s addressing
scheme normally does support them. The default value for this argument is1.

urlunparse (tuple)
Construct a URL string from a tuple as returned byurlparse() . This may result in a slightly different, but
equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g. a ? with an empty query
(the draft states that these are equivalent).

urljoin (base, url[, allow fragments])
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative URL” (url). Informally,
this uses components of the base URL, in particular the addressing scheme, the network location and (part of)
the path, to provide missing components in the relative URL.

Example:

urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)

yields the string

’http://www.cwi.nl/%7Eguido/FAQ.html’

Theallow fragmentsargument has the same meaning as forurlparse() .

11.9 Standard Module sgmllib

This module defines a classSGMLParser which serves as the basis for parsing text files formatted in SGML (Stan-
dard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it only parses SGML insofar
as it is used by HTML, and the module only exists as a base for thehtmllib module.

SGMLParser ()
TheSGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the following
constructs:

•Opening and closing tags of the form ‘<tag attr=" value" ...> ’ and ‘</ tag>’, respectively.

•Numeric character references of the form ‘&#name; ’.

•Entity references of the form ‘&name; ’.

•SGML comments of the form ‘<!-- text--> ’. Note that spaces, tabs, and newlines are allowed between
the trailing ‘>’ and the immediately preceeding ‘-- ’.

11.9. Standard Module sgmllib 167

SGMLParser instances have the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the HTML
tag<PLAINTEXT> can be implemented.)

setliteral ()
Enter literal mode (CDATA mode).

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close() .

handle starttag (tag, method, attributes)
This method is called to handle start tags for which either astart tag() or do tag() method has been
defined. Thetag argument is the name of the tag converted to lower case, and themethodargument is the
bound method which should be used to support semantic interpretation of the start tag. Theattributesar-
gument is a list of(name, value) pairs containing the attributes found inside the tag’s<> brackets. The
namehas been translated to lower case and double quotes and backslashes in thevalue have been inter-
preted. For instance, for the tag , this method would be called as
‘unknown starttag(’a’, [(’href’, ’http://www.cwi.nl/’)]) ’. The base implementation
simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which anend tag() method has been defined. Thetag argument
is the name of the tag converted to lower case, and themethodargument is the bound method which should
be used to support semantic interpretation of the end tag. If noend tag() method is defined for the closing
element, this handler is not called. The base implementation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. In the base implementa-
tion, ref must be a decimal number in the range 0-255. It translates the character toASCII and calls the
methodhandle data() with the character as argument. Ifref is invalid or out of range, the method
unknown charref(ref) is called to handle the error. A subclass must override this method to provide
support for named character entities.

handle entityref (ref)
This method is called to process a general entity reference of the form ‘&ref ; ’ where ref is an general entity
reference. It looks forref in the instance (or class) variableentitydefs which should be a mapping from
entity names to corresponding translations. If a translation is found, it calls the methodhandle data()
with the translation; otherwise, it calls the methodunknown entityref(ref) . The defaultentitydefs
defines translations for& , &apos , > , < , and" .

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the
text between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<!--text--> ’ will cause this method to be called with the argument’text’ . The default method does
nothing.

168 Chapter 11. Internet and WWW Services

report unbalanced (tag)
This method is called when an end tag is found which does not correspond to any open element.

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. Refer tohandle charref()
to determine what is handled by default. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of the following
form to define processing of specific tags. Tag names in the input stream are case independent; thetag occurring in
method names must be in lower case:

start tag(attributes)
This method is called to process an opening tagtag. It has preference overdo tag() . Theattributesargument
has the same meaning as described forhandle starttag() above.

do tag(attributes)
This method is called to process an opening tagtag that does not come with a matching closing tag. The
attributesargument has the same meaning as described forhandle starttag() above.

end tag()
This method is called to process a closing tagtag.

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags processed
by start tag() are pushed on this stack. Definition of anend tag() method is optional for these tags. For tags
processed bydo tag() or by unknown tag() , no end tag() method must be defined; if defined, it will not be
used. If bothstart tag() anddo tag() methods exist for a tag, thestart tag() method takes precedence.

11.10 Standard Module htmllib

This module defines a class which can serve as a base for parsing text files formatted in the HyperText Mark-up
Language (HTML). The class is not directly concerned with I/O — it must be provided with input in string form via
a method, and makes calls to methods of a “formatter” object in order to produce output. TheHTMLParser class is
designed to be used as a base class for other classes in order to add functionality, and allows most of its methods to
be extended or overridden. In turn, this class is derived from and extends theSGMLParser class defined in module
sgmllib . TheHTMLParser implementation supports the HTML 2.0 language as described in RFC 1866. Two
implementations of formatter objects are provided in theformatter module; refer to the documentation for that
module for information on the formatter interface.

The following is a summary of the interface defined bysgmllib.SGMLParser :

• The interface to feed data to an instance is through thefeed() method, which takes a string argument. This can
be called with as little or as much text at a time as desired; ‘p.feed(a); p.feed(b) ’ has the same effect as
‘p.feed(a+b) ’. When the data contains complete HTML tags, these are processed immediately; incomplete
elements are saved in a buffer. To force processing of all unprocessed data, call theclose() method.

11.10. Standard Module htmllib 169

For example, to parse the entire contents of a file, use:

parser.feed(open(’myfile.html’).read())
parser.close()

• The interface to define semantics for HTML tags is very simple: derive a class and define methods called
start tag() , end tag() , or do tag() . The parser will call these at appropriate moments:start tag or
do tag() is called when an opening tag of the form<tag ...> is encountered;end tag() is called when a
closing tag of the form<tag> is encountered. If an opening tag requires a corresponding closing tag, like<H1>
... </H1> , the class should define thestart tag() method; if a tag requires no closing tag, like<P>, the class
should define thedo tag() method.

The module defines a single class:

HTMLParser (formatter)
This is the basic HTML parser class. It supports all entity names required by the HTML 2.0 specification (RFC
1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements.

In addition to tag methods, theHTMLParser class provides some additional methods and instance variables for use
within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should be. In
general, this should only be true when character data is to be treated as “preformatted” text, as within a<PRE>
element. The default value is false. This affects the operation ofhandle data() andsave end() .

anchor bgn (href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes of the<A> tag
with the same names. The default implementation maintains a list of hyperlinks (defined by thehref attribute)
within the document. The list of hyperlinks is available as the data attributeanchorlist .

anchor end ()
This method is called at the end of an anchor region. The default implementation adds a textual footnote marker
using an index into the list of hyperlinks created byanchor bgn() .

handle image (source, alt[, ismap[, align[, width[, height]]]])
This method is called to handle images. The default implementation simply passes thealt value to thehan-
dle data() method.

save bgn ()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the stored data via
save end() . Use of thesave bgn() / save end() pair may not be nested.

save end ()
Ends buffering character data and returns all data saved since the preceeding call tosave bgn() . If the
nofill flag is false, whitespace is collapsed to single spaces. A call to this method without a preceeding call
to save bgn() will raise aTypeError exception.

11.11 Standard Module xmllib

This module defines a classXMLParser which serves as the basis for parsing text files formatted in XML (eXtended
Markup Language).

170 Chapter 11. Internet and WWW Services

XMLParser ()
TheXMLParser class must be instantiated without arguments.

This class provides the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at the instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA).

setliteral ()
Enter literal mode (CDATA mode).

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close() .

translate references (data)
Translate all entity and character references indataand returns the translated string.

handle xml (encoding, standalone)
This method is called when the ‘<?xml ...?> ’ tag is processed. The arguments are the values of the en-
coding and standalone attributes in the tag. Both encoding and standalone are optional. The values passed to
handle xml() default toNone and the string’no’ respectively.

handle doctype (tag, data)
This method is called when the ‘<!DOCTYPE...> ’ tag is processed. The arguments are the name of the
root element and the uninterpreted contents of the tag, starting after the white space after the name of the root
element.

handle starttag (tag, method, attributes)
This method is called to handle start tags for which astart tag() method has been defined. The
tag argument is the name of the tag, and themethod argument is the bound method which should
be used to support semantic interpretation of the start tag. Theattributes argument is a dictio-
nary of attributes, the key being thename and the value being thevalue of the attribute found in-
side the tag’s <> brackets. Character and entity references in thevalue have been interpreted.
For instance, for the tag , this method would be called as
handle starttag(’A’, self.start A, {’HREF’: ’http://www.cwi.nl/’}) . The base
implementation simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which anend tag() method has been defined. Thetag argument
is the name of the tag, and themethodargument is the bound method which should be used to support semantic
interpretation of the end tag. If noend tag() method is defined for the closing element, this handler is not
called. The base implementation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. ref can either be a decimal number,
or a hexadecimal number when preceded by an ‘x ’. In the base implementation,ref must be a number in the
range 0-255. It translates the character toASCII and calls the methodhandle data() with the character as
argument. Ifref is invalid or out of range, the methodunknown charref(ref) is called to handle the error.

11.11. Standard Module xmllib 171

A subclass must override this method to provide support for character references outside of theASCII range.

handle entityref (ref)
This method is called to process a general entity reference of the form ‘&ref ; ’ where ref is an general entity
reference. It looks forref in the instance (or class) variableentitydefs which should be a mapping from
entity names to corresponding translations. If a translation is found, it calls the methodhandle data()
with the translation; otherwise, it calls the methodunknown entityref(ref) . The defaultentitydefs
defines translations for& , &apos , > , < , and" .

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the
text between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<!--text--> ’ will cause this method to be called with the argument’text’ . The default method does
nothing.

handle cdata (data)
This method is called when a CDATA element is encountered. Thedataargument is a string containing the text
between the ‘<![CDATA[’ and ‘]]> ’ delimiters, but not the delimiters themselves. For example, the entity
‘<![CDATA[text]]> ’ will cause this method to be called with the argument’text’ . The default method
does nothing, and is intended to be overridden.

handle proc (name, data)
This method is called when a processing instruction (PI) is encountered. Thenameis the PI target, and thedata
argument is a string containing the text between the PI target and the closing delimiter, but not the delimiter
itself. For example, the instruction ‘<?XML text?> ’ will cause this method to be called with the arguments
’XML’ and’text’ . The default method does nothing. Note that if a document starts with ‘<?xml ...?> ’,
handle xml() is called to handle it.

handle special (data)
This method is called when a declaration is encountered. Thedata argument is a string containing the
text between the ‘<! ’ and ‘>’ delimiters, but not the delimiters themselves. For example, the entity
‘<!ENTITY text> ’ will cause this method to be called with the argument’ENTITY text’ . The default
method does nothing. Note that ‘<!DOCTYPE ...> ’ is handled separately if it is located at the start of the
document.

syntax error (message)
This method is called when a syntax error is encountered. Themessageis a description of what was wrong.
The default method raises aRuntimeError exception. If this method is overridden, it is permissable for
it to return. This method is only called when the error can be recovered from. Unrecoverable errors raise a
RuntimeError without first callingsyntax error() .

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. It is intended to be overridden by a
derived class; the base class implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods and variables
of the following form to define processing of specific tags. Tag names in the input stream are case dependent; thetag
occurring in method names must be in the correct case:

172 Chapter 11. Internet and WWW Services

start tag(attributes)
This method is called to process an opening tagtag. The attributesargument has the same meaning as de-
scribed forhandle starttag() above. In fact, the base implementation ofhandle starttag() calls
this method.

end tag()
This method is called to process a closing tagtag.

tag attributes
If a class or instance variabletag attributes exists, it should be a list or a dictionary. If a list, the elements
of the list are the valid attributes for the elementtag; if a dictionary, the keys are the valid attributes for the
elementtag, and the values the default values of the attributes, orNone if there is no default. In addition to
the attributes that were present in the tag, the attribute dictionary that is passed tohandle starttag() and
unknown starttag() contains values for all attributes that have a default value.

11.12 Standard Module formatter

This module supports two interface definitions, each with mulitple implementations. Theformatter interface is used
by theHTMLParser class of thehtmllib module, and thewriter interface is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects. Format-
ters manage several stack structures to allow various properties of a writer object to be changed and restored; writers
need not be able to handle relative changes nor any sort of “change back” operation. Specific writer properties which
may be controlled via formatter objects are horizontal alignment, font, and left margin indentations. A mechanism
is provided which supports providing arbitrary, non-exclusive style settings to a writer as well. Additional interfaces
facilitate formatting events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as physical
devices. The provided implementations all work with abstract devices. The interface makes available mechanisms for
setting the properties which formatter objects manage and inserting data into the output.

The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces described
below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS IS
Value which can be used in the font specification passed to thepush font() method described below, or
as the new value to any otherpush property() method. Pushing theAS IS value allows the corresponding
pop property() method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end paragraph (blanklines)
Close any open paragraphs and insert at leastblanklinesbefore the next paragraph.

add line break ()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

add hor rule (*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph, but the log-
ical paragraph is not broken. The arguments and keywords are passed on to the writer’ssend line break()

11.12. Standard Module formatter 173

method.

add flowing data (data)
Provide data which should be formatted with collapsed whitespaces. Whitespace from preceeding and succes-
sive calls toadd flowing data() is considered as well when the whitespace collapse is performed. The
data which is passed to this method is expected to be word-wrapped by the output device. Note that any word-
wrapping still must be performed by the writer object due to the need to rely on device and font information.

add literal data (data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab characters,
are considered legal in the value ofdata.

add label data (format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used for constructing
bulleted or numbered lists. If theformatvalue is a string, it is interpreted as a format specification forcounter,
which should be an integer. The result of this formatting becomes the value of the label; ifformat is not a
string it is used as the label value directly. The label value is passed as the only argument to the writer’s
send label data() method. Interpretation of non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute label values.
Each character in the format string is copied to the label value, with some characters recognized to indicate a
transform on the counter value. Specifically, the character ‘1’ represents the counter value formatter as an arabic
number, the characters ‘A’ and ‘a’ represent alphabetic representations of the counter value in upper and lower
case, respectively, and ‘I ’ and ‘i ’ represent the counter value in Roman numerals, in upper and lower case.
Note that the alphabetic and roman transforms require that the counter value be greater than zero.

flush softspace ()
Send any pending whitespace buffered from a previous call toadd flowing data() to the associated writer
object. This should be called before any direct manipulation of the writer object.

push alignment (align)
Push a new alignment setting onto the alignment stack. This may beAS IS if no change is desired. If the
alignment value is changed from the previous setting, the writer’snew alignment() method is called with
thealign value.

pop alignment ()
Restore the previous alignment.

push font ((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set toAS IS are set to the
values passed in while others are maintained at their current settings. The writer’snew font() method is
called with the fully resolved font specification.

pop font ()
Restore the previous font.

push margin (margin)
Increase the number of left margin indentations by one, associating the logical tagmarginwith the new indenta-
tion. The initial margin level is0. Changed values of the logical tag must be true values; false values other than
AS IS are not sufficient to change the margin.

pop margin ()
Restore the previous margin.

push style (*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A tuple
representing the entire stack, includingAS IS values, is passed to the writer’snew styles() method.

pop style ([n = 1])
Pop the lastn style specifications passed topush style() . A tuple representing the revised stack, including
AS IS values, is passed to the writer’snew styles() method.

174 Chapter 11. Internet and WWW Services

set spacing (spacing)
Set the spacing style for the writer.

assert line data ([flag = 1])
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used when the
writer has been manipulated directly. The optionalflag argument can be set to false if the writer manipulations
produced a hard line break at the end of the output.

Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these classes
without modification or subclassing.

NullFormatter ([writer])
A formatter which does nothing. Ifwriter is omitted, aNullWriter instance is created. No methods of the
writer are called byNullFormatter instances. Implementations should inherit from this class if implement-
ing a writer interface but don’t need to inherit any implementation.

AbstractFormatter (writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may be
used directly in most circumstances. It has been used to implement a full-featured world-wide web browser.

The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described below
are the required interfaces which all writers must support once initialized. Note that while most applications can use
theAbstractFormatter class as a formatter, the writer must typically be provided by the application.

flush ()
Flush any buffered output or device control events.

new alignment (align)
Set the alignment style. Thealign value can be any object, but by convention is a string orNone, where
None indicates that the writer’s “preferred” alignment should be used. Conventionalalign values are’left’ ,
’center’ , ’right’ , and’justify’ .

new font (font)
Set the font style. The value offont will be None, indicating that the device’s default font should be used, or
a tuple of the form(size, italic, bold, teletype) . Size will be a string indicating the size of font that should be
used; specific strings and their interpretation must be defined by the application. Theitalic, bold, andteletype
values are boolean indicators specifying which of those font attributes should be used.

new margin (margin, level)
Set the margin level to the integerleveland the logical tag tomargin. Interpretation of the logical tag is at the
writer’s discretion; the only restriction on the value of the logical tag is that it not be a false value for non-zero
values oflevel.

new spacing (spacing)
Set the spacing style tospacing.

new styles (styles)
Set additional styles. Thestylesvalue is a tuple of arbitrary values; the valueAS IS should be ignored. The
stylestuple may be interpreted either as a set or as a stack depending on the requirements of the application and
writer implementation.

send line break ()
Break the current line.

11.12. Standard Module formatter 175

send paragraph (blankline)
Produce a paragraph separation of at leastblanklineblank lines, or the equivelent. Theblanklinevalue will be
an integer.

send hor rule (*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application- and
writer-specific, and should be interpreted with care. The method implementation may assume that a line break
has already been issued viasend line break() .

send flowing data (data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls to
this method, the writer may assume that spans of multiple whitespace characters have been collapsed to single
space characters.

send literal data (data)
Output character data which has already been formatted for display. Generally, this should be interpreted to
mean that line breaks indicated by newline characters should be preserved and no new line breaks should
be introduced. The data may contain embedded newline and tab characters, unlike data provided to the
send formatted data() interface.

send label data (data)
Setdata to the left of the current left margin, if possible. The value ofdata is not restricted; treatment of non-
string values is entirely application- and writer-dependent. This method will only be called at the beginning of
a line.

Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most applications will
need to derive new writer classes from theNullWriter class.

NullWriter ()
A writer which only provides the interface definition; no actions are taken on any methods. This should be the
base class for all writers which do not need to inherit any implementation methods.

AbstractWriter ()
A writer which can be used in debugging formatters, but not much else. Each method simply announces itself
by printing its name and arguments on standard output.

DumbWriter ([file[, maxcol = 72]])
Simple writer class which writes output on the file object passed in asfile or, if file is omitted, on standard output.
The output is simply word-wrapped to the number of columns specified bymaxcol. This class is suitable for
reflowing a sequence of paragraphs.

11.13 Standard Module rfc822

This module defines a class,Message , which represents a collection of “email headers” as defined by the Internet
standard RFC 822. It is used in various contexts, usually to read such headers from a file.

Note that there’s a separate module to read UNIX , MH, and MMDF style mailbox files:mailbox .

Message (file[, seekable])
A Message instance is instantiated with an open file object as parameter. The optionalseekableparameter
indicates if the file object is seekable; the default value is1 for true. Instantiation reads headers from the file up
to a blank line and stores them in the instance; after instantiation, the file is positioned directly after the blank
line that terminates the headers.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating CR-LF

176 Chapter 11. Internet and WWW Services

is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g.m[’From’] , m[’from’] and
m[’FROM’] all yield the same result.

parsedate (date)
Attempts to parse a date according to the rules in RFC 822. however, some mailers don’t follow that format as
specified, soparsedate() tries to guess correctly in such cases.dateis a string containing an RFC 822 date,
such as’Mon, 20 Nov 1995 19:12:08 -0500’ . If it succeeds in parsing the date,parsedate()
returns a 9-tuple that can be passed directly totime.mktime() ; otherwiseNone will be returned.

parsedate tz (date)
Performs the same function asparsedate() , but returns eitherNone or a 10-tuple; the first 9 elements make
up a tuple that can be passed directly totime.mktime() , and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time). (Note that the sign of the timezone offset is
the opposite of the sign of thetime.timezone variable for the same timezone; the latter variable follows the
POSIX standard while this module follows RFC 822.) If the input string has no timezone, the last element of
the tuple returned isNone.

mktime tz (tuple)
Turn a 10-tuple as returned byparsedate tz() into a UTC timestamp. It the timezone item in the tuple
is None, assume local time. Minor deficiency: this first interprets the first 8 elements as a local time and then
compensates for the timezone difference; this may yield a slight error around daylight savings time switch dates.
Not enough to worry about for common use.

Message Objects

A Message instance has the following methods:

rewindbody ()
Seek to the start of the message body. This only works if the file object is seekable.

getallmatchingheaders (name)
Return a list of lines consisting of all headers matchingname, if any. Each physical line, whether it is a contin-
uation line or not, is a separate list item. Return the empty list if no header matchesname.

getfirstmatchingheader (name)
Return a list of lines comprising the first header matchingname, and its continuation line(s), if any. Return
None if there is no header matchingname.

getrawheader (name)
Return a single string consisting of the text after the colon in the first header matchingname. This includes
leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any continuation line(s)
were present. ReturnNone if there is no header matchingname.

getheader (name)
Like getrawheader(name) , but strip leading and trailing whitespace. Internal whitespace is not stripped.

getaddr (name)
Return a pair(full name, email address) parsed from the string returned bygetheader(name) . If no
header matchingnameexists, return(None, None) ; otherwise both the full name and the address are (pos-
sibly empty) strings.

Example: If m’s first From header contains the string’jack@cwi.nl (Jack Jansen)’ , then
m.getaddr(’From’) will yield the pair (’Jack Jansen’, ’jack@cwi.nl’) . If the header con-
tained’Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist (name)
This is similar togetaddr(list) , but parses a header containing a list of email addresses (e.g. aTo header)
and returns a list of(full name, email address) pairs (even if there was only one address in the header). If

11.13. Standard Module rfc822 177

there is no header matchingname, return an empty list.

XXX The current version of this function is not really correct. It yields bogus results if a full name contains a
comma.

getdate (name)
Retrieve a header usinggetheader() and parse it into a 9-tuple compatible withtime.mktime() . If there
is no header matchingname, or it is unparsable, returnNone.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested
and found correct on a large collection of email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

getdate tz (name)
Retrieve a header usinggetheader() and parse it into a 10-tuple; the first 9 elements will make a tuple
compatible withtime.mktime() , and the 10th is a number giving the offset of the date’s timezone from
UTC. Similarly togetdate() , if there is no header matchingname, or it is unparsable, returnNone.

Message instances also support a read-only mapping interface. In particular:m[name] is like
m.getheader(name) but raisesKeyError if there is no matching header; andlen(m) , m.has key(name) ,
m.keys() , m.values() andm.items() act as expected (and consistently).

Finally, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read. Each line contains a trailing
newline. The blank line terminating the headers is not contained in the list.

fp
The file object passed at instantiation time.

11.14 Standard Module mimetools

This module defines a subclass of therfc822.Message class and a number of utility functions that are useful for
the manipulation for MIME multipart or encoded message.

It defines the following items:

Message (fp[, seekable])
Return a new instance of theMessage class. This is a subclass of therfc822.Message class, with some
additional methods (see below). Theseekableargument has the same meaning as forrfc822.Message .

choose boundary ()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
’ hostipaddr. uid. pid. timestamp. random’ .

decode (input, output, encoding)
Read data encoded using the allowed MIMEencodingfrom open file objectinput and write the decoded data
to open file objectoutput. Valid values forencodinginclude ’base64’ , ’quoted-printable’ and
’uuencode’ .

encode (input, output, encoding)
Read data from open file objectinputand write it encoded using the allowed MIMEencodingto open file object
output. Valid values forencodingare the same as fordecode() .

copyliteral (input, output)
Read lines untilEOF from open fileinput and write them to open fileoutput.

copybinary (input, output)
Read blocks untilEOF from open fileinput and write them to open fileoutput. The block size is currently fixed
at 8192.

178 Chapter 11. Internet and WWW Services

Additional Methods of Message objects

TheMessage class defines the following methods in addition to therfc822.Message methods:

getplist ()
Return the parameter list of thecontent-type header. This is a list if strings. For parameters of the
form ‘key=value’, key is converted to lower case butvalue is not. For example, if the message contains the
header ‘Content-type: text/html; spam=1; Spam=2; Spam ’ then getplist() will return
the Python list[’spam=1’, ’spam=2’, ’Spam’] .

getparam (name)
Return thevalueof the first parameter (as returned bygetplist() of the form ‘name=value’ for the given
name. If valueis surrounded by quotes of the form ‘<...>’ or ‘ " ..." ’, these are removed.

getencoding ()
Return the encoding specified in thecontent-transfer-encoding message header. If no such header
exists, return’7bit’ . The encoding is converted to lower case.

gettype ()
Return the message type (of the form ‘type/ subtype’) as specified in thecontent-type header. If no such
header exists, return’text/plain’ . The type is converted to lower case.

getmaintype ()
Return the main type as specified in thecontent-type header. If no such header exists, return’text’ .
The main type is converted to lower case.

getsubtype ()
Return the subtype as specified in thecontent-type header. If no such header exists, return’plain’ . The
subtype is converted to lower case.

11.15 Standard Module binhex

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files in
ASCII. On the Macintosh, both forks of a file and the finder information are encoded (or decoded), on other platforms
only the data fork is handled.

Thebinhex module defines the following functions:

binhex (input, output)
Convert a binary file with filenameinput to binhex fileoutput. Theoutputparameter can either be a filename or
a file-like object (any object supporting awrite andclosemethod).

hexbin (input[, output])
Decode a binhex fileinput. inputmay be a filename or a file-like object supportingreadandclosemethods. The
resulting file is written to a file namedoutput, unless the argument is empty in which case the output filename is
read from the binhex file.

Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline convention
(carriage-return as end of line).

As of this writing,hexbin() appears to not work in all cases.

11.15. Standard Module binhex 179

11.16 Standard Module uu

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ascii-only connections. Wherever a file argument is expected, the methods accept a file-like object. For backwards
compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened for reading and
writing; the pathname’-’ is understood to mean the standard input or output. However, this interface is deprecated;
it’s better for the caller to open the file itself, and be sure that, when required, the mode is’rb’ or ’wb’ on Windows
or DOS.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

Theuu module defines the following functions:

encode (in file, out file[, name[, mode]])
Uuencode filein file into file out file. The uuencoded file will have the header specifyingnameandmodeas
the defaults for the results of decoding the file. The default defaults are taken fromin file, or ’-’ and0666
respectively.

decode (in file[, out file[, mode]])
This call decodes uuencoded filein file placing the result on fileout file. If out file is a pathname themodeis
also set. Defaults forout file andmodeare taken from the uuencode header.

11.17 Built-in Module binascii

Thebinascii module contains a number of methods to convert between binary and variousASCII-encoded binary
representations. Normally, you will not use these modules directly but use wrapper modules likeuu or hexbin
instead, this module solely exists because bit-manipuation of large amounts of data is slow in Python.

Thebinascii module defines the following functions:

a2b uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain 45
(binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a uu(data)
Convert binary data to a line ofASCII characters, the return value is the converted line, including a newline char.
The length ofdatashould be at most 45.

a2b base64 (string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed at
a time.

b2a base64 (data)
Convert binary data to a line ofASCII characters in base64 coding. The return value is the converted line,
including a newline char. The length ofdatashould be at most 57 to adhere to the base64 standard.

a2b hqx (string)
Convert binhex4 formattedASCII data to binary, without doing RLE-decompression. The string should contain
a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the remaining bits
zero.

rledecode hqx (data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses0x90 after a byte as
a repeat indicator, followed by a count. A count of0 specifies a byte value of0x90 . The routine returns the
decompressed data, unless data input data ends in an orphaned repeat indicator, in which case theIncomplete
exception is raised.

rlecode hqx (data)

180 Chapter 11. Internet and WWW Services

Perform binhex4 style RLE-compression ondataand return the result.

b2a hqx (data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should already be
RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc hqx (data, crc)
Compute the binhex4 crc value ofdata, starting with an initialcrc and returning the result.

Error
Exception raised on errors. These are usually programming errors.

Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by reading
a little more data and trying again.

11.18 Standard Module xdrlib

Thexdrlib module supports the External Data Representation Standard as described in RFC 1014, written by Sun
Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

Thexdrlib module defines two classes, one for packing variables into XDR representation, and another for unpack-
ing from XDR representation. There are also two exception classes.

Packer ()
Packer is the class for packing data into XDR representation. ThePacker class is instantiated with no
arguments.

Unpacker (data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input buffer
is given asdata.

Packer Objects

Packer instances have the following methods:

get buffer ()
Returns the current pack buffer as a string.

reset ()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriatepack type() method.
Each method takes a single argument, the value to pack. The following simple data type packing methods are sup-
ported:pack uint() , pack int() , pack enum() , pack bool() , pack uhyper() , andpack hyper() .

pack float (value)
Packs the single-precision floating point numbervalue.

pack double (value)
Packs the double-precision floating point numbervalue.

The following methods support packing strings, bytes, and opaque data:

pack fstring (n, s)
Packs a fixed length string,s. n is the length of the string but it isnot packed into the data buffer. The string is
padded with null bytes if necessary to guaranteed 4 byte alignment.

pack fopaque (n, data)

11.18. Standard Module xdrlib 181

Packs a fixed length opaque data stream, similarly topack fstring() .

pack string (s)
Packs a variable length string,s. The length of the string is first packed as an unsigned integer, then the string
data is packed withpack fstring() .

pack opaque (data)
Packs a variable length opaque data string, similarly topack string() .

pack bytes (bytes)
Packs a variable length byte stream, similarly topack string() .

The following methods support packing arrays and lists:

pack list (list, pack item)
Packs alist of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is not
available until the entire list has been walked. For each item in the list, an unsigned integer1 is packed first,
followed by the data value from the list.pack item is the function that is called to pack the individual item. At
the end of the list, an unsigned integer0 is packed.

pack farray (n, array, packitem)
Packs a fixed length list (array) of homogeneous items.n is the length of the list; it isnotpacked into the buffer,
but aValueError exception is raised iflen(array) is not equal ton. As above,pack item is the function
used to pack each element.

pack array (list, pack item)
Packs a variable lengthlist of homogeneous items. First, the length of the list is packed as an unsigned integer,
then each element is packed as inpack farray() above.

Unpacker Objects

TheUnpacker class offers the following methods:

reset (data)
Resets the string buffer with the givendata.

get position ()
Returns the current unpack position in the data buffer.

set position (position)
Sets the data buffer unpack position toposition. You should be careful about usingget position() and
set position() .

get buffer ()
Returns the current unpack data buffer as a string.

done ()
Indicates unpack completion. Raises anError exception if all of the data has not been unpacked.

In addition, every data type that can be packed with aPacker , can be unpacked with anUnpacker . Unpacking
methods are of the formunpack type() , and take no arguments. They return the unpacked object.

unpack float ()
Unpacks a single-precision floating point number.

unpack double ()
Unpacks a double-precision floating point number, similarly tounpack float() .

In addition, the following methods unpack strings, bytes, and opaque data:

unpack fstring (n)
Unpacks and returns a fixed length string.n is the number of characters expected. Padding with null bytes to

182 Chapter 11. Internet and WWW Services

guaranteed 4 byte alignment is assumed.

unpack fopaque (n)
Unpacks and returns a fixed length opaque data stream, similarly tounpack fstring() .

unpack string ()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned integer,
then the string data is unpacked withunpack fstring() .

unpack opaque ()
Unpacks and returns a variable length opaque data string, similarly tounpack string() .

unpack bytes ()
Unpacks and returns a variable length byte stream, similarly tounpack string() .

The following methods support unpacking arrays and lists:

unpack list (unpackitem)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first unpacking
an unsigned integer flag. If the flag is1, then the item is unpacked and appended to the list. A flag of0 indicates
the end of the list.unpackitem is the function that is called to unpack the items.

unpack farray (n, unpackitem)
Unpacks and returns (as a list) a fixed length array of homogeneous items.n is number of list elements to expect
in the buffer. As above,unpackitem is the function used to unpack each element.

unpack array (unpackitem)
Unpacks and returns a variable lengthlist of homogeneous items. First, the length of the list is unpacked as an
unsigned integer, then each element is unpacked as inunpack farray() above.

Exceptions

Exceptions in this module are coded as class instances:

Error
The base exception class.Error has a single public data membermsg containing the description of the error.

ConversionError
Class derived fromError . Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

11.19 Standard Module mailcap

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react to
files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For example, a
mailcap file might contain a line like ‘video/mpeg; xmpeg %s ’. Then, if the user encounters an email message
or Web document with the MIME typevideo/mpeg, ‘%s’ will be replaced by a filename (usually one belonging to a
temporary file) and thexmpegprogram can be automatically started to view the file.

11.19. Standard Module mailcap 183

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail
Format Information,” but is not an Internet standard. However, mailcap files are supported on most UNIX systems.

findmatch (caps, MIMEtype[, key[, filename[, plist]]])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can be passed
to os.system()), and the second element is the mailcap entry for a given MIME type. If no matching MIME
type can be found,(None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the default value
is ’view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be ’compose’ and ’edit’, if you wanted to create a new body of the given MIME type or
alter the existing body data. See RFC 1524 for a complete list of these fields.

filenameis the filename to be substituted for ‘%s’ in the command line; the default value is’/dev/null’
which is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the list
must be a string containing the parameter name, an equals sign (=), and the parameter’s value. Mailcap entries
can contain named parameters like%{foo} , which will be replaced by the value of the parameter named ’foo’.
For example, if the command line ‘showpartial %{id} %{number} %{total} ’ was in a mailcap
file, andplist was set to[’id=1’, ’number=2’, ’total=3’] , the resulting command line would be
"showpartial 1 2 3" .

In a mailcap file, the ”test” field can optionally be specified to test some external condition (e.g., the machine
architecture, or the window system in use) to determine whether or not the mailcap line applies.findmatch()
will automatically check such conditions and skip the entry if the check fails.

getcaps ()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed to the
findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t be necessary to know the
details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s mailcap
file ‘$HOME/.mailcap’ will override settings in the system mailcap files ‘/etc/mailcap’, ‘ /usr/etc/mailcap’, and
‘ /usr/local/etc/mailcap’.

An example usage:

>>> import mailcap
>>> d=mailcap.getcaps()
>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)
(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

11.20 Standard Module base64

This module perform base64 encoding and decoding of arbitrary binary strings into text strings that can be safely
emailed or posted. The encoding scheme is defined in RFC 1421 (“Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures”, section 4.3.2.4, “Step 4: Printable Encod-
ing”) and is used for MIME email and various other Internet-related applications; it is not the same as the out-
put produced by theuuencodeprogram. For example, the string’www.python.org’ is encoded as the string
’d3d3LnB5dGhvbi5vcmc=\n’ .

decode (input, output)
Decode the contents of theinput file and write the resulting binary data to theoutput file. input andoutput
must either be file objects or objects that mimic the file object interface.input will be read untilinput.read()
returns an empty string.

184 Chapter 11. Internet and WWW Services

decodestring (s)
Decode the strings, which must contain one or more lines of base64 encoded data, and return a string containing
the resulting binary data.

encode (input, output)
Encode the contents of theinput file and write the resulting base64 encoded data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

encodestring (s)
Encode the strings, which can contain arbitrary binary data, and return a string containing one or more lines of
base64 encoded data.

11.21 Standard Module quopri

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One”. The quoted-printable encoding is designed for data where there are
relatively few nonprintable characters; the base64 encoding scheme available via thebase64 module is more compact
if there are many such characters, as when sending a graphics file.

decode (input, output)
Decode the contents of theinput file and write the resulting decoded binary data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

encode (input, output, quotetabs)
Encode the contents of theinput file and write the resulting quoted-printable data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

11.22 Standard Module SocketServer

TheSocketServer module simplifies the task of writing network servers.

There are four basic server classes:TCPServer uses the Internet TCP protocol, which provides for continuous
streams of data between the client and server.UDPServer uses datagrams, which are discrete packets of information
that may arrive out of order or be lost while in transit. The more infrequently usedUnixStreamServer and
UnixDatagramServer classes are similar, but use UNIX domain sockets; they’re not available on non-UNIX

platforms. For more details on network programming, consult a book such as W. Richard Steven’sUNIX Network
Programmingor Ralph Davis’sWin32 Network Programming.

These four classes process requestssynchronously; each request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process or
thread to handle each request; theForkingMixIn andThreadingMixIn mix-in classes can be used to support
asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding itshandle() method; this method will process incoming requests.
Second, you must instantiate one of the server classes, passing it the server’s address and the request handler class.
Finally, call thehandle request() or serve forever() method of the server object to process one or many
requests.

Server classes have the same external methods and attributes, no matter what network protocol they use:

fileno ()

11.21. Standard Module quopri 185

Return an integer file descriptor for the socket on which the server is listening. This function is most commonly
passed toselect.select() , to allow monitoring multiple servers in the same process.

handle request ()
Process a single request. This function calls the following methods in order:get request() , ver-
ify request() , andprocess request() . If the user-providedhandle() method of the handler class
raises an exception, the server’shandle error() method will be called.

serve forever ()
Handle an infinite number of requests. This simply callshandle request() inside an infinite loop.

address family
The family of protocols to which the server’s socket belongs.socket.AF INET andsocket.AF UNIX are
two possible values.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server address
The address on which the server is listening. The format of addresses varies depending on the protocol family;
see the documentation for the socket module for details. For Internet protocols, this is a tuple containing a string
giving the address, and an integer port number:(’127.0.0.1’, 80) , for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

request queue size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive while
the server is busy are placed into a queue, up torequest queue size requests. Once the queue is full,
further requests from clients will get a “Connection denied” error. The default value is usually 5, but this can be
overridden by subclasses.

socket type
The type of socket used by the server;socket.SOCK STREAMandsocket.SOCK DGRAMare two possible
values.

There are various server methods that can be overridden by subclasses of base server classes likeTCPServer ; these
methods aren’t useful to external users of the server object.

finish request ()
Actually processes the request by instantiatingRequestHandlerClass and calling itshandle() method.

get request ()
Must accept a request from the socket, and return a 2-tuple containing thenew socket object to be used to
communicate with the client, and the client’s address.

handle error (request, clientaddress)
This function is called if theRequestHandlerClass ’s handle() method raises an exception. The default
action is to print the traceback to standard output and continue handling further requests.

process request (request, clientaddress)
Calls finish request() to create an instance of theRequestHandlerClass . If desired, this function
can create a new process or thread to handle the request; theForkingMixIn andThreadingMixIn classes
do this.

server activate ()
Called by the server’s constructor to activate the server. May be overridden.

server bind ()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

186 Chapter 11. Internet and WWW Services

verify request (request, clientaddress)
Must return a Boolean value; if the value is true, the request will be processed, and if it’s false, the request will be
denied. This function can be overridden to implement access controls for a server. The default implementation
always return true.

The request handler class must define a newhandle() method, and can override any of the following methods. A
new instance is created for each request.

finish ()
Called after thehandle() method to perform any clean-up actions required. The default implementation does
nothing. Ifsetup() or handle() raise an exception, this function will not be called.

handle ()
This function must do all the work required to service a request. Several instance attributes are available to it;
the request is available asself.request ; the client address asself.client request ; and the server
instance asself.server , in case it needs access to per-server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services,self.request is a string. However, this
can be hidden by using the mix-in request handler classesStreamRequestHandler or DatagramRe-
questHandler , which override thesetup() and finish() methods, and providesself.rfile and
self.wfile attributes. self.rfile andself.wfile can be read or written, respectively, to get the
request data or return data to the client.

setup ()
Called before thehandle() method to perform any initialization actions required. The default implementation
does nothing.

11.23 Standard Module mailbox

This module defines a number of classes that allow easy and uniform access to mail messages in a (UNIX) mailbox.

UnixMailbox (fp)
Access a classic UNIX -style mailbox, where all messages are contained in a single file and separated by “From
name time” lines. The file objectfp points to the mailbox file.

MmdfMailbox (fp)
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines con-
sisting of 4 control-A characters. The file objectfp points to the mailbox file.

MHMailbox (dirname)
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The name of the
mailbox directory is passed indirname.

Mailbox Objects

All implementations of Mailbox objects have one externally visible method:

next ()
Return the next message in the mailbox, as arfc822.Message object. Depending on the mailbox implemen-
tation thefp attribute of this object may be a true file object or a class instance simulating a file object, taking
care of things like message boundaries if multiple mail messages are contained in a single file, etc.

11.24 Standard Module mimify

11.23. Standard Module mailbox 187

The mimify module defines two functions to convert mail messages to and from MIME format. The mail message
can be either a simple message or a so-called multipart message. Each part is treated separately. Mimifying (a part
of) a message entails encoding the message as quoted-printable if it contains any characters that cannot be represented
using 7-bit ASCII. Unmimifying (a part of) a message entails undoing the quoted-printable encoding. Mimify and
unmimify are especially useful when a message has to be edited before being sent. Typical use would be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

mimify (infile, outfile)
Copy the message ininfile to outfile, converting parts to quoted-printable and adding MIME mail headers when
necessary.infile andoutfilecan be file objects (actually, any object that has areadline method (forinfile) or
awrite method (foroutfile)) or strings naming the files. Ifinfile andoutfileare both strings, they may have the
same value.

unmimify (infile, outfile, decodebase64 = 0)
Copy the message ininfile to outfile, decoding all quoted-printable parts.infile andoutfile can be file objects
(actually, any object that has areadline method (forinfile) or awrite method (foroutfile)) or strings naming
the files. If infile andoutfileare both strings, they may have the same value. If thedecodebase64argument is
provided and tests true, any parts that are coded in the base64 encoding are decoded as well.

mime decode header (line)
Return a decoded version of the encoded header line inline.

mime encode header (line)
Return a MIME-encoded version of the header line inline.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCII characters (i.e., characters
with the 8th bit set), or if there are any lines longer thanMAXLENcharacters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored inCHARSET,
and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-l length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively.infile defaults to standard input,outfiledefaults to standard
output. The same file can be specified for input and output.

If the -l option is given when encoding, if there are any lines longer than the specifiedlength, the containing part will
be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

11.25 Standard Module BaseHTTPServer

This module defines two classes for implementing HTTP servers (web servers). Usually, this module isn’t used
directly, but is used as a basis for building functioning web servers. See theSimpleHTTPServer and CGI-

188 Chapter 11. Internet and WWW Services

HTTPServer modules.

The first class,HTTPServer , is aSocketServer.TCPServer subclass. It creates and listens at the web socket,
dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,
handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

server_address = (’’, 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

HTTPServer (serveraddress, RequestHandlerClass)
This class builds on theTCPServer class by storing the server address as instance variables named
server name andserver port . The server is accessible by the handler, typically through the handler’s
server instance variable.

BaseHTTPRequestHandler (request, clientaddress, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to any actual
HTTP requests; it must be subclassed to handle each request method (e.g. GET or POST).BaseHTTPRe-
questHandler provides a number of class and instance variables, and methods for use by subclasses.

The handler will parse the request and the headers, then call a method specific to the request type. The method
name is constructed from the request. For example, for the request method ‘SPAM’, the do SPAM() method
will be called with no arguments. All of the relevant information is stored in instance variables of the handler.
Subclasses should not need to override or extend theinit () method.

BaseHTTPRequestHandler has the following instance variables:

client address
Contains a tuple of the form(host, port) referring to the client’s address.

command
Contains the command (request type). For example,’GET’ .

path
Contains the request path.

request version
Contains the version string from the request. For example,’HTTP/1.0’ .

headers
Holds an instance of the class specified by theMessageClass class variable. This instance parses and man-
ages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherance to the HTTP protocol
must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server version
Specifies the server software version. You may want to override this. The format is multiple whitespace-
separated strings, where each string is of the form name[/version]. For example,’BaseHTTP/0.2’ .

sys version
Contains the Python system version, in a form usable by theversion string method and the
server version class variable. For example,’Python/1.4’ .

11.25. Standard Module BaseHTTPServer 189

error message format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed format spec-
ifiers, so the format operand must be a dictionary. Thecodekey should be an integer, specifing the numeric
HTTP error code value.messageshould be a string containing a (detailed) error message of what occurred, and
explainshould be an explanation of the error code number. Defaultmessageandexplainvalues can found in the
responsesclass variable.

protocol version
This specifies the HTTP protocol version used in responses. Typically, this should not be overridden. Defaults
to ’HTTP/1.0’ .

MessageClass
Specifies arfc822.Message -like class to parse HTTP headers. Typically, this is not overridden, and it
defaults tomimetools.Message .

responses
This variable contains a mapping of error code integers to two-element tuples containing a short and long
message. For example,{ code: (shortmessage, longmessage)} . Theshortmessageis usually used as the
messagekey in an error response, andlongmessageas theexplainkey (see theerror message format
class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle ()
Overrides the superclass’handle() method to provide the specific handler behavior. This method will parse
and dispatch the request to the appropriatedo *() method.

send error (code[, message])
Sends and logs a complete error reply to the client. The numericcodespecifies the HTTP error code, with
messageas optional, more specific text. A complete set of headers is sent, followed by text composed using the
error message format class variable.

send response (code[, message])
Sends a response header and logs the accepted request. The HTTP response line is sent, followed byServer
and Date headers. The values for these two headers are picked up from theversion string() and
date time string() methods, respectively.

send header (keyword, value)
Writes a specific MIME header to the output stream.keywordshould specify the header keyword, withvalue
specifying its value.

end headers ()
Sends a blank line, indicating the end of the MIME headers in the response.

log request ([code[, size]])
Logs an accepted (successful) request.codeshould specify the numeric HTTP code associated with the re-
sponse. If a size of the response is available, then it should be passed as thesizeparameter.

log error (...)
Logs an error when a request cannot be fulfilled. By default, it passes the message tolog message() , so it
takes the same arguments (formatand additional values).

log message (format, ...)
Logs an arbitrary message tosys.stderr . This is typically overridden to create custom error logging
mechanisms. Theformat argument is a standard printf-style format string, where the additional arguments
to log message() are applied as inputs to the formatting. The client address and current date and time are
prefixed to every message logged.

version string ()
Returns the server software’s version string. This is a combination of theserver version and
sys version class variables.

190 Chapter 11. Internet and WWW Services

date time string ()
Returns the current date and time, formatted for a message header.

log data time string ()
Returns the current date and time, formatted for logging.

address string ()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP address.

11.25. Standard Module BaseHTTPServer 191

192

CHAPTER

TWELV

Restricted Execution

In general, Python programs have complete access to the underlying operating system throug the various functions
and classes, For example, a Python program can open any file for reading and writing by using theopen() built-in
function (provided the underlying OS gives you permission!). This is exactly what you want for most applications.

There exists a class of applications for which this “openness” is inappropriate. Take Grail: a web browser that accepts
“applets”, snippets of Python code, from anywhere on the Internet for execution on the local system. This can be used
to improve the user interface of forms, for instance. Since the originator of the code is unknown, it is obvious that it
cannot be trusted with the full resources of the local machine.

Restricted executionis the basic framework in Python that allows for the segregation of trusted and untrusted code. It
is based on the notion that trusted Python code (asupervisor) can create a “padded cell’ (or environment) with limited
permissions, and run the untrusted code within this cell. The untrusted code cannot break out of its cell, and can
only interact with sensitive system resources through interfaces defined and managed by the trusted code. The term
“restricted execution” is favored over “safe-Python” since true safety is hard to define, and is determined by the way
the restricted environment is created. Note that the restricted environments can be nested, with inner cells creating
subcells of lesser, but never greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted code usually
have the same names as those presented to trusted code. Therefore no special interfaces need to be learned to write
code designed to run in a restricted environment. And because the exact nature of the padded cell is determined by
the supervisor, different restrictions can be imposed, depending on the application. For example, it might be deemed
“safe” for untrusted code to read any file within a specified directory, but never to write a file. In this case, the
supervisor may redefine the built-inopen() function so that it raises an exception whenever themodeparameter is
’w’ . It might also perform achroot() -like operation on thefilenameparameter, such that root is always relative
to some safe “sandbox” area of the filesystem. In this case, the untrusted code would still see an built-inopen()
function in its environment, with the same calling interface. The semantics would be identical too, withIOError s
being raised when the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution mode based on
the identity of the builtins object in its global variables: if this is (the dictionary of) the standardbuiltin
module, the code is deemed to be unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it from escaping
from the padded cell. For instance, the function object attributefunc globals and the class and instance object
attribute dict are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec — Basic restricted execution framework.

Bastion — Providing restricted access to objects.

See Also:

193

Andrew Kuchling, “Restricted Execution HOWTO.” Available online athttp://www.python.org/doc/howto/rexec/.

12.1 Standard Module rexec

This module contains theRExec class, which supportsr exec() , r eval() , r execfile() , andr import()
methods, which are restricted versions of the standard Python functionsexec() , eval() , execfile() , and the
import statement. Code executed in this restricted environment will only have access to modules and functions that
are deemed safe; you can subclassRExec to add or remove capabilities as desired.

Note:TheRExec class can prevent code from performing unsafe operations like reading or writing disk files, or using
TCP/IP sockets. However, it does not protect against code using extremely large amounts of memory or CPU time.

RExec([hooks[, verbose]])
Returns an instance of theRExec class.

hooksis an instance of theRHooks class or a subclass of it. If it is omitted orNone, the defaultRHooks class
is instantiated. Whenever theRExec module searches for a module (even a built-in one) or reads a module’s
code, it doesn’t actually go out to the file system itself. Rather, it calls methods of anRHooks instance that was
passed to or created by its constructor. (Actually, theRExec object doesn’t make these calls — they are made
by a module loader object that’s part of theRExec object. This allows another level of flexibility, e.g. using
packages.)

By providing an alternateRHooks object, we can control the file system accesses made to import a module,
without changing the actual algorithm that controls the order in which those accesses are made. For instance, we
could substitute anRHooks object that passes all filesystem requests to a file server elsewhere, via some RPC
mechanism such as ILU. Grail’s applet loader uses this to support importing applets from a URL for a directory.

If verboseis true, additional debugging output may be sent to standard output.

TheRExec class has the following class attributes, which are used by theinit () method. Changing them on an
existing instance won’t have any effect; instead, create a subclass ofRExec and assign them new values in the class
definition. Instances of the new class will then use those new values. All these attributes are tuples of strings.

nok builtin names
Contains the names of built-in functions which willnot be available to programs running in the restricted en-
vironment. The value forRExec is (’open’, ’reload’, ’ import ’) . (This gives the exceptions,
because by far the majority of built-in functions are harmless. A subclass that wants to override this variable
should probably start with the value from the base class and concatenate additional forbidden functions — when
new dangerous built-in functions are added to Python, they will also be added to this module.)

ok builtin modules
Contains the names of built-in modules which can be safely imported. The value forRExec is (’audioop’,
’array’, ’binascii’, ’cmath’, ’errno’, ’imageop’, ’marshal’, ’math’, ’md5’,
’operator’, ’parser’, ’regex’, ’rotor’, ’select’, ’strop’, ’struct’, ’time’) . A
similar remark about overriding this variable applies — use the value from the base class as a starting point.

ok path
Contains the directories which will be searched when animport is performed in the restricted environment.
The value forRExec is the same assys.path (at the time the module is loaded) for unrestricted code.

ok posix names
Contains the names of the functions in theos module which will be available to programs running in
the restricted environment. The value forRExec is (’error’, ’fstat’, ’listdir’, ’lstat’,
’readlink’, ’stat’, ’times’, ’uname’, ’getpid’, ’getppid’, ’getcwd’, ’getuid’,
’getgid’, ’geteuid’, ’getegid’) .

ok sys names
Contains the names of the functions and variables in thesys module which will be available to pro-
grams running in the restricted environment. The value forRExec is (’ps1’, ’ps2’, ’copyright’,

194 Chapter 12. Restricted Execution

’version’, ’platform’, ’exit’, ’maxint’) .

RExec instances support the following methods:

r eval (code)
codemust either be a string containing a Python expression, or a compiled code object, which will be evaluated
in the restricted environment’smain module. The value of the expression or code object will be returned.

r exec (code)
codemust either be a string containing one or more lines of Python code, or a compiled code object, which will
be executed in the restricted environment’smain module.

r execfile (filename)
Execute the Python code contained in the filefilenamein the restricted environment’smain module.

Methods whose names begin with ‘s ’ are similar to the functions beginning with ‘r ’, but the code will be granted
access to restricted versions of the standard I/O streamssys.stdin , sys.stderr , andsys.stdout .

s eval (code)
codemust be a string containing a Python expression, which will be evaluated in the restricted environment.

s exec (code)
codemust be a string containing one or more lines of Python code, which will be executed in the restricted
environment.

s execfile (code)
Execute the Python code contained in the filefilenamein the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the restricted
environment. Overriding these methods in a subclass is used to change the policies enforced by a restricted environ-
ment.

r import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

r open (filename[, mode[, bufsize]])
Method called whenopen() is called in the restricted environment. The arguments are identical to those of
open() , and a file object (or a class instance compatible with file objects) should be returned.RExec’s default
behaviour is allow opening any file for reading, but forbidding any attempt to write a file. See the example below
for an implementation of a less restrictiver open() .

r reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

r unload (module)
Unload the module objectmodule(i.e., remove it from the restricted environment’ssys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

s import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

s reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

s unload (module)
Unload the module objectmodule.

An example

Let us say that we want a slightly more relaxed policy than the standardRExec class. For example, if we’re willing
to allow files in ‘/tmp’ to be written, we can subclass theRExec class:

12.1. Standard Module rexec 195

class TmpWriterRExec(rexec.RExec):
def r_open(self, file, mode=’r’, buf=-1):

if mode in (’r’, ’rb’):
pass

elif mode in (’w’, ’wb’, ’a’, ’ab’):
check filename : must begin with /tmp/
if file[:5]!=’/tmp/’:

raise IOError, "can’t write outside /tmp"
elif (string.find(file, ’/../’) >= 0 or

file[:3] == ’../’ or file[-3:] == ’/..’):
raise IOError, "’..’ in filename forbidden"

else: raise IOError, "Illegal open() mode"
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the restricted
environment won’t be able to open a file called ‘/tmp/foo/../bar’. To fix this, the r open() method would have to
simplify the filename to ‘/tmp/bar’, which would require splitting apart the filename and performing various operations
on it. In cases where security is at stake, it may be preferable to write simple code which is sometimes overly restrictive,
instead of more general code that is also more complex and may harbor a subtle security hole.

12.2 Standard Module Bastion

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered a stronghold.”
It’s a suitable name for this module, which provides a way to forbid access to certain attributes of an object. It must
always be used with therexec module, in order to allow restricted-mode programs access to certain safe attributes
of an object, while denying access to other, unsafe attributes.

Bastion (object[, filter[, name[, class]]])
Protect the objectobject, returning a bastion for the object. Any attempt to access one of the object’s attributes
will have to be approved by thefilter function; if the access is denied anAttributeError exception will be
raised.

If present,filter must be a function that accepts a string containing an attribute name, and returns true if
access to that attribute will be permitted; iffilter returns false, the access is denied. The default filter de-
nies access to any function beginning with an underscore (‘’). The bastion’s string representation will be
‘<Bastion for name>’ if a value fornameis provided; otherwise, ‘repr(object) ’ will be used.

class, if present, should be a subclass ofBastionClass ; see the code in ‘bastion.py’ for the details. Overrid-
ing the defaultBastionClass will rarely be required.

BastionClass (getfunc, name)
Class which actually implements bastion objects. This is the default class used byBastion() . Thegetfunc
parameter is a function which returns the value of an attribute which should be exposed to the restricted execution
environment when called with the name of the attribute as the only parameter.nameis used to construct the
repr() of theBastionClass instance.

196 Chapter 12. Restricted Execution

CHAPTER

THIRTEEN

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for multimedia
applications. They are available at the discretion of the installation. Here’s an overview:

audioop — Manipulate raw audio data.

imageop — Manipulate raw image data.

aifc — Read and write audio files in AIFF or AIFC format.

jpeg — Read and write image files in compressed JPEG format.

rgbimg — Read and write image files in “SGI RGB” format (the module isnot SGI specific though)!

imghdr — Determine the type of image contained in a file or byte stream.

13.1 Built-in Module audioop

Theaudioop module contains some useful operations on sound fragments. It operates on sound fragments consisting
of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same format as used by theal
andsunaudiodev modules. All scalar items are integers, unless specified otherwise.

This module provides support for u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always a
parameter of the operation.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add (fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters.width is the sample width in
bytes, either1, 2 or 4. Both fragments should have the same length.

adpcm2lin (adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description oflin2adpcm() for
details on ADPCM coding. Return a tuple(sample, newstate) where the sample has the width specified in
width.

adpcm32lin (adpcmfragment, width, state)
Decode an alternative 3-bit ADPCM code. Seelin2adpcm3() for details.

avg (fragment, width)
Return the average over all samples in the fragment.

197

avgpp (fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the usefulness of
this routine is questionable.

bias (fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross (fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor (fragment, reference)
Return a factorF such thatrms(add(fragment, mul(reference, - F))) is minimal, i.e., return the factor
with which you should multiplyreferenceto make it match as well as possible tofragment. The fragments
should both contain 2-byte samples.

The time taken by this routine is proportional tolen(fragment) .

findfit (fragment, reference)
Try to matchreferenceas well as possible to a portion offragment(which should be the longer fragment). This
is (conceptually) done by taking slices out offragment, using findfactor() to compute the best match,
and minimizing the result. The fragments should both contain 2-byte samples. Return a tuple(offset, factor)
whereoffsetis the (integer) offset intofragmentwhere the optimal match started andfactor is the (floating-point)
factor as perfindfactor() .

findmax (fragment, length)
Searchfragmentfor a slice of lengthlengthsamples (not bytes!) with maximum energy, i.e., returni for which
rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte samples.

The routine takes time proportional tolen(fragment) .

getsample (fragment, width, index)
Return the value of sampleindexfrom the fragment.

lin2lin (fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm (fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme, whereby
each 4 bit number is the difference between one sample and the next, divided by a (varying) step. The Intel/DVI
ADPCM algorithm has been selected for use by the IMA, so it may well become a standard.

stateis a tuple containing the state of the coder. The coder returns a tuple(adpcmfrag, newstate) , and the
newstateshould be passed to the next call oflin2adpcm() . In the initial call,None can be passed as the
state.adpcmfragis the ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3 (fragment, width, state)
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the Intel/DVI
ADPCM coder and its output is not packed (due to laziness on the side of the author). Its use is discouraged.

lin2ulaw (fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string. u-LAW is an
audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is used by
the Sun audio hardware, among others.

minmax (fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width)
Return the maximum of theabsolute valueof all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

198 Chapter 13. Multimedia Services

mul (fragment, width, factor)
Return a fragment that has all samples in the original framgent multiplied by the floating-point valuefactor.
Overflow is silently ignored.

ratecv (fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])
Convert the frame rate of the input fragment.

stateis a tuple containing the state of the converter. The converter returns a tupl(newfragment, newstate) ,
andnewstateshould be passed to the next call ofratecv() .

TheweightAandweightBarguments are parameters for a simple digital filter and default to1 and0 respectively.

reverse (fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms (fragment, width)
Return the root-mean-square of the fragment, i.e.√∑

Si
2

n

This is a measure of the power in an audio signal.

tomono (fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied bylfactor and the right channel
by rfactor before adding the two channels to give a mono signal.

tostereo (fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are computed
from the mono sample, whereby left channel samples are multiplied bylfactor and right channel samples by
rfactor.

ulaw2lin (fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding always
uses 8 bits samples, sowidth refers only to the sample width of the output fragment here.

Note that operations such asmul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments first and
recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(sample, width, lfactor)
rsample = audioop.mul(sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to
tolerate packet loss) you should not only transmit the data but also the state. Note that you should send theinitial state
(the one you passed tolin2adpcm()) along to the decoder, not the final state (as returned by the coder). If you want
to usestruct.struct() to store the state in binary you can code the first element (the predicted value) in 16 bits
and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well be
that I misinterpreted the standards in which case they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation. A
reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the input sample
and subtract the whole output sample from the input sample:

13.1. Built-in Module audioop 199

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = ’\0’*(pos+ipos)*2
postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

13.2 Built-in Module imageop

The imageop module contains some useful operations on images. It operates on images consisting of 8 or 32 bit
pixels stored in Python strings. This is the same format as used bygl.lrectwrite() and theimgfile module.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop (image, psize, width, height, x0, y0, x1, y1)
Return the selected part ofimage, which should bywidth by heightin size and consist of pixels ofpsizebytes.
x0, y0, x1 andy1 are like thegl.lrectread() parameters, i.e. the boundary is included in the new image.
The new boundaries need not be inside the picture. Pixels that fall outside the old image will have their value
set to zero. Ifx0 is bigger thanx1 the new image is mirrored. The same holds for the y coordinates.

scale (image, psize, width, height, newwidth, newheight)
Returnimagescaled to sizenewwidthby newheight. No interpolation is done, scaling is done by simple-minded
pixel duplication or removal. Therefore, computer-generated images or dithered images will not look nice after
scaling.

tovideo (image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the average of
two vertically-aligned source pixels. The main use of this routine is to forestall excessive flicker if the image is
displayed on a video device that uses interlacing, hence the name.

grey2mono (image, width, height, threshold)
Convert a 8-bit deep greyscale image to a 1-bit deep image by tresholding all the pixels. The resulting image is
tightly packed and is probably only useful as an argument tomono2grey() .

dither2mono (image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering algorithm.

mono2grey (image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-valued on
input get valuep0 on output and all one-value input pixels get valuep1 on output. To convert a monochrome
black-and-white image to greyscale pass the values0 and255 respectively.

grey2grey4 (image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

200 Chapter 13. Multimedia Services

dither2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As fordither2mono() , the
dithering algorithm is currently very simple.

grey42grey (image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey (image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

13.3 Standard Module aifc

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File Format,
a format for storing digital audio samples in a file. AIFF-C is a newer version of the format that includes the ability to
compress the audio data.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the number of
times per second the sound is sampled. The number of channels indicate if the audio is mono, stereo, or quadro. Each
frame consists of one sample per channel. The sample size is the size in bytes of each sample. Thus a frame consists
of nchannels*samplesizebytes, and a second’s worth of audio consists ofnchannels*samplesize* frameratebytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame rate
of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100 bytes,
i.e. 176,400 bytes.

Moduleaifc defines the following function:

open (file, mode)
Open an AIFF or AIFF-C file and return an object instance with methods that are described below. The argument
file is either a string naming a file or a file object. The mode is either the string’r’ when the file must be
opened for reading, or’w’ when the file must be opened for writing. When used for writing, the file object
should be seekable, unless you know ahead of time how many samples you are going to write in total and use
writeframesraw() andsetnframes() .

Objects returned byopen() when a file is opened for reading have the following methods:

getnchannels ()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth ()
Return the size in bytes of individual samples.

getframerate ()
Return the sampling rate (number of audio frames per second).

getnframes ()
Return the number of audio frames in the file.

getcomptype ()
Return a four-character string describing the type of compression used in the audio file. For AIFF files, the
returned value is’NONE’ .

getcompname ()
Return a human-readable description of the type of compression used in the audio file. For AIFF files, the
returned value is’not compressed’ .

getparams ()
Return a tuple consisting of all of the above values in the above order.

getmarkers ()

13.3. Standard Module aifc 201

Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is the mark
ID (an integer), the second is the mark position in frames from the beginning of the data (an integer), the third
is the name of the mark (a string).

getmark (id)
Return the tuple as described ingetmarkers() for the mark with the givenid.

readframes (nframes)
Read and return the nextnframesframes from the audio file. The returned data is a string containing for each
frame the uncompressed samples of all channels.

rewind ()
Rewind the read pointer. The nextreadframes() will start from the beginning.

setpos (pos)
Seek to the specified frame number.

tell ()
Return the current frame number.

close ()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned byopen() when a file is opened for writing have all the above methods, except forreadframes()
andsetpos() . In addition the following methods exist. Theget*() methods can only be called after the corre-
spondingset*() methods have been called. Before the firstwriteframes() or writeframesraw() , all
parameters except for the number of frames must be filled in.

aiff ()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in’.aiff’
in which case the default is an AIFF file.

aifc ()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends in’.aiff’
in which case the default is an AIFF file.

setnchannels (nchannels)
Specify the number of channels in the audio file.

setsampwidth (width)
Specify the size in bytes of audio samples.

setframerate (rate)
Specify the sampling frequency in frames per second.

setnframes (nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set
correctly, the file needs to support seeking.

setcomptype (type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files, compression
is not possible. The name parameter should be a human-readable description of the compression type, the type
parameter should be a four-character string. Currently the following compression types are supported: NONE,
ULAW, ALAW, G722.

setparams (nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters. This means
that it is possible to use the result of agetparams() call as argument tosetparams() .

setmark (id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This method can be
called at any time beforeclose() .

202 Chapter 13. Multimedia Services

tell ()
Return the current write position in the output file. Useful in combination withsetmark() .

writeframes (data)
Write data to the output file. This method can only be called after the audio file parameters have been set.

writeframesraw (data)
Like writeframes() , except that the header of the audio file is not updated.

close ()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After calling
this method, the object can no longer be used.

13.4 Built-in Module jpeg

The modulejpeg provides access to the jpeg compressor and decompressor written by the Independent JPEG Group.
JPEG is a (draft?) standard for compressing pictures. For details on JPEG or the Independent JPEG Group software
refer to the JPEG standard or the documentation provided with the software.

The jpeg module defines an exception and some functions.

error
Exception raised bycompress() anddecompress() in case of errors.

compress (data, w, h, b)
Treat data as a pixmap of widthw and heighth, with b bytes per pixel. The data is in SGI GL order, so the first
pixel is in the lower-left corner. This means thatgl.lrectread() return data can immediately be passed to
compress() . Currently only 1 byte and 4 byte pixels are allowed, the former being treated as greyscale and
the latter as RGB color.compress() returns a string that contains the compressed picture, in JFIF format.

decompress (data)
Data is a string containing a picture in JFIF format. It returns a tuple(data, width, height, bytesperpixel) .
Again, the data is suitable to pass togl.lrectwrite() .

setoption (name, value)
Set various options. Subsequentcompress() anddecompress() calls will use these options. The follow-
ing options are available:

Option Effect
’forcegray’ Force output to be grayscale, even if input is RGB.
’quality’ Set the quality of the compressed image to a value be-

tween0 and 100 (default is75). This only affects
compression.

’optimize’ Perform Huffman table optimization. Takes longer,
but results in smaller compressed image. This only
affects compression.

’smooth’ Perform inter-block smoothing on uncompressed im-
age. Only useful for low-quality images. This only
affects decompression.

13.5 Built-in Module rgbimg

The rgbimg module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

13.4. Built-in Module jpeg 203

error
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage (file)
This function returns a tuple(x, y) wherex andy are the size of the image in pixels. Only 4 byte RGBA
pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string
has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is suitable to pass to
gl.lrectwrite() , for instance.

longstoimage (data, x, y, z, file)
This function writes the RGBA data indata to image filefile. x andy give the size of the image.z is 1 if the
saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB data, or 4 if the saved images
should be 4 byte RGBA data. The input data always contains 4 bytes per pixel. These are the formats returned
by gl.lrectread() .

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

13.6 Standard Module imghdr

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

what (filename[, h])
Tests the image data contained in the file named byfilename, and returns a string describing the image type. If
optionalh is provided, thefilenameis ignored andh is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value fromwhat() :

Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JIFF format

You can extend the list of file typesimghdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and an
open file-like object. Whenwhat() is called with a byte-stream, the file-like object will beNone.

The test function should return a string describing the image type if the test succeeded, orNone if it failed.

Example:

204 Chapter 13. Multimedia Services

>>> import imghdr
>>> imghdr.what(’/tmp/bass.gif’)
’gif’

13.6. Standard Module imghdr 205

206

CHAPTER

FOURTEEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available at
the discretion of the installation. Here’s an overview:

md5 — RSA’s MD5 message digest algorithm.

mpz — Interface to the GNU MP library for arbitrary precision arithmetic.

rotor — Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew Kuchling of further interest;
the package adds built-in modules for DES and IDEA encryption, provides a Python module for reading and decrypting
PGP files, and then some. These modules are not distributed with Python but available separately. See the URL
http://starship.skyport.net/crew/amk/maintained/crypto.html or send email toakuchlin@acm.org for more information.

14.1 Built-in Module md5

This module implements the interface to RSA’s MD5 message digest algorithm (see also Internet RFC 1321). Its use
is quite straightforward: use thenew() to create an md5 object. You can now feed this object with arbitrary strings
using theupdate() method, and at any point you can ask it for thedigest(a strong kind of 128-bit checksum, a.k.a.
“fingerprint”) of the contatenation of the strings fed to it so far using thedigest() method.

For example, to obtain the digest of the string’Nobody inspects the spammish repetition’ :

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
’\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351’

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()
’\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351’

new([arg])
Return a new md5 object. Ifarg is present, the method callupdate(arg) is made.

207

md5([arg])
For backward compatibility reasons, this is an alternative name for thenew() function.

An md5 object has the following methods:

update (arg)
Update the md5 object with the stringarg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments, i.e.m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is an 16-byte string which may
contain non-ASCII characters, including null bytes.

copy ()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

14.2 Built-in Module mpz

This is an optional module. It is only available when Python is configured to include it, which requires that the GNU
MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision integer and
rational number arithmetic routines. Only the interfaces to theinteger(mpz *()) routines are provided. If not stated
otherwise, the description in the GNU MP documentation can be applied.

In general,mpz-numbers can be used just like other standard Python numbers, e.g. you can use the built-in operators
like +, * , etc., as well as the standard built-in functions likeabs() , int() , . . . ,divmod() , pow() . Please note:
the bitwise-xoroperation has been implemented as a bunch ofands, inverts andors, because the library lacks an
mpz xor() function, and I didn’t need one.

You create an mpz-number by calling the functionmpz() (see below for an exact description). An mpz-number is
printed like this:mpz(value) .

mpz(value)
Create a new mpz-number.valuecan be an integer, a long, another mpz-number, or even a string. If it is a string,
it is interpreted as an array of radix-256 digits, least significant digit first, resulting in a positive number. See
also thebinary() method, described below.

MPZType
The type of the objects returned bympz() and most other functions in this module.

A number ofextra functions are defined in this module. Non mpz-arguments are converted to mpz-values first, and
the functions return mpz-numbers.

powm(base, exponent, modulus)
Returnpow(base, exponent) % modulus. If exponent== 0, returnmpz(1) . In contrast to the C library
function, this version can handle negative exponents.

gcd (op1, op2)
Return the greatest common divisor ofop1andop2.

gcdext (a, b)
Return a tuple(g, s, t) , such thata* s + b* t == g == gcd(a, b) .

sqrt (op)
Return the square root ofop. The result is rounded towards zero.

sqrtrem (op)
Return a tuple(root, remainder) , such thatroot* root + remainder == op.

208 Chapter 14. Cryptographic Services

divm (numerator, denominator, modulus)
Returns a numberq such thatq * denominator % modulus == numerator. One could also implement this
function in Python, usinggcdext() .

An mpz-number has one method:

binary ()
Convert this mpz-number to a binary string, where the number has been stored as an array of radix-256 digits,
least significant digit first.

The mpz-number must have a value greater than or equal to zero, otherwiseValueError will be raised.

14.3 Built-in Module rotor

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The design is derived
from the Enigma device, a machine used during World War II to encipher messages. A rotor is simply a permutation.
For example, if the character ‘A’ is the origin of the rotor, then a given rotor might map ‘A’ to ‘L’, ‘B’ to ‘Z’, ‘C’ to ‘G’,
and so on. To encrypt, we choose several different rotors, and set the origins of the rotors to known positions; their
initial position is the ciphering key. To encipher a character, we permute the original character by the first rotor, and
then apply the second rotor’s permutation to the result. We continue until we’ve applied all the rotors; the resulting
character is our ciphertext. We then change the origin of the final rotor by one position, from ‘A’ to ‘B’; if the final rotor
has made a complete revolution, then we rotate the next-to-last rotor by one position, and apply the same procedure
recursively. In other words, after enciphering one character, we advance the rotors in the same fashion as a car’s
odometer. Decoding works in the same way, except we reverse the permutations and apply them in the opposite order.

The available functions in this module are:

newrotor (key[, numrotors])
Return a rotor object.keyis a string containing the encryption key for the object; it can contain arbitrary binary
data. The key will be used to randomly generate the rotor permutations and their initial positions.numrotorsis
the number of rotor permutations in the returned object; if it is omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey (key)
Sets the rotor’s key tokey.

encrypt (plaintext)
Reset the rotor object to its initial state and encryptplaintext, returning a string containing the ciphertext. The
ciphertext is always the same length as the original plaintext.

encryptmore (plaintext)
Encryptplaintextwithout resetting the rotor object, and return a string containing the ciphertext.

decrypt (ciphertext)
Reset the rotor object to its initial state and decryptciphertext, returning a string containing the ciphertext. The
plaintext string will always be the same length as the ciphertext.

decryptmore (ciphertext)
Decryptciphertextwithout resetting the rotor object, and return a string containing the ciphertext.

An example usage:

14.3. Built-in Module rotor 209

>>> import rotor
>>> rt = rotor.newrotor(’key’, 12)
>>> rt.encrypt(’bar’)
’\2534\363’
>>> rt.encryptmore(’bar’)
’\357\375$’
>>> rt.encrypt(’bar’)
’\2534\363’
>>> rt.decrypt(’\2534\363’)
’bar’
>>> rt.decryptmore(’\357\375$’)
’bar’
>>> rt.decrypt(’\357\375$’)
’l(\315’
>>> del rt

The module’s code is not an exact simulation of the original Enigma device; it implements the rotor encryption
scheme differently from the original. The most important difference is that in the original Enigma, there were only 5
or 6 different rotors in existence, and they were applied twice to each character; the cipher key was the order in which
they were placed in the machine. The Pythonrotor module uses the supplied key to initialize a random number
generator; the rotor permutations and their initial positions are then randomly generated. The original device only
enciphered the letters of the alphabet, while this module can handle any 8-bit binary data; it also produces binary
output. This module can also operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal more difficult
to crack (especially if you use many rotors), but it won’t be impossible for a truly skilful and determined attacker
to break the cipher. So if you want to keep the NSA out of your files, this rotor cipher may well be unsafe, but for
discouraging casual snooping through your files, it will probably be just fine, and may be somewhat safer than using
the UNIX crypt command.

210 Chapter 14. Cryptographic Services

CHAPTER

FIFTEEN

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI’s IRIX operating system
(versions 4 and 5).

15.1 Built-in Module al

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section 3A of the
IRIX man pages for details. You’ll need to read those man pages to understand what these functions do! Some of the
functions are not available in IRIX releases before 4.0.5. Again, see the manual to check whether a specific function
is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with ‘AL’ prefixed to their name.

Symbolic constants from the C header file<audio.h> are defined in the standard moduleAL, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed rather than
returning an error status. Unfortunately, since the precise circumstances under which this may happen are undocu-
mented and hard to check, the Python interface can provide no protection against this kind of problems. (One example
is specifying an excessive queue size — there is no documented upper limit.)

The module defines the following functions:

openport (name, direction[, config])
The name and direction arguments are strings. The optionalconfigargument is a configuration object as returned
by newconfig() . The return value is anaudio port object; methods of audio port objects are described below.

newconfig ()
The return value is a newaudio configuration object; methods of audio configuration objects are described
below.

queryparams (device)
The device argument is an integer. The return value is a list of integers containing the data returned byAL-
queryparams() .

getparams (device, list)
The deviceargument is an integer. The list argument is a list such as returned byqueryparams() ; it is
modified in place (!).

setparams (device, list)
Thedeviceargument is an integer. Thelist argument is a list such as returned byqueryparams() .

Configuration Objects

211

Configuration objects (returned bynewconfig() have the following methods:

getqueuesize ()
Return the queue size.

setqueuesize (size)
Set the queue size.

getwidth ()
Get the sample width.

setwidth (width)
Set the sample width.

getchannels ()
Get the channel count.

setchannels (nchannels)
Set the channel count.

getsampfmt ()
Get the sample format.

setsampfmt (sampfmt)
Set the sample format.

getfloatmax ()
Get the maximum value for floating sample formats.

setfloatmax (floatmax)
Set the maximum value for floating sample formats.

Port Objects

Port objects, as returned byopenport() , have the following methods:

closeport ()
Close the port.

getfd ()
Return the file descriptor as an int.

getfilled ()
Return the number of filled samples.

getfillable ()
Return the number of fillable samples.

readsamps (nsamples)
Read a number of samples from the queue, blocking if necessary. Return the data as a string containing the raw
data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if you have set the sample width to
2 bytes).

writesamps (samples)
Write samples into the queue, blocking if necessary. The samples are encoded as described for theread-
samps() return value.

getfillpoint ()
Return the ‘fill point’.

setfillpoint (fillpoint)
Set the ‘fill point’.

212 Chapter 15. SGI IRIX Specific Services

getconfig ()
Return a configuration object containing the current configuration of the port.

setconfig (config)
Set the configuration from the argument, a configuration object.

getstatus (list)
Get status information on last error.

15.2 Standard Module AL

This module defines symbolic constants needed to use the built-in moduleal (see above); they are equivalent to those
defined in the C header file<audio.h> except that the name prefix ‘AL ’ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

import al
from AL import *

15.3 Built-in Module cd

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device withopen() and creates a parser to
parse the data from the CD withcreateparser() . The object returned byopen() can be used to read data from
the CD, but also to get status information for the CD-ROM device, and to get information about the CD, such as the
table of contents. Data from the CD is passed to the parser, which parses the frames, and calls any callback functions
that have previously been added.

An audio CD is divided intotracksor programs(the terms are used interchangeably). Tracks can be subdivided into
indices. An audio CD contains atable of contentswhich gives the starts of the tracks on the CD. Index 0 is usually the
pause before the start of a track. The start of the track as given by the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values, minutes, seconds
and frames. Most functions use the latter representation. Positions can be both relative to the beginning of the CD,
and to the beginning of the track.

Modulecd defines the following functions and constants:

createparser ()
Create and return an opaque parser object. The methods of the parser object are described below.

msftoframe (minutes, seconds, frames)
Converts a(minutes, seconds, frames) triple representing time in absolute time code into the corresponding
CD frame number.

open ([device[, mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of the player object are
described below. The device is the name of the SCSI device file, e.g.’/dev/scsi/sc0d4l0’ , or None.
If omitted orNone, the hardware inventory is consulted to locate a CD-ROM drive. Themode, if not omited,
should be the string’r’ .

The module defines the following variables:

error
Exception raised on various errors.

15.2. Standard Module AL 213

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the callback of type
audio .

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned bygetstatus() :

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR
An error aoocurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent ofPAUSEDon older (non 3301) model Toshiba CD-ROM drives. Such drives have never been
shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by theaddcallback()
method of CD parser objects (see below).

Player Objects

Player objects (returned byopen()) have the following methods:

allowremoval ()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize ()
Returns the best value to use for thenumframesparameter of thereadda() method. Best is defined as the
value that permits a continuous flow of data from the CD-ROM drive.

close ()
Frees the resources associated with the player object. After callingclose() , the methods of the object should
no longer be used.

eject ()
Ejects the caddy from the CD-ROM drive.

getstatus ()

214 Chapter 15. SGI IRIX Specific Services

Returns information pertaining to the current state of the CD-ROM drive. The returned information is a tuple
with the following values:state, track, rtime, atime, ttime, first, last, scsi audio, cur block. rtime is the time
relative to the start of the current track;atimeis the time relative to the beginning of the disc;ttime is the total
time on the disc. For more information on the meaning of the values, see the man pageCDgetstatus(3dm). The
value ofstateis one of the following:ERROR, NODISC, READY, PLAYING, PAUSED, STILL , or CDROM.

gettrackinfo (track)
Returns information about the specified track. The returned information is a tuple consisting of two elements,
the start time of the track and the duration of the track.

msftoblock (min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time code into the corresponding logi-
cal block number for the given CD-ROM drive. You should usemsftoframe() rather thanmsftoblock()
for comparing times. The logical block number differs from the frame number by an offset required by certain
CD-ROM drives.

play (start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output appears on the
CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of the disc.start is the number of
the track at which to start playing the CD; ifplay is 0, the CD will be set to an initial paused state. The method
togglepause() can then be used to commence play.

playabs (minutes, seconds, frames, play)
Like play() , except that the start is given in minutes, seconds, and frames instead of a track number.

playtrack (start, play)
Like play() , except that playing stops at the end of the track.

playtrackabs (track, minutes, seconds, frames, play)
Like play() , except that playing begins at the spcified absolute time and ends at the end of the specified track.

preventremoval ()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting the caddy.

readda (numframes)
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return value is a
string representing the audio frames. This string can be passed unaltered to theparseframe() method of the
parser object.

seek (minutes, seconds, frames)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to an absolute time code location specified inminutes, seconds, andframes. The return value is the
logical block number to which the pointer has been set.

seekblock (block)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified logical block number. The return value is the logical block number to which the
pointer has been set.

seektrack (track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified track. The return value is the logical block number to which the pointer has been
set.

stop ()
Stops the current playing operation.

togglepause ()
Pauses the CD if it is playing, and makes it play if it is paused.

15.3. Built-in Module cd 215

Parser Objects

Parser objects (returned bycreateparser()) have the following methods:

addcallback (type, func, arg)
Adds a callback for the parser. The parser has callbacks for eight different types of data in the digital audio
data stream. Constants for these types are defined at thecd module level (see above). The callback is called
as follows:func(arg, type, data) , wherearg is the user supplied argument,typeis the particular type of
callback, anddata is the data returned for thistypeof callback. The type of the data depends on thetypeof
callback as follows:

Type Value
audio String which can be passed unmodified toal.writesamps() .
pnum Integer giving the program (track) number.
index Integer giving the index number.
ptime Tuple consisting of the program time in minutes, seconds, and frames.
atime Tuple consisting of the absolute time in minutes, seconds, and frames.
catalog String of 13 characters, giving the catalog number of the CD.
ident String of 12 characters, giving the ISRC identification number of the

recording. The string consists of two characters country code, three char-
acters owner code, two characters giving the year, and five characters
giving a serial number.

control Integer giving the control bits from the CD subcode data

deleteparser ()
Deletes the parser and frees the memory it was using. The object should not be used after this call. This call is
done automatically when the last reference to the object is removed.

parseframe (frame)
Parses one or more frames of digital audio data from a CD such as returned byreadda() . It determines which
subcodes are present in the data. If these subcodes have changed since the last frame, thenparseframe()
executes a callback of the appropriate type passing to it the subcode data found in the frame. Unlike the C
function, more than one frame of digital audio data can be passed to this method.

removecallback (type)
Removes the callback for the giventype.

resetparser ()
Resets the fields of the parser used for tracking subcodes to an initial state.resetparser() should be called
after the disc has been changed.

15.4 Built-in Module fl

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library can be
retrieved by anonymous ftp from host ‘ftp.cs.ruu.nl ’, directory ‘SGI/FORMS’. It was last tested with version
2.0b.

Most functions are literal translations of their C equivalents, dropping the initial ‘fl ’ from their name. Constants
used by the library are defined in moduleFL described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained by the library
to which new FORMS objects are added, all functions that add a FORMS object to a form are methods of the Python
object representing the form. Consequently, there are no Python equivalents for the C functionsfl addto form()
andfl end form() , and the equivalent offl bgn form() is calledfl.make form() .

Watch out for the somewhat confusing terminology: FORMS uses the wordobject for the buttons, sliders etc. that
you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS introduces two new

216 Chapter 15. SGI IRIX Specific Services

Python object types: form objects (representing an entire form) and FORMS objects (representing one button, slider
etc.). Hopefully this isn’t too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object classes written
in Python. The FORMS interface to GL event handling is available, though, so you can mix FORMS with pure GL
windows.

Please note: importing fl implies a call to the GL functionforeground() and to the FORMS routine
fl init() .

Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description of the
equivalent C function in the FORMS documentation:

make form (type, width, height)
Create a form with given type, width and height. This returns aformobject, whose methods are described below.

do forms ()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing interaction,
or the special valueFL.EVENT.

check forms ()
Check for FORMS events. Returns whatdo forms() above returns, orNone if there is no event that imme-
diately needs interaction.

set event call back (function)
Set the event callback function.

set graphics mode(rgbmode, doublebuffering)
Set the graphics modes.

get rgbmode ()
Return the current rgb mode. This is the value of the C global variablefl rgbmode .

show message (str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

show question (str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns1 if the user pressed YES,0
if NO.

show choice (str1, str2, str3, but1[, but2[, but3]])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the button clicked
by the user (1, 2 or 3).

show input (prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user can enter a string. The second
argument is the default input string. It returns the string value as edited by the user.

show file selector (message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename selected by the user, or
None if the user presses Cancel.

get directory ()
get pattern ()
get filename ()

These functions return the directory, pattern and filename (the tail part only) selected by the user in the last
show file selector() call.

qdevice (dev)

15.4. Built-in Module fl 217

unqdevice (dev)
isqueued (dev)
qtest ()
qread ()
qreset ()
qenter (dev, val)
get mouse()
tie (button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you want to handle
some GL events yourself when usingfl.do events() . When a GL event is detected that FORMS cannot
handle,fl.do forms() returns the special valueFL.EVENT and you should callfl.qread() to read the
event from the queue. Don’t use the equivalent GL functions!

color ()
mapcolor ()
getmcolor ()

See the description in the FORMS documentation offl color() , fl mapcolor() and
fl getmcolor() .

Form Objects

Form objects (returned bymake form() above) have the following methods. Each method corresponds to a C
function whose name is prefixed with ‘fl ’; and whose first argument is a form pointer; please refer to the official
FORMS documentation for descriptions.

All the add *() methods return a Python object representing the FORMS object. Methods of FORMS objects are
described below. Most kinds of FORMS object also have some methods specific to that kind; these methods are listed
here.

show form (placement, bordertype, name)
Show the form.

hide form ()
Hide the form.

redraw form ()
Redraw the form.

set form position (x, y)
Set the form’s position.

freeze form ()
Freeze the form.

unfreeze form ()
Unfreeze the form.

activate form ()
Activate the form.

deactivate form ()
Deactivate the form.

bgn group ()
Begin a new group of objects; return a group object.

end group ()
End the current group of objects.

218 Chapter 15. SGI IRIX Specific Services

find first ()
Find the first object in the form.

find last ()
Find the last object in the form.

add box (type, x, y, w, h, name)
Add a box object to the form. No extra methods.

add text (type, x, y, w, h, name)
Add a text object to the form. No extra methods.

add clock (type, x, y, w, h, name)
Add a clock object to the form.
Method:get clock() .

add button (type, x, y, w, h, name)
Add a button object to the form.
Methods:get button() , set button() .

add lightbutton (type, x, y, w, h, name)
Add a lightbutton object to the form.
Methods:get button() , set button() .

add roundbutton (type, x, y, w, h, name)
Add a roundbutton object to the form.
Methods:get button() , set button() .

add slider (type, x, y, w, h, name)
Add a slider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add valslider (type, x, y, w, h, name)
Add a valslider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add dial (type, x, y, w, h, name)
Add a dial object to the form.
Methods:set dial value() , get dial value() , set dial bounds() , get dial bounds() .

add positioner (type, x, y, w, h, name)
Add a positioner object to the form.
Methods:set positioner xvalue() , set positioner yvalue() ,
set positioner xbounds() , set positioner ybounds() , get positioner xvalue() ,
get positioner yvalue() , get positioner xbounds() , get positioner ybounds() .

add counter (type, x, y, w, h, name)
Add a counter object to the form.
Methods:set counter value() , get counter value() , set counter bounds() ,
set counter step() , set counter precision() , set counter return() .

add input (type, x, y, w, h, name)
Add a input object to the form.
Methods:set input() , get input() , set input color() , set input return() .

add menu(type, x, y, w, h, name)
Add a menu object to the form.

15.4. Built-in Module fl 219

Methods:set menu() , get menu() , addto menu() .

add choice (type, x, y, w, h, name)
Add a choice object to the form.
Methods:set choice() , get choice() , clear choice() , addto choice() ,
replace choice() , delete choice() , get choice text() , set choice fontsize() ,
set choice fontstyle() .

add browser (type, x, y, w, h, name)
Add a browser object to the form.
Methods:set browser topline() , clear browser() , add browser line() ,
addto browser() , insert browser line() , delete browser line() ,
replace browser line() , get browser line() , load browser() ,
get browser maxline() , select browser line() , deselect browser line() ,
deselect browser() , isselected browser line() , get browser() ,
set browser fontsize() , set browser fontstyle() , set browser specialkey() .

add timer (type, x, y, w, h, name)
Add a timer object to the form.
Methods:set timer() , get timer() .

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the following methods:

set call back (function, argument)
Set the object’s callback function and argument. When the object needs interaction, the callback function will be
called with two arguments: the object, and the callback argument. (FORMS objects without a callback function
are returned byfl.do forms() or fl.check forms() when they need interaction.) Call this method
without arguments to remove the callback function.

delete object ()
Delete the object.

show object ()
Show the object.

hide object ()
Hide the object.

redraw object ()
Redraw the object.

freeze object ()
Freeze the object.

220 Chapter 15. SGI IRIX Specific Services

unfreeze object ()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

Name C Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

15.5 Standard Module FL

This module defines symbolic constants needed to use the built-in modulefl (see above); they are equivalent to those
defined in the C header file<forms.h> except that the name prefix ‘FL ’ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

import fl
from FL import *

15.6 Standard Module flp

This module defines functions that can read form definitions created by the ‘form designer’ (fdesign) program that
comes with the FORMS library (see modulefl above).

For now, see the file ‘flp.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted here!

15.7 Built-in Module fm

15.5. Standard Module FL 221

This module provides access to the IRISFont Managerlibrary. It is available only on Silicon Graphics machines.
See also:4Sight User’s Guide, Section 1, Chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix operations; cache
operations; character operations (use string operations instead); some details of font info; individual glyph metrics;
and printer matching.

It supports the following operations:

init ()
Initialization function. Callsfminit() . It is normally not necessary to call this function, since it is called
automatically the first time thefm module is imported.

findfont (fontname)
Return a font handle object. Callsfmfindfont(fontname) .

enumerate ()
Returns a list of available font names. This is an interface tofmenumerate() .

prstr (string)
Render a string using the current font (see thesetfont() font handle method below). Calls
fmprstr(string) .

setpath (string)
Sets the font search path. Callsfmsetpath(string) . (XXX Does not work!?!)

fontpath ()
Returns the current font search path.

Font handle objects support the following operations:

scalefont (factor)
Returns a handle for a scaled version of this font. Callsfmscalefont(fh, factor) .

setfont ()
Makes this font the current font. Note: the effect is undone silently when the font handle object is deleted. Calls
fmsetfont(fh) .

getfontname ()
Returns this font’s name. Callsfmgetfontname(fh) .

getcomment ()
Returns the comment string associated with this font. Raises an exception if there is none. Calls
fmgetcomment(fh) .

getfontinfo ()
Returns a tuple giving some pertinent data about this font. This is an interface tofmgetfontinfo() . The
returned tuple contains the following numbers:(printermatched, fixedwidth, xorig, yorig, xsize, ysize, height,
nglyphs) .

getstrwidth (string)
Returns the width, in pixels, ofstring when drawn in this font. Callsfmgetstrwidth(fh, string) .

15.8 Built-in Module gl

This module provides access to the Silicon GraphicsGraphics Library. It is available only on Silicon Graphics
machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular, the use of most
GL calls is unsafe before the first window is opened.

222 Chapter 15. SGI IRIX Specific Services

The module is too large to document here in its entirety, but the following should help you to get started. The parameter
conventions for the C functions are translated to Python as follows:

• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point numbers. In most cases, Python integers
are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

• All string and character arguments are represented by Python strings, for instance,winopen(’Hi There!’)
androtate(900, ’z’) .

• All (short, long, unsigned) integer arguments or return values that are only used to specify the length of an array
argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted as function return values instead. If
more than one value must be returned, the return value is a tuple. If the C function has both a regular return
value (that is not omitted because of the previous rule) and an output argument, the return value comes first in
the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray (argument)
Equivalent to but faster than a number ofv3d() calls. Theargumentis a list (or tuple) of points. Each point
must be a tuple of coordinates(x, y, z) or (x, y) . The points may be 2- or 3-dimensional but must all have
the same dimension. Float and int values may be mixed however. The points are always converted to 3D double
precision points by assumingz = 0.0 if necessary (as indicated in the man page), and for each pointv3d()
is called.

nvarray ()
Equivalent to but faster than a number ofn3f andv3f calls. The argument is an array (list or tuple) of pairs
of normals and points. Each pair is a tuple of a point and a normal for that point. Each point or normal must be
a tuple of coordinates(x, y, z) . Three coordinates must be given. Float and int values may be mixed. For
each pair,n3f() is called for the normal, and thenv3f() is called for the point.

vnarray ()
Similar tonvarray() but the pairs have the point first and the normal second.

nurbssurface (s k, t k, ctl, sord, t ord, type)
Defines a nurbs surface. The dimensions ofctl[][] are computed as follows:[len(s k) - s ord] ,
[len(t k) - t ord] .

15.8. Built-in Module gl 223

nurbscurve (knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints islen(knots) - order.

pwlcurve (points, type)
Defines a piecewise-linear curve.pointsis a list of points.typemust beN ST.

pick (n)
select (n)

The only argument to these functions specifies the desired size of the pick or select buffer.

endpick ()
endselect ()

These functions have no arguments. They return a list of integers representing the used part of the pick/select
buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:

import gl, GL, time

def main():
gl.foreground()
gl.prefposition(500, 900, 500, 900)
w = gl.winopen(’CrissCross’)
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color(GL.WHITE)
gl.clear()
gl.color(GL.RED)
gl.bgnline()
gl.v2f(0.0, 0.0)
gl.v2f(400.0, 400.0)
gl.endline()
gl.bgnline()
gl.v2f(400.0, 0.0)
gl.v2f(0.0, 400.0)
gl.endline()
time.sleep(5)

main()

15.9 Standard Modules GL and DEVICE

These modules define the constants used by the Silicon GraphicsGraphics Librarythat C programmers find in the
header files ‘¡gl/gl.h¿’ and ‘¡gl/device.h¿’. Read the module source files for details.

15.10 Built-in Module imgfile

The imgfile module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

224 Chapter 15. SGI IRIX Specific Services

getsizes (file)
This function returns a tuple(x, y, z) wherex andy are the size of the image in pixels andz is the number
of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently supported.

read (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string has
either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format
is suitable to pass togl.lrectwrite() , for instance.

readscaled (file, x, y, filter[, blur])
This function is identical to read but it returns an image that is scaled to the givenx andy sizes. If thefilter and
blur parameters are omitted scaling is done by simply dropping or duplicating pixels, so the result will be less
than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms supported are
’impulse’ , ’box’ , ’triangle’ , ’quadratic’ and ’gaussian’ . If a filter is specifiedblur is an
optional parameter specifying the blurriness of the filter. It defaults to1.0 .

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

write (file, data, x, y, z)
This function writes the RGB or greyscale data indata to image filefile. x andy give the size of the image,z is
1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values of which only the lower
three bytes are used). These are the formats returned bygl.lrectread() .

15.10. Built-in Module imgfile 225

226

CHAPTER

SIXTEEN

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS operating system
(versions 4 and 5; the latter is also known as Solaris version 2).

16.1 Built-in Module sunaudiodev

This module allows you to access the sun audio interface. The sun audio hardware is capable of recording and playing
back audio data in u-LAW format with a sample rate of 8K per second. A full description can be found in theaudio(7I)
manual page.

The module defines the following variables and functions:

error
This exception is raised on all errors. The argument is a string describing what went wrong.

open (mode)
This function opens the audio device and returns a sun audio device object. This object can then be used to do
I/O on. Themodeparameter is one of’r’ for record-only access,’w’ for play-only access,’rw’ for both and
’control’ for access to the control device. Since only one process is allowed to have the recorder or player
open at the same time it is a good idea to open the device only for the activity needed. Seeaudio(7I) for details.

Audio Device Objects

The audio device objects are returned byopen() define the following methods (exceptcontrol objects which only
providegetinfo() , setinfo() anddrain()):

close ()
This method explicitly closes the device. It is useful in situations where deleting the object does not immediately
close it since there are other references to it. A closed device should not be used again.

drain ()
This method waits until all pending output is processed and then returns. Calling this method is often not
necessary: destroying the object will automatically close the audio device and this will do an implicit drain.

flush ()
This method discards all pending output. It can be used avoid the slow response to a user’s stop request (due to
buffering of up to one second of sound).

getinfo ()
This method retrieves status information like input and output volume, etc. and returns it in the form of an
audio status object. This object has no methods but it contains a number of attributes describing the current
device status. The names and meanings of the attributes are described in ‘/usr/include/sun/audioio.h’ and in

227

the audio(7I) manual page. Member names are slightly different from their C counterparts: a status object is
only a single structure. Members of theplay substructure have ‘o ’ prepended to their name and members of
the record structure have ‘i ’. So, the C memberplay.sample rate is accessed aso sample rate ,
record.gain asi gain andmonitor gain plainly asmonitor gain .

ibufcount ()
This method returns the number of samples that are buffered on the recording side, i.e. the program will not
block on aread() call of so many samples.

obufcount ()
This method returns the number of samples buffered on the playback side. Unfortunately, this number cannot
be used to determine a number of samples that can be written without blocking since the kernel output queue
length seems to be variable.

read (size)
This method readssizesamples from the audio input and returns them as a Python string. The function blocks
until enough data is available.

setinfo (status)
This method sets the audio device status parameters. Thestatusparameter is an device status object as returned
by getinfo() and possibly modified by the program.

write (samples)
Write is passed a Python string containing audio samples to be played. If there is enough buffer space free it
will immediately return, otherwise it will block.

There is a companion module,SUNAUDIODEV, which defines useful symbolic constants likeMIN GAIN, MAXGAIN,
SPEAKER, etc. The names of the constants are the same names as used in the C include file<sun/audioio.h> ,
with the leading string ‘AUDIO ’ stripped.

Useability of the control device is limited at the moment, since there is no way to use the “wait for something to
happen” feature the device provides.

228 Chapter 16. SunOS Specific Services

CHAPTER

SEVENTEEN

Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel free to
contribute documentation for them! (The idea and most contents for this chapter were taken from a posting by Fredrik
Lundh; I have revised some modules’ status.)

17.1 Frameworks; somewhat harder to document, but well worth the ef-
fort

Tkinter.py — Interface to Tcl/Tk for graphical user interfaces; Fredrik Lundh is working on this one!

Tkdnd.py — Drag-and-drop support forTkinter .

CGIHTTPServer.py — CGI-savvy HTTP Server

SimpleHTTPServer.py — Simple HTTP Server

17.2 Stuff useful to a lot of people, including the CGI crowd

MimeWriter.py — Generic MIME writer

multifile.py — make each part of a multipart message “feel” like

poplib.py — Post Office Protocol client by Dave Ascher.

smtplib.py — Simple Mail Transfer Protocol (SMTP) client code.

17.3 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm”.

calendar.py — Calendar printing functions

ConfigParser.py — Parse a file of sectioned configuration parameters

cmp.py — Efficiently compare files

cmpcache.py— Efficiently compare files (uses statcache)

dircache.py — like os.listdir, but caches results

229

dircmp.py — class to build directory diff tools on

getpass.py— Utilities to get a password and/or the current user name.

linecache.py — Cache lines from files (used by pdb)

pipes.py — Conversion pipeline templates (hmm)

popen2.py — improved popen, can read AND write simultaneously

statcache.py— Maintain a cache of file stats

colorsys.py — Conversion between RGB and other color systems

dbhash.py — (g)dbm-like wrapper for bsdhash.hashopen

mhlib.py — MH interface

pty.py — Pseudo terminal utilities

tty.py — Terminal utilities

cmd.py — build line-oriented command interpreters (used by pdb)

bdb.py — A generic Python debugger base class (used by pdb)

wdb.py — A primitive windowing debugger based on STDWIN.

ihooks.py — Import hook support (for rexec)

bisect.py — Bisection algorithms (this is actually useful at times, especially as reference material)

17.4 Parsing Python

(One could argue that these should all be documented together with the parser module.)

tokenize.py — regular expression that recognizes Python tokens; also contains helper code for colorizing Python
source code.

pyclbr.py — Parse a Python file and retrieve classes and methods

17.5 Platform specific modules

ntpath.py — equivalent of posixpath on 32-bit Windows

dospath.py — equivalent of posixpath on MS-DOS

17.6 Code objects and files, debugger etc.

compileall.py — force ”compilation” of all .py files in a directory

py compile.py — ”compile” a .py file to a .pyc file

repr.py — Redo the ‘...‘ (representation) but with limits on most sizes (used by pdb)

230 Chapter 17. Undocumented Modules

17.7 Multimedia

audiodev.py — Plays audio files

sunau.py — parse Sun and NeXT audio files

sunaudio.py — interpret sun audio headers

toaiff.py — Convert ”arbitrary” sound files to AIFF files

sndhdr.py — recognizing sound files

wave.py — parse WAVE files

whatsound.py — recognizing sound files

17.8 Oddities

These modules are probably also obsolete, or just not very useful.

dump.py — Print python code that reconstructs a variable

find.py — find files matching pattern in directory tree

fpformat.py — General floating point formatting functions — interesting demonstration of how to do this without
using the C library

grep.py — grep

mutex.py — Mutual exclusion — for use with module sched

packmail.py — create a self-unpacking UNIX shell archive

poly.py — Polynomials

sched.py — event scheduler class

shutil.py — utility functions usable in a shell-like program

util.py — useful functions that don’t fit elsewhere

zmod.py — Compute properties of mathematical ”fields”

tzparse.py — Parse a timezone specification (unfinished)

17.9 Obsolete

These modules are not on the standard module search path; but are available in the directory ‘lib-old/’ installed under
‘$prefix/lib/python1.5/’. To use any of these modules, add that directory tosys.path , possibly using $PYTHON-
PATH.

newdir.py — New dir() function (the standard dir() is now just as good)

addpack.py — standard support for ”packages”

fmt.py — text formatting abstractions (too slow)

17.7. Multimedia 231

Para.py — helper for fmt.py

lockfile.py — wrapper around FCNTL file locking (use fcntl.lockf/flock intead)

tb.py — Print tracebacks, with a dump of local variables (use pdb.pm() or traceback.py instead)

codehack.py — extract function name or line number from a function code object (these are now accessible as
attributes: co.coname, func.funcname, co.cofirstlineno)

The following modules were documented in previous versions of this manual, but are now considered obsolete:

ni — Import modules in “packages.”

rand — Old interface to the random number generator.

soundex — Algorithm for collapsing names which sound similar to a shared key. (This is an extension module.)

17.10 Extension modules

bsddbmodule.c — Interface to the Berkeley DB interface (yet another dbm clone).

cursesmodule.c— Curses interface.

dlmodule.c — A highly experimental and dangerous device for calling arbitrary C functions in arbitrary shared li-
braries.

newmodule.c — Tommy Burnette’s ‘new’ module (creates new empty objects of certain kinds) — dangerous.

nismodule.c — NIS (a.k.a. Sun’s Yellow Pages) interface.

timingmodule.c — Measure time intervals to high resolution (obsolete — use time.clock() instead).

stdwinmodule.c — Interface to STDWIN (an old, unsupported platform-independent GUI package). Obsolete; use
Tkinter for a platform-independent GUI instead.

The following are SGI specific:

clmodule.c — Interface to the SGI compression library.

svmodule.c — Interface to the “simple video” board on SGI Indigo (obsolete hardware).

The following is Windows specific:

msvcrtmodule.c (in directory ‘PC/’) — define a number of Windows specific goodies likekhbit() , getch() and
setmode() . (Windows 95 and NT only.)

232 Chapter 17. Undocumented Modules

MODULE INDEX

Symbols
builtin , 59
main , 59

A
aifc , 201
AL, 213
al , 211
anydbm, 111
array , 83
audioop , 197

B
base64 , 184
BaseHTTPServer , 188
Bastion , 196
binascii , 180
binhex , 179

C
cd , 213
cgi , 150
cmath , 80
code , 49
commands, 132
copy , 34
copy reg , 33
cPickle , 33
crypt , 122
cStringIO , 77

D
dbm, 123
DEVICE, 224
dis , 52
dumbdbm, 112

E
errno , 92
exceptions , 12

F

fcntl , 125
fileinput , 85
FL, 221
fl , 216
flp , 221
fm , 222
fnmatch , 98
formatter , 173
ftplib , 158

G
gdbm, 123
getopt , 91
GL, 224
gl , 222
glob , 98
gopherlib , 161
grp , 122
gzip , 113

H
htmllib , 169
httplib , 157

I
imageop , 200
imaplib , 161
imgfile , 224
imghdr , 204
imp , 36

J
jpeg , 203

K
keyword , 49

L
locale , 99

M

233

mailbox , 187
mailcap , 183
marshal , 35
math , 79
md5, 207
mimetools , 178
mimify , 187
mpz, 208

N
nntplib , 164

O
operator , 28
os , 87

P
parser , 39
pdb , 135
pickle , 30
posix , 115
posixfile , 126
posixpath , 120
pprint , 49
profile , 142
pstats , 143
pwd, 122

Q
Queue, 111
quopri , 185

R
random , 82
re , 64
regex , 70
regsub , 74
resource , 128
rexec , 194
rfc822 , 176
rgbimg , 203
rotor , 209

S
select , 109
sgmllib , 167
shelve , 34
signal , 103
site , 57
socket , 105
SocketServer , 185
stat , 131
string , 61
StringIO , 77

struct , 75
sunaudiodev , 227
symbol , 48
sys , 24
syslog , 130

T
tempfile , 92
TERMIOS, 125
termios , 124
thread , 110
time , 88
token , 48
traceback , 30
types , 26

U
urllib , 155
urlparse , 166
user , 58
UserDict , 28
UserList , 28
uu , 180

W
whichdb , 112
whrandom , 82

X
xdrlib , 181
xmllib , 170

Z
zlib , 112

234 Module Index

INDEX

Symbols
.pythonrc.py

file, 58
==

operator, 4
abs () (in module operator), 29
add () (in module operator), 28
and () (in module operator), 29
builtin (built-in module),59
concat () (in module operator), 29
delitem () (in module operator), 29
delslice () (in module operator), 30
dict (pickle protocol), 32
div () (in module operator), 28
getinitargs (copy protocol), 35
getinitargs () (pickle protocol), 31
getitem () (in module operator), 29
getslice () (in module operator), 29
getstate (copy protocol), 35
getstate () (pickle protocol), 32
import () (built-in function), 15
init () (pickle protocol), 31
inv () (in module operator), 29
lshift () (in module operator), 29
main (built-in module),59
mod () (in module operator), 29
mul () (in module operator), 28
neg () (in module operator), 29
or () (in module operator), 29
pos () (in module operator), 29
repeat () (in module operator), 29
rshift () (in module operator), 29
setitem () (in module operator), 29
setslice () (in module operator), 29
setstate (copy protocol), 35
setstate () (pickle protocol), 32
sub () (in module operator), 28

exit() (in module posix), 117
locale (built-in module), 99

A

A-LAW, 202
a2b base64() (in module binascii), 180
a2b hqx() (in module binascii), 180
a2b uu() (in module binascii), 180
ABC language, 4
abort() (FTP method), 160
abs()

built-in function, 15
in module operator, 29

AbstractFormatter (class in formatter), 175
AbstractWriter (class in formatter), 176
accept() (socket method), 107
acos()

in module cmath, 81
in module math, 79

acosh() (in module cmath), 81
acquire() (lock method), 110
activate form() (form method), 218
add()

in module audioop, 197
in module operator, 28
Stats method, 143

add box() (form method), 219
add browser() (form method), 220
add button() (form method), 219
add choice() (form method), 220
add clock() (form method), 219
add counter() (form method), 219
add dial() (form method), 219
add flowing data() (formatter method), 174
add hor rule() (formatter method), 173
add input() (form method), 219
add label data() (formatter method), 174
add lightbutton() (form method), 219
add line break() (formatter method), 173
add literal data() (formatter method), 174
add menu() (form method), 219
add positioner() (form method), 219
add roundbutton() (form method), 219
add slider() (form method), 219
add text() (form method), 219
add timer() (form method), 220

235

add valslider() (form method), 219
addcallback() (CD parser method), 216
address family (SocketServer protocol), 186
address string() (BaseHTTPRequestHandler

method), 191
adler32() (in module zlib), 112
ADPCM, Intel/DVI, 197
adpcm2lin() (in module audioop), 197
adpcm32lin() (in module audioop), 197
AF INET (in module socket), 105
AF UNIX (in module socket), 105
aifc (standard module),201
aifc() (aifc method), 202
AIFF, 201
aiff() (aifc method), 202
AIFF-C, 201
AL (standard module), 211,213
al (built-in module),211
alarm() (in module signal), 104
all errors (in module ftplib), 159
allocate lock() (in module thread), 110
allowremoval() (CD player method), 214
altsep (in module os), 88
altzone (in module time), 89
anchor bgn() (HTMLParser method), 170
anchor end() (HTMLParser method), 170
and

operator, 3, 4
and () (in module operator), 29
anydbm (standard module),111
append (list method), 8
append()

array method, 84
IMAP4 method, 162

apply() (built-in function), 15
arbitrary precision integers, 208
argv (in module sys), 24
arithmetic, 5
ArithmeticError (built-in exception base class),

13
array (built-in module),83
array() (in module array), 84
arrays, 83
ArrayType (in module array), 84
article() (NNTP method), 166
AS IS (in module formatter), 173
asctime() (in module time), 89
asin()

in module cmath, 81
in module math, 79

asinh() (in module cmath), 81
assert

statement, 13
assert line data() (formatter method), 175

AssertionError (built-in exception), 13
assignment

slice, 8
subscript, 8

ast2list() (in module parser), 41
ast2tuple() (in module parser), 41
ASTType (in module parser), 42
atan()

in module cmath, 81
in module math, 79

atan2() (in module math), 79
atanh() (in module cmath), 81
atime (in module cd), 214
atof()

in module locale, 100
in module string, 62

atoi()
in module locale, 100
in module string, 62

atol() (in module string), 62
AttributeError (built-in exception), 13
audio (in module cd), 214
Audio Interchange File Format, 201
audioop (built-in module),197
authenticate() (IMAP4 method), 162
avg() (in module audioop), 197
avgpp() (in module audioop), 198

B
b2a base64() (in module binascii), 180
b2a hqx() (in module binascii), 181
b2a uu() (in module binascii), 180
base64

encoding, 184
base64 (standard module),184
BaseHTTPRequestHandler (class in Base-

HTTPServer), 189
BaseHTTPServer (standard module),188
basename() (in module posixpath), 120
Bastion (standard module),196
Bastion() (in module Bastion), 196
BastionClass (class in Bastion), 196
bdb (standard module), 135
benchmarking, 89
bestreadsize() (CD player method), 214
betavariate() (in module random), 82
bgn group() (form method), 218
bias() (in module audioop), 198
binary semaphores, 110
binary() (mpz method), 209
binascii (built-in module),180
bind() (socket method), 107
binhex (standard module),179
binhex() (in module binhex), 179

236 Index

bit-string
operations, 6

BLOCKSIZE(in module cd), 214
body() (NNTP method), 166
Boolean

operations, 3, 4
type, 3

buffer info() (array method), 84
built-in

exceptions, 3
functions, 3
types, 3

builtin module names (in module sys), 24
BuiltinFunctionType (in module types), 27
BuiltinMethodType (in module types), 27
byteswap() (array method), 84

C
C

language, 4, 5
structures, 75

C BUILTIN (in module imp), 37
C EXTENSION(in module imp), 37
calcsize() (in module struct), 75
callable() (built-in function), 15
capitalize() (in module string), 62
capwords()

in module regsub, 75
in module string, 62

casefold (in module regex), 73
catalog (in module cd), 214
cd (built-in module),213
CDROM(in module cd), 214
ceil()

built-in function, 5
in module math, 79

center() (in module string), 63
CGI

protocol, 150
cgi (standard module),150
CGIHTTPServer (standard module), 189
chaining

comparisons, 4
CHARMAX(in module locale), 101
CHARSET(in module mimify), 188
chdir() (in module posix), 116
check() (IMAP4 method), 162
check forms() (in module fl), 217
checksum

Cyclic Redundancy Check, 113
MD5, 207

chmod() (in module posix), 116
choice() (in module whrandom), 82
choose boundary() (in module mimetools), 178

chown() (in module posix), 116
chr() (built-in function), 15
cipher

DES, 122, 207
Enigma, 209
IDEA, 207

ClassType (in module types), 27
clear cache() (in module regsub), 75
client address (BaseHTTPRequestHandler at-

tribute), 189
clock() (in module time), 89
close()

aifc method, 202, 203
audio device method, 227
CD player method, 214
file method, 10
FTP method, 161
IMAP4 method, 162
in module fileinput, 86
in module posix, 116
SGMLParser method, 168
socket method, 107
StringIO method, 77
XMLParser method, 171

closed (file attribute), 11
closelog() (in module syslog), 131
closeport() (audio port method), 212
cmath (built-in module),80
cmd (standard module), 135
cmp() (built-in function), 15, 100
cmp op (in module dis), 53
code

object, 9, 10, 35
code (standard module),49
CodeType (in module types), 27
coerce() (built-in function), 16
color() (in module fl), 218
command(BaseHTTPRequestHandler attribute), 189
commands (standard module),132
Common Gateway Interface, 150
commonprefix() (in module posixpath), 120
comparing

objects, 4
comparison

operator, 4
comparisons

chaining, 4
compile()

AST method, 42
built-in function, 10, 16, 27, 41, 42
in module re, 67
in module regex, 73

compile command() (in module code), 49
compileast() (in module parser), 41

Index 237

complex number
literals, 5
type, 5

complex() (built-in function), 5, 16
compress()

Compress method, 113
in module jpeg, 203
in module zlib, 113

compressobj() (in module zlib), 113
concat() (in module operator), 29
concatenation

operation, 6
configuration

file, path, 57
file, user, 58

connect()
FTP method, 159
HTTP method, 157
socket method, 107

connect ex() (socket method), 107
constructor() (in module copyreg), 34
control (in module cd), 214
ConversionError (in module xdrlib), 183
conversions

numeric, 5
Coordinated Universal Time, 89
copy

copy function, 34
standard module, 32, 33,34

copy()
IMAP4 method, 162
md5 method, 208

copy reg (standard module),33
copybinary() (in module mimetools), 178
copyliteral() (in module mimetools), 178
cos()

in module cmath, 81
in module math, 79

cosh()
in module cmath, 81
in module math, 79

count (list method), 8
count() (in module string), 62
cPickle (built-in module), 31, 33,33
CPU time, 89
crc32() (in module zlib), 113
crc hqx() (in module binascii), 181
create() (IMAP4 method), 162
createparser() (in module cd), 213
crop() (in module imageop), 200
cross() (in module audioop), 198
crypt (built-in module),122
crypt() (in module crypt), 122
crypt(3), 122

cryptography, 207
cStringIO (built-in module),77
ctime() (in module time), 89
cunifvariate() (in module random), 82
curdir (in module os), 88
cwd() (FTP method), 160
Cyclic Redundancy Check, 113

D
data

UserDict attribute, 28
UserList attribute, 28

DATASIZE (in module cd), 214
date() (NNTP method), 166
date time string() (BaseHTTPRequestHandler

method), 191
daylight (in module time), 89
Daylight Saving Time, 89
dbhash (built-in module), 111
dbm (built-in module), 34, 111, 123,123
deactivate form() (form method), 218
debug (IMAP4 attribute), 163
debugger, 26
debugging, 135
decode()

in module base64, 184
in module mimetools, 178
in module quopri, 185
in module uu, 180

decodestring() (in module base64), 185
decompress()

Decompress method, 113
in module jpeg, 203
in module zlib, 113

decompressobj() (in module zlib), 113
decrypt() (rotor method), 209
decryptmore() (rotor method), 209
deepcopy (copy function), 34
defpath (in module os), 88
del

statement, 8
delattr() (built-in function), 16
delete() (IMAP4 method), 162
delete object() (FORMS object method), 220
deleteparser() (CD parser method), 216
delitem() (in module operator), 29
delslice() (in module operator), 30
DES

cipher, 122, 207
deterministic profiling, 139
DEVICE (standard module),224
device

Enigma, 209
dictionary

238 Index

type, 8
type, operations on, 8

DictionaryType (in module types), 27
DictType (in module types), 27
digest() (md5 method), 208
digits (in module string), 61
dir()

built-in function, 16
FTP method, 160

directory
site-packages, 57
site-python, 57

dis (standard module),52
dis() (in module dis), 52
disassemble() (in module dis), 52
disco() (in module dis), 52
distb() (in module dis), 52
dither2grey2() (in module imageop), 201
dither2mono() (in module imageop), 200
div() (in module operator), 28
division

integer, 5
long integer, 5

divm() (in module mpz), 209
divmod() (built-in function), 16
do forms() (in module fl), 217
done() (Unpacker method), 182
DOTALL(in module re), 67
drain() (audio device method), 227
Drake, Fred L., Jr., 39
dumbdbm(standard module), 111,112
DumbWriter (class in formatter), 176
dump()

in module marshal, 36
in module pickle, 33

dumps()
in module marshal, 36
in module pickle, 33

dup()
in module posix, 116
posixfile method, 127

dup2()
in module posix, 116
posixfile method, 127

E
e

in module cmath, 81
in module math, 80

E2BIG (in module errno), 93
EACCES(in module errno), 93
EADDRINUSE(in module errno), 97
EADDRNOTAVAIL(in module errno), 97
EADV(in module errno), 95

EAFNOSUPPORT(in module errno), 97
EAGAIN(in module errno), 93
EALREADY(in module errno), 97
EBADE(in module errno), 95
EBADF(in module errno), 93
EBADFD(in module errno), 96
EBADMSG(in module errno), 96
EBADR(in module errno), 95
EBADRQC(in module errno), 95
EBADSLT(in module errno), 95
EBFONT(in module errno), 95
EBUSY(in module errno), 93
ECHILD (in module errno), 93
ECHRNG(in module errno), 94
ECOMM(in module errno), 95
ECONNABORTED(in module errno), 97
ECONNREFUSED(in module errno), 97
ECONNRESET(in module errno), 97
EDEADLK(in module errno), 94
EDEADLOCK(in module errno), 95
EDESTADDRREQ(in module errno), 96
EDOM(in module errno), 94
EDOTDOT(in module errno), 96
EDQUOT(in module errno), 98
EEXIST (in module errno), 93
EFAULT(in module errno), 93
EFBIG (in module errno), 93
EHOSTDOWN(in module errno), 97
EHOSTUNREACH(in module errno), 97
EIDRM(in module errno), 94
EILSEQ (in module errno), 96
EINPROGRESS(in module errno), 97
EINTR (in module errno), 92
EINVAL (in module errno), 93
EIO (in module errno), 92
EISCONN(in module errno), 97
EISDIR (in module errno), 93
EISNAM(in module errno), 98
eject() (CD player method), 214
EL2HLT (in module errno), 95
EL2NSYNC(in module errno), 94
EL3HLT (in module errno), 94
EL3RST(in module errno), 94
ELIBACC (in module errno), 96
ELIBBAD (in module errno), 96
ELIBEXEC (in module errno), 96
ELIBMAX (in module errno), 96
ELIBSCN (in module errno), 96
Ellinghouse, Lance, 180, 209
ELNRNG(in module errno), 94
ELOOP(in module errno), 94
EMFILE (in module errno), 93
EMLINK (in module errno), 94
Empty (in module Queue), 111

Index 239

empty() (Queue method), 111
EMSGSIZE(in module errno), 96
EMULTIHOP(in module errno), 95
ENAMETOOLONG(in module errno), 94
ENAVAIL (in module errno), 98
encode()

in module base64, 185
in module mimetools, 178
in module quopri, 185
in module uu, 180

encodestring() (in module base64), 185
encoding

base64, 184
quoted-printable, 185

encrypt() (rotor method), 209
encryptmore() (rotor method), 209
end() (in module re), 70
end group() (form method), 219
end headers() (BaseHTTPRequestHandler

method), 190
end paragraph() (formatter method), 173
endheaders() (HTTP method), 158
endpick() (in module gl), 224
endpos (MatchObject attribute), 70
endselect() (in module gl), 224
ENETDOWN(in module errno), 97
ENETRESET(in module errno), 97
ENETUNREACH(in module errno), 97
ENFILE (in module errno), 93
Enigma

cipher, 209
device, 209

ENOANO(in module errno), 95
ENOBUFS(in module errno), 97
ENOCSI(in module errno), 94
ENODATA(in module errno), 95
ENODEV(in module errno), 93
ENOENT(in module errno), 92
ENOEXEC(in module errno), 93
ENOLCK(in module errno), 94
ENOLINK(in module errno), 95
ENOMEM(in module errno), 93
ENOMSG(in module errno), 94
ENONET(in module errno), 95
ENOPKG(in module errno), 95
ENOPROTOOPT(in module errno), 96
ENOSPC(in module errno), 93
ENOSR(in module errno), 95
ENOSTR(in module errno), 95
ENOSYS(in module errno), 94
ENOTBLK(in module errno), 93
ENOTCONN(in module errno), 97
ENOTDIR(in module errno), 93
ENOTEMPTY(in module errno), 94

ENOTNAM(in module errno), 98
ENOTSOCK(in module errno), 96
ENOTTY(in module errno), 93
ENOTUNIQ(in module errno), 96
enumerate() (in module fm), 222
environ (in module posix), 116
environment variables

$HOME, 58
$LOGNAME, 160
$PATH, 153, 155
$PYTHONPATH, 153, 231
$PYTHONSTARTUP, 58
$USER, 160
setting, 118

ENXIO (in module errno), 93
EOFError (built-in exception), 13
EOPNOTSUPP(in module errno), 97
EOVERFLOW(in module errno), 96
EPERM(in module errno), 92
EPFNOSUPPORT(in module errno), 97
EPIPE (in module errno), 94
epoch, 88
EPROTO(in module errno), 95
EPROTONOSUPPORT(in module errno), 96
EPROTOTYPE(in module errno), 96
ERANGE(in module errno), 94
EREMCHG(in module errno), 96
EREMOTE(in module errno), 95
EREMOTEIO(in module errno), 98
ERESTART(in module errno), 96
EROFS(in module errno), 94
errno

built-in module, 105, 116
standard module,92

ERROR(in module cd), 214
Error

in module binascii, 181
in module locale, 99
in module xdrlib, 183

error
in module anydbm, 112
in module audioop, 197
in module cd, 214
in module dbm, 123
in module dumbdbm, 112
in module gdbm, 123
in module getopt, 91
in module imageop, 200
in module imgfile, 225
in module jpeg, 203
in module posix, 116
in module re, 68
in module regex, 73
in module resource, 128

240 Index

in module rgbimg, 204
in module select, 109
in module socket, 105
in module struct, 75
in module sunaudiodev, 227
in module thread, 110
in module zlib, 112

error message format (BaseHTTPRequest-
Handler attribute), 189

error perm
in module ftplib, 159
in module nntplib, 164

error proto
in module ftplib, 159
in module nntplib, 165

error reply
in module ftplib, 159
in module nntplib, 164

error temp
in module ftplib, 159
in module nntplib, 164

errorcode (in module errno), 92
escape()

in module cgi, 153
in module re, 67

ESHUTDOWN(in module errno), 97
ESOCKTNOSUPPORT(in module errno), 96
ESPIPE (in module errno), 94
ESRCH(in module errno), 92
ESRMNT(in module errno), 95
ESTALE(in module errno), 97
ESTRPIPE (in module errno), 96
ETIME (in module errno), 95
ETIMEDOUT(in module errno), 97
ETOOMANYREFS(in module errno), 97
ETXTBSY(in module errno), 93
EUCLEAN(in module errno), 98
EUNATCH(in module errno), 94
EUSERS(in module errno), 96
eval() (built-in function), 10, 16, 41, 51, 62
EWOULDBLOCK(in module errno), 94
exc info() (in module sys), 24
exc traceback (in module sys), 24
exc type (in module sys), 24
exc value (in module sys), 24
except

statement, 12
Exception (built-in exception base class), 13
exceptions

built-in, 3
exceptions (standard module),12
EXDEV(in module errno), 93
exec

statement, 10

exec prefix (in module sys), 24
execfile() (built-in function), 17, 58
execl() (in module os), 88
execle() (in module os), 88
execlp() (in module os), 88
execv() (in module posix), 116
execve() (in module posix), 116
execvp() (in module os), 88
execvpe() (in module os), 88
EXFULL(in module errno), 95
exists() (in module posixpath), 120
exit()

in module sys, 24
in module thread, 110

exit thread() (in module thread), 110
exitfunc (in module sys), 24
exp()

in module cmath, 81
in module math, 79

expandtabs() (in module string), 62
expanduser() (in module posixpath), 121
expandvars() (in module posixpath), 121
expovariate() (in module random), 82
expr() (in module parser), 40
expunge() (IMAP4 method), 162
External Data Representation, 31, 181
extract tb() (in module traceback), 30

F
fabs() (in module math), 79
false, 3
FCNTL(standard module), 125, 126
fcntl (built-in module), 10,125
fcntl() (in module fcntl), 125, 126
fdopen() (in module posix), 117
feed()

SGMLParser method, 168
XMLParser method, 171

fetch() (IMAP4 method), 162
file

.pythonrc.py, 58
path configuration, 57
temporary, 92
user configuration, 58

file control
UNIX , 125

file name
temporary, 92

file object
POSIX, 126

file() (posixfile method), 127
FileInput (class in fileinput), 86
fileinput (standard module),85
filelineno() (in module fileinput), 86

Index 241

filename() (in module fileinput), 85
fileno()

file method, 10
in module stdwin, 109
socket method, 107
SocketServer protocol, 185

fileopen() (in module posixfile), 127
FileType (in module types), 27
filter() (built-in function), 17
find() (in module string), 62
find first() (form method), 219
find last() (form method), 219
find module() (in module imp), 36
findfactor() (in module audioop), 198
findfit() (in module audioop), 198
findfont() (in module fm), 222
findmatch() (in module mailcap), 184
findmax() (in module audioop), 198
finish() (SocketServer protocol), 187
finish request() (SocketServer protocol), 186
firstkey() (in module gdbm), 124
FL (standard module),221
fl (built-in module),216
flags (RegexObject attribute), 69
flags() (posixfile method), 127
flattening

objects, 30
float() (built-in function), 5, 17, 62
floating point

literals, 5
type, 5

FloatingPointError (built-in exception), 13
FloatType (in module types), 27
flock() (in module fcntl), 126
floor()

built-in function, 5
in module math, 80

flp (standard module),221
flush()

audio device method, 227
Compress method, 113
Decompress method, 113
file method, 10
writer method, 175

flush softspace() (formatter method), 174
fm (built-in module),222
fmod() (in module math), 80
fnmatch (standard module),98
fnmatch() (in module fnmatch), 99
fnmatchcase() (in module fnmatch), 99
Font Manager, IRIS, 222
fontpath() (in module fm), 222
fork() (in module posix), 117
format() (in module locale), 100

formatter, 169
formatter

HTMLParser attribute, 170
standard module, 169,173

FORMS Library, 216
fp (Message attribute), 178
frame

object, 105
FrameType (in module types), 27
freeze form() (form method), 218
freeze object() (FORMS object method), 221
frexp() (in module math), 80
fromfd() (in module socket), 106
fromfile() (array method), 84
fromlist() (array method), 84
fromstring() (array method), 84
fstat() (in module posix), 117
FTP

protocol, 156, 158
FTP (class in ftplib), 159
ftplib (standard module),158
ftruncate() (in module posix), 117
full() (Queue method), 111
func code (dictionary method), 10
functions

built-in, 3
FunctionType (in module types), 27

G
G.722, 202
gamma() (in module random), 83
gauss() (in module random), 83
gcd() (in module mpz), 208
gcdext() (in module mpz), 208
gdbm (built-in module), 34, 111, 123,123
get() (Queue method), 111
get buffer()

Packer method, 181
Unpacker method, 182

get directory() (in module fl), 217
get filename() (in module fl), 217
get ident() (in module thread), 110
get magic() (in module imp), 36
get mouse() (in module fl), 218
get nowait() (Queue method), 111
get pattern() (in module fl), 217
get position() (Unpacker method), 182
get request() (SocketServer protocol), 186
get rgbmode() (in module fl), 217
get suffixes() (in module imp), 36
get syntax() (in module regex), 73
getaddr() (Message method), 177
getaddrlist() (Message method), 177

242 Index

getallmatchingheaders() (Message method),
177

getattr() (built-in function), 17
getcaps() (in module mailcap), 184
getchannels() (audio configuration method), 212
getcomment() (font handle method), 222
getcompname() (aifc method), 201
getcomptype() (aifc method), 201
getconfig() (audio port method), 213
getcwd() (in module posix), 117
getdate() (Message method), 178
getdate tz() (Message method), 178
getegid() (in module posix), 117
getencoding() (Message method), 179
geteuid() (in module posix), 117
getfd() (audio port method), 212
getfile() (HTTP method), 158
getfillable() (audio port method), 212
getfilled() (audio port method), 212
getfillpoint() (audio port method), 212
getfirstmatchingheader() (Message

method), 177
getfloatmax() (audio configuration method), 212
getfontinfo() (font handle method), 222
getfontname() (font handle method), 222
getframerate() (aifc method), 201
getgid() (in module posix), 117
getgrall() (in module grp), 122
getgrgid() (in module grp), 122
getgrnam() (in module grp), 122
getheader() (Message method), 177
gethostbyaddr() (in module socket), 106, 120
gethostbyname() (in module socket), 106
gethostname() (in module socket), 106, 120
getinfo() (audio device method), 227
getitem() (in module operator), 29
getmaintype() (Message method), 179
getmark() (aifc method), 202
getmarkers() (aifc method), 201
getmcolor() (in module fl), 218
getnchannels() (aifc method), 201
getnframes() (aifc method), 201
getopt (standard module),91
getopt() (in module getopt), 91
getoutput() (in module commands), 133
getpagesize() (in module resource), 130
getparam() (Message method), 179
getparams()

aifc method, 201
in module al, 211

getpeername() (socket method), 107
getpgrp() (in module posix), 117
getpid() (in module posix), 117
getplist() (Message method), 179

getppid() (in module posix), 117
getprotobyname() (in module socket), 106
getpwall() (in module pwd), 122
getpwnam() (in module pwd), 122
getpwuid() (in module pwd), 122
getqueuesize() (audio configuration method),

212
getrawheader() (Message method), 177
getrefcount() (in module sys), 25
getreply() (HTTP method), 158
getrlimit() (in module resource), 128
getrusage() (in module resource), 129
getsampfmt() (audio configuration method), 212
getsample() (in module audioop), 198
getsampwidth() (aifc method), 201
getservbyname() (in module socket), 106
getsignal() (in module signal), 104
getsizes() (in module imgfile), 225
getslice() (in module operator), 29
getsockname() (socket method), 107
getsockopt() (socket method), 107
getstatus()

audio port method, 213
CD player method, 215
in module commands, 133

getstatusoutput() (in module commands), 132
getstrwidth() (font handle method), 222
getsubtype() (Message method), 179
gettrackinfo() (CD player method), 215
gettype() (Message method), 179
getuid() (in module posix), 117
getvalue() (StringIO method), 77
getwelcome()

FTP method, 159
NNTP method, 165

getwidth() (audio configuration method), 212
givenpat (regex attribute), 74
GL (standard module),224
gl (built-in module),222
glob (standard module),98, 99
glob() (in module glob), 98
globals() (built-in function), 17
gmtime() (in module time), 89
Gopher

protocol, 156, 157, 161
gopherlib (standard module),161
Greenwich Mean Time, 89
grey22grey() (in module imageop), 201
grey2grey2() (in module imageop), 200
grey2grey4() (in module imageop), 200
grey2mono() (in module imageop), 200
grey42grey() (in module imageop), 201
group()

MatchObject method, 69

Index 243

NNTP method, 165
regex method, 74

groupindex
regex attribute, 74
RegexObject attribute, 69

groups() (MatchObject method), 70
grp (built-in module),122
gsub() (in module regsub), 74
gzip (standard module),113
GzipFile (class in gzip), 114

H
handle()

BaseHTTPRequestHandler method, 190
SocketServer protocol, 187

handle cdata() (XMLParser method), 172
handle charref()

SGMLParser method, 168
XMLParser method, 171

handle comment()
SGMLParser method, 168
XMLParser method, 172

handle data()
SGMLParser method, 168
XMLParser method, 171

handle doctype() (XMLParser method), 171
handle endtag()

SGMLParser method, 168
XMLParser method, 171

handle entityref()
SGMLParser method, 168
XMLParser method, 172

handle error() (SocketServer protocol), 186
handle image() (HTMLParser method), 170
handle proc() (XMLParser method), 172
handle request() (SocketServer protocol), 186
handle special() (XMLParser method), 172
handle starttag()

SGMLParser method, 168
XMLParser method, 171

handle xml() (XMLParser method), 171
has key (dictionary method), 8
hasattr() (built-in function), 17
hascompare (in module dis), 53
hasconst (in module dis), 53
hash() (built-in function), 17
hasjabs (in module dis), 53
hasjrel (in module dis), 53
haslocal (in module dis), 53
hasname (in module dis), 53
head() (NNTP method), 165
headers

MIME, 150
headers

BaseHTTPRequestHandler attribute, 189
Message attribute, 178

help() (NNTP method), 165
hex() (built-in function), 17
hexadecimal

literals, 5
hexbin (standard module), 180
hexbin() (in module binhex), 179
hexdigits (in module string), 61
hide form() (form method), 218
hide object() (FORMS object method), 220
$HOME, 58
HTML, 157, 169
htmllib (standard module), 157, 167,169
HTMLParser (class in htmllib), 170, 173
htonl() (in module socket), 106
htons() (in module socket), 107
HTTP

protocol, 150, 156, 157, 188
HTTP(class in httplib), 157
httpd, 188
httplib (standard module),157
HTTPServer (class in BaseHTTPServer), 189
hypertext, 169
hypot() (in module math), 80

I
I (in module re), 67
I/O control

POSIX, 124, 125
tty, 124, 125
UNIX , 125

ibufcount() (audio device method), 228
id() (built-in function), 17
IDEA

cipher, 207
ident (in module cd), 214
if

statement, 3
ignore() (Stats method), 144
IGNORECASE(in module re), 67
ihave() (NNTP method), 166
ihooks (standard module), 15
imageop (built-in module),200
IMAP4

protocol, 161
IMAP4 (class in imaplib), 161
IMAP4.abort (in module imaplib), 161
IMAP4.error (in module imaplib), 161
imaplib (standard module),161
imgfile (built-in module),224
imghdr (standard module),204
imp (built-in module), 15,36
import, 36

244 Index

import
statement, 15

ImportError (built-in exception), 13
in

operator, 4, 6
INADDR* (in module socket), 106
Incomplete (in module binascii), 181
Independent JPEG Group, 203
index

in module cd, 214
list method, 8

index() (in module string), 62
IndexError (built-in exception), 13
InfoSeek Corporation, 139
init() (in module fm), 222
init builtin() (in module imp), 37
init frozen() (in module imp), 38
input()

built-in function, 17, 26
in module fileinput, 85

insert (list method), 8
insert() (array method), 84
InstanceType (in module types), 27
int() (built-in function), 5, 18
Int2AP() (in module imaplib), 161
integer

arbitrary precision, 208
division, 5
division, long, 5
literals, 5
literals, long, 5
type, 5
type, long, 5
types, 5
types, operations on, 6

Intel/DVI ADPCM, 197
intern() (built-in function), 18
Internaldate2tuple() (in module imaplib),

161
Internet, 149
interpreter prompts, 25
IntType (in module types), 26
inv() (in module operator), 29
IOCTL (standard module), 126
ioctl() (in module fcntl), 125
IOError (built-in exception), 13
IP * (in module socket), 106
IPPORT * (in module socket), 106
IPPROTO* (in module socket), 106
IRIS Font Manager, 222
IRIX

threads, 111
is

operator, 4

is not
operator, 4

is builtin() (in module imp), 38
is frozen() (in module imp), 38
isabs() (in module posixpath), 121
isatty() (file method), 10
isdir() (in module posixpath), 121
ISEOF() (in module token), 49
isexpr()

AST method, 42
in module parser, 41

isfile() (in module posixpath), 121
isfirstline() (in module fileinput), 86
isinstance() (built-in function), 18
iskeyword() (in module keyword), 49
islink() (in module posixpath), 121
ismount() (in module posixpath), 121
ISNONTERMINAL() (in module token), 49
isqueued() (in module fl), 218
isreadable()

in module pprint, 51
PrettyPrinter method, 51

isrecursive()
in module pprint, 51
PrettyPrinter method, 51

isstdin() (in module fileinput), 86
issubclass() (built-in function), 18
issuite()

AST method, 42
in module parser, 41

ISTERMINAL() (in module token), 49
itemsize (array attribute), 84

J
Jansen, Jack, 180
JFIF, 203
join()

in module posixpath, 121
in module string, 63

joinfields() (in module string), 63
jpeg (built-in module),203

K
KeyboardInterrupt (built-in exception), 13
KeyError (built-in exception), 13
keys (dictionary method), 8
keyword (standard module),49
kill() (in module posix), 117
knee (standard module), 39
Kuchling, Andrew, 70, 74, 207

L
L (in module re), 67
LambdaType (in module types), 27

Index 245

language
ABC, 4
C, 4, 5

last (regex attribute), 74
last() (NNTP method), 165
last traceback (in module sys), 25
last type (in module sys), 25
last value (in module sys), 25
LC ALL (in module locale), 101
LC COLLATE(in module locale), 100
LC CTYPE(in module locale), 100
LC MESSAGES(in module locale), 101
LC MONETARY(in module locale), 101
LC NUMERIC(in module locale), 101
LC TIME (in module locale), 101
ldexp() (in module math), 80
len() (built-in function), 6, 8, 18
letters (in module string), 61
light-weight processes, 110
lin2adpcm() (in module audioop), 198
lin2adpcm3() (in module audioop), 198
lin2lin() (in module audioop), 198
lin2ulaw() (in module audioop), 198
lineno() (in module fileinput), 85
link() (in module posix), 117
list

type, 6, 7
type, operations on, 8

list()
built-in function, 18
IMAP4 method, 162
NNTP method, 165

listdir() (in module posix), 117
listen() (socket method), 107
ListType (in module types), 27
literals

complex number, 5
floating point, 5
hexadecimal, 5
integer, 5
long integer, 5
numeric, 5
octal, 5

ljust() (in module string), 63
load()

in module marshal, 36
in module pickle, 33

load compiled() (in module imp), 38
load dynamic() (in module imp), 38
load module() (in module imp), 37
load source() (in module imp), 38
loads()

in module marshal, 36
in module pickle, 33

LOCALE(in module re), 67
locale (standard module),99
localeconv() (in module locale), 99
locals() (built-in function), 18
localtime() (in module time), 89
lock() (posixfile method), 127
locked() (lock method), 110
lockf() (in module fcntl), 126
log()

in module cmath, 81
in module math, 80

log10()
in module cmath, 81
in module math, 80

log data time string() (BaseHTTPRequest-
Handler method), 191

log error() (BaseHTTPRequestHandler method),
190

log message() (BaseHTTPRequestHandler
method), 190

log request() (BaseHTTPRequestHandler
method), 190

login()
FTP method, 159
IMAP4 method, 162

$LOGNAME, 160
lognormvariate() (in module random), 83
logout() (IMAP4 method), 162
long

integer division, 5
integer literals, 5
integer type, 5

long() (built-in function), 5, 18, 62
longimagedata() (in module rgbimg), 204
longstoimage() (in module rgbimg), 204
LongType (in module types), 26
LookupError (built-in exception base class), 13
lower() (in module string), 62
lowercase (in module string), 61
lseek() (in module posix), 117
lshift() (in module operator), 29
lstat() (in module posix), 117
lstrip() (in module string), 63
lsub() (IMAP4 method), 162

M
M(in module re), 67
mailbox (standard module), 176,187
mailcap (standard module),183
Majewski, Steve, 123
make form() (in module fl), 217
makefile() (socket method), 107
maketrans() (in module string), 62
map() (built-in function), 18

246 Index

mapcolor() (in module fl), 218
mapping

types, 8
types, operations on, 8

marshal (built-in module), 31,35
marshalling

objects, 30
masking

operations, 6
match()

in module re, 67
in module regex, 72
regex method, 73
RegexObject method, 69

math (built-in module), 5,79, 81
max()

built-in function, 6, 18
in module audioop, 198

MAXLEN(in module mimify), 188
maxpp() (in module audioop), 198
md5 (built-in module),207
md5() (in module md5), 208
MemoryError (built-in exception), 14
Message

class in mimetools, 178
class in rfc822, 176
in module mimetools, 190

message digest, MD5, 207
MessageClass (BaseHTTPRequestHandler at-

tribute), 190
method

object, 9
MethodType (in module types), 27
MHMailbox (class in mailbox), 187
MIME

base64 encoding, 184
headers, 150
quoted-printable encoding, 185

mime decode header() (in module mimify), 188
mime encode header() (in module mimify), 188
mimetools (standard module), 156, 158,178
mimify (standard module),187
mimify() (in module mimify), 188
min() (built-in function), 6, 19
minmax() (in module audioop), 198
mkd() (FTP method), 160
mkdir() (in module posix), 118
mkfifo() (in module posix), 117
mktemp() (in module tempfile), 92
mktime() (in module time), 89
mktime tz() (in module rfc822), 177
MmdfMailbox (class in mailbox), 187
mod() (in module operator), 28
mode (file attribute), 11

modf() (in module math), 80
module

search path, 25, 57, 231
modules (in module sys), 25
ModuleType (in module types), 27
mono2grey() (in module imageop), 200
MP, GNU library, 208
mpz (built-in module),208
mpz() (in module mpz), 208
MPZType (in module mpz), 208
msftoblock() (CD player method), 215
msftoframe() (in module cd), 213
MSG* (in module socket), 106
mul()

in module audioop, 199
in module operator, 28

MULTILINE (in module re), 67
mutable

sequence types, 7
sequence types, operations on, 8

N
name

file attribute, 11
in module os, 87

NameError (built-in exception), 14
National Security Agency, 210
neg() (in module operator), 29
new() (in module md5), 207
new alignment() (writer method), 175
new font() (writer method), 175
new margin() (writer method), 175
new module() (in module imp), 37
new spacing() (writer method), 175
new styles() (writer method), 175
newconfig() (in module al), 211
newgroups() (NNTP method), 165
newnews() (NNTP method), 165
newrotor() (in module rotor), 209
next()

mailbox method, 187
NNTP method, 165

nextfile() (in module fileinput), 86
nextkey() (in module gdbm), 124
nice() (in module posix), 118
nlst() (FTP method), 160
NNTP

protocol, 164
NNTP(class in nntplib), 164
nntplib (standard module),164
NODISC(in module cd), 214
nofill (HTMLParser attribute), 170
nok builtin names (RExec attribute), 194
None (Built-in object), 3

Index 247

NoneType (in module types), 26
normalvariate() (in module random), 83
normcase() (in module posixpath), 121
normpath() (in module posixpath), 121
not

operator, 4
not in

operator, 4, 6
NSA, 210
NSIG (in module signal), 104
ntohl() (in module socket), 106
ntohs() (in module socket), 106
NullFormatter (class in formatter), 175
NullWriter (class in formatter), 176
numeric

conversions, 5
literals, 5
types, 4, 5
types, operations on, 5

Numerical Python, 21
nurbscurve() (in module gl), 224
nurbssurface() (in module gl), 224
nvarray() (in module gl), 223

O
O APPEND(in module posix), 120
O CREAT(in module posix), 120
O DSYNC(in module posix), 120
O EXCL(in module posix), 120
O NDELAY(in module posix), 120
O NOCTTY(in module posix), 120
O NONBLOCK(in module posix), 120
O RDONLY(in module posix), 120
O RDWR(in module posix), 120
O RSYNC(in module posix), 120
O SYNC(in module posix), 120
O TRUNC(in module posix), 120
O WRONLY(in module posix), 120
object

code, 9, 10, 35
frame, 105
method, 9
traceback, 24, 30
type, 21

objects
comparing, 4
flattening, 30
marshalling, 30
persistent, 30
pickling, 30
serializing, 30

obufcount() (audio device method), 228
oct() (built-in function), 19
octal

literals, 5
octdigits (in module string), 61
ok builtin modules (RExec attribute), 194
ok path (RExec attribute), 194
ok posix names (RExec attribute), 194
ok sys names (RExec attribute), 194
open()

built-in function, 10, 19
in module aifc, 201
in module anydbm, 111
in module cd, 213
in module dbm, 123
in module dumbdbm, 112
in module gdbm, 123
in module gzip, 114
in module posix, 118
in module posixfile, 126
in module sunaudiodev, 227

openlog() (in module syslog), 130
openport() (in module al), 211
operation

concatenation, 6
repetition, 6
slice, 6
subscript, 6

operations
bit-string, 6
Boolean, 3, 4
masking, 6
shifting, 6

operations on
dictionary type, 8
integer types, 6
list type, 8
mapping types, 8
mutable sequence types, 8
numeric types, 5
sequence types, 6, 8

operator
==, 4
and , 3, 4
comparison, 4
in , 4, 6
is , 4
is not , 4
not , 4
not in , 4, 6
or , 3, 4

operator (built-in module),28
opname (in module dis), 52
or

operator, 3, 4
or () (in module operator), 29
ord() (built-in function), 19

248 Index

os (standard module), 26,87, 115, 120
OverflowError (built-in exception), 14
Overmars, Mark, 216

P
pack() (in module struct), 75
pack array() (Packer method), 182
pack bytes() (Packer method), 182
pack double() (Packer method), 181
pack farray() (Packer method), 182
pack float() (Packer method), 181
pack fopaque() (Packer method), 181
pack fstring() (Packer method), 181
pack list() (Packer method), 182
pack opaque() (Packer method), 182
pack string() (Packer method), 182
package, 57
Packer (class in xdrlib), 181
pardir (in module os), 88
paretovariate() (in module random), 83
parse() (in module cgi), 152
parse header() (in module cgi), 152
parse multipart() (in module cgi), 152
parse qs() (in module cgi), 152
parsedate() (in module rfc822), 177
parsedate tz() (in module rfc822), 177
ParseFlags() (in module imaplib), 162
parseframe() (CD parser method), 216
parser (built-in module),39
ParserError (in module parser), 42
parsing

Python source code, 39
URL, 166

$PATH, 153, 155
path

configuration file, 57
module search, 25, 57, 231

path
BaseHTTPRequestHandler attribute, 189
in module os, 88
in module sys, 25

pathsep (in module os), 88
pattern (RegexObject attribute), 69
pause() (in module signal), 104
PAUSED(in module cd), 214
Pdb (class in pdb), 135
pdb (standard module), 25,135
persistency, 30
persistent

objects, 30
pformat()

in module pprint, 50
PrettyPrinter method, 51

PGP, 207

pi
in module cmath, 81
in module math, 80

pick() (in module gl), 224
pickle (standard module),30, 33
pickle() (in module copyreg), 34
Pickler (in module pickle), 32
pickling

objects, 30
PicklingError (in module pickle), 33
pipe() (in module posix), 118
PKGDIRECTORY(in module imp), 37
platform (in module sys), 25
play() (CD player method), 215
playabs() (CD player method), 215
PLAYING (in module cd), 214
playtrack() (CD player method), 215
playtrackabs() (CD player method), 215
plock() (in module posix), 118
pm() (in module pdb), 136
pnum (in module cd), 214
pop alignment() (formatter method), 174
pop font() (formatter method), 174
pop margin() (formatter method), 174
pop style() (formatter method), 174
popen()

in module os, 109
in module posix, 109, 118

pos (MatchObject attribute), 70
pos() (in module operator), 29
posix (built-in module), 10,115
posixfile (built-in module),126
posixpath (standard module),120
POSIX

file object, 126
I/O control, 124, 125
threads, 110

post() (NNTP method), 166
post mortem() (in module pdb), 136
pow()

built-in function, 19
in module math, 80

powm() (in module mpz), 208
pprint (standard module),49
pprint()

in module pprint, 50
PrettyPrinter method, 51

prefix (in module sys), 25
Pretty Good Privacy, 207
PrettyPrinter (class in pprint), 50
preventremoval() (CD player method), 215
print

statement, 3
print callees() (Stats method), 144

Index 249

print callers() (Stats method), 144
print directory() (in module cgi), 153
print environ() (in module cgi), 152
print environ usage() (in module cgi), 153
print exc() (in module traceback), 30
print exception() (in module traceback), 30
print form() (in module cgi), 152
print last() (in module traceback), 30
print stats() (Stats method), 144
print tb() (in module traceback), 30
process request() (SocketServer protocol), 186
processes, light-weight, 110
profile (standard module),142
profile function, 26
profiler, 26
profiling, deterministic, 139
prompts, interpreter, 25
protocol

CGI, 150
FTP, 156, 158
Gopher, 156, 157, 161
HTTP, 150, 156, 157, 188
IMAP4, 161
NNTP, 164

PROTOCOLVERSION(IMAP4 attribute), 163
protocol version (BaseHTTPRequestHandler

attribute), 190
prstr() (in module fm), 222
ps1 (in module sys), 25
ps2 (in module sys), 25
pstats (standard module),143
pthreads, 110
ptime (in module cd), 214
push alignment() (formatter method), 174
push font() (formatter method), 174
push margin() (formatter method), 174
push style() (formatter method), 174
put() (Queue method), 111
putenv() (in module posix), 118
putheader() (HTTP method), 158
putrequest() (HTTP method), 157
pwd (built-in module), 121,122
pwd() (FTP method), 160
pwlcurve() (in module gl), 224
PY COMPILED(in module imp), 37
PY FROZEN(in module imp), 37
PY RESOURCE(in module imp), 37
PY SOURCE(in module imp), 37
$PYTHONPATH, 153, 231
$PYTHONSTARTUP, 58

Q
qdevice() (in module fl), 218
qenter() (in module fl), 218

qread() (in module fl), 218
qreset() (in module fl), 218
qsize() (Queue method), 111
qtest() (in module fl), 218
queryparams() (in module al), 211
Queue

class in Queue, 111
standard module,111

quit()
FTP method, 161
NNTP method, 166

quopri (standard module),185
quote() (in module urllib), 156
quote plus() (in module urllib), 156
quoted-printable

encoding, 185

R
r eval() (RExec method), 195
r exec() (RExec method), 195
r execfile() (RExec method), 195
r import() (RExec method), 195
r open() (RExec method), 195
r reload() (RExec method), 195
r unload() (RExec method), 195
raise

statement, 12
randint() (in module whrandom), 82
random (standard module),82
random() (in module whrandom), 82
range() (built-in function), 19
ratecv() (in module audioop), 199
raw input() (built-in function), 20, 26
re

built-in module, 7,64
MatchObject attribute, 70
standard module, 61, 70, 98

read()
array method, 84
audio device method, 228
file method, 10
in module imgfile, 225
in module posix, 118

readda() (CD player method), 215
readframes() (aifc method), 202
readline() (file method), 11
readlines() (file method), 11
readlink() (in module posix), 118
readsamps() (audio port method), 212
readscaled() (in module imgfile), 225
READY(in module cd), 214
realpat (regex attribute), 74
recent() (IMAP4 method), 162
reconvert (standard module), 70

250 Index

recv() (socket method), 108
recvfrom() (socket method), 108
redraw form() (form method), 218
redraw object() (FORMS object method), 220
reduce() (built-in function), 20
regex (built-in module),70
regex syntax (standard module), 73
regs (regex attribute), 74
regsub (standard module),74
relative

URL, 166
release() (lock method), 110
reload() (built-in function), 20, 25, 37, 39
remove (list method), 8
remove() (in module posix), 118
removecallback() (CD parser method), 216
rename()

FTP method, 160
IMAP4 method, 163
in module posix, 119

reorganize() (in module gdbm), 124
repeat() (in module operator), 29
repetition

operation, 6
replace() (in module string), 63
report unbalanced() (SGMLParser method),

169
repr() (built-in function), 20
request queue size (SocketServer protocol),

186
request version (BaseHTTPRequestHandler at-

tribute), 189
RequestHandlerClass (SocketServer protocol),

186
reset()

Packer method, 181
SGMLParser method, 168
Unpacker method, 182
XMLParser method, 171

resetparser() (CD parser method), 216
resource (built-in module),128
response() (IMAP4 method), 163
responses (BaseHTTPRequestHandler attribute),

190
retrbinary() (FTP method), 160
retrlines() (FTP method), 160
reverse (list method), 8
reverse()

array method, 84
in module audioop, 199

reverse order() (Stats method), 144
rewind() (aifc method), 202
rewindbody() (Message method), 177
RExec (class in rexec), 194

rexec (standard module), 15,194
RFC

RFC 1014, 149, 181
RFC 1321, 207
RFC 1421, 184
RFC 1521, 185
RFC 1524, 149, 184
RFC 1730, 161
RFC 1738, 166
RFC 1808, 166
RFC 1866, 169, 170
RFC 2060, 161
RFC 822, 149, 158, 176, 177
RFC 959, 158
RFC 977, 164

rfc822 (standard module),176
rfile (BaseHTTPRequestHandler attribute), 189
rfind() (in module string), 62
rgbimg (built-in module),203
rindex() (in module string), 62
rjust() (in module string), 63
rlecode hqx() (in module binascii), 180
rledecode hqx() (in module binascii), 180
RLIMIT AS (in module resource), 129
RLIMIT CORE(in module resource), 129
RLIMIT CPU(in module resource), 129
RLIMIT DATA(in module resource), 129
RLIMIT FSIZE (in module resource), 129
RLIMIT MEMLOC(in module resource), 129
RLIMIT NOFILE (in module resource), 129
RLIMIT NPROC(in module resource), 129
RLIMIT OFILE (in module resource), 129
RLIMIT RSS(in module resource), 129
RLIMIT STACK(in module resource), 129
RLIMIT VMEM(in module resource), 129
rmdir() (in module posix), 119
rms() (in module audioop), 199
Roskind, James, 139
rotor (built-in module),209
round() (built-in function), 20
rshift() (in module operator), 29
rstrip() (in module string), 63
run()

in module pdb, 136
in module profile, 142

runcall() (in module pdb), 136
runeval() (in module pdb), 136
RuntimeError (built-in exception), 14
RUSAGEBOTH(in module resource), 130
RUSAGECHILDREN(in module resource), 130
RUSAGESELF (in module resource), 130

S
S (in module re), 67

Index 251

s eval() (RExec method), 195
s exec() (RExec method), 195
s execfile() (RExec method), 195
s import() (RExec method), 195
S ISBLK() (in module stat), 131
S ISCHR() (in module stat), 131
S ISDIR() (in module stat), 131
S ISFIFO() (in module stat), 131
S ISLNK() (in module stat), 131
S ISREG() (in module stat), 131
S ISSOCK() (in module stat), 131
s reload() (RExec method), 195
s unload() (RExec method), 195
saferepr() (in module pprint), 51
samefile() (in module posixpath), 121
save bgn() (HTMLParser method), 170
save end() (HTMLParser method), 170
scale() (in module imageop), 200
scalefont() (font handle method), 222
search

path, module, 25, 57, 231
search()

IMAP4 method, 163
in module re, 68
in module regex, 73
regex method, 73
RegexObject method, 69

SEARCHERROR(in module imp), 37
seed() (in module whrandom), 82
seek()

CD player method, 215
file method, 11

SEEKCUR(in module posixfile), 126
SEEKEND(in module posixfile), 126
SEEKSET (in module posixfile), 126
seekblock() (CD player method), 215
seektrack() (CD player method), 215
select (built-in module),109
select()

IMAP4 method, 163
in module gl, 224
in module select, 109

semaphores, binary, 110
send()

HTTP method, 157
socket method, 108

send error() (BaseHTTPRequestHandler
method), 190

send flowing data() (writer method), 176
send header() (BaseHTTPRequestHandler

method), 190
send hor rule() (writer method), 176
send label data() (writer method), 176
send line break() (writer method), 175

send literal data() (writer method), 176
send paragraph() (writer method), 176
send query() (in module gopherlib), 161
send response() (BaseHTTPRequestHandler

method), 190
send selector() (in module gopherlib), 161
sendcmd() (FTP method), 160
sendto() (socket method), 108
sep (in module os), 88
sequence

types, 6
types, mutable, 7
types, operations on, 6, 8
types, operations on mutable, 8

sequence2ast() (in module parser), 40
serializing

objects, 30
serve forever() (SocketServer protocol), 186
server

WWW, 150, 188
server activate() (SocketServer protocol), 186
server address (SocketServer protocol), 186
server bind() (SocketServer protocol), 186
server version (BaseHTTPRequestHandler at-

tribute), 189
set call back() (FORMS object method), 220
set debuglevel()

FTP method, 159
HTTP method, 157
NNTP method, 165

set event call back() (in module fl), 217
set form position() (form method), 218
set graphics mode() (in module fl), 217
set position() (Unpacker method), 182
set spacing() (formatter method), 175
set syntax() (in module regex), 73
set trace() (in module pdb), 136
setattr() (built-in function), 21
setblocking() (socket method), 108
setchannels() (audio configuration method), 212
setcheckinterval() (in module sys), 25
setcomptype() (aifc method), 202
setconfig() (audio port method), 213
setfillpoint() (audio port method), 213
setfloatmax() (audio configuration method), 212
setfont() (font handle method), 222
setframerate() (aifc method), 202
setgid() (in module posix), 119
setinfo() (audio device method), 228
setitem() (in module operator), 29
setkey() (rotor method), 209
setliteral()

SGMLParser method, 168
XMLParser method, 171

252 Index

setlocale() (in module locale), 99
setlogmask() (in module syslog), 131
setmark() (aifc method), 202
setnchannels() (aifc method), 202
setnframes() (aifc method), 202
setnomoretags()

SGMLParser method, 168
XMLParser method, 171

setoption() (in module jpeg), 203
setparams()

aifc method, 202
in module al, 211

setpath() (in module fm), 222
setpgid() (in module posix), 119
setpgrp() (in module posix), 119
setpos() (aifc method), 202
setprofile() (in module sys), 26
setqueuesize() (audio configuration method),

212
setrlimit() (in module resource), 128
setsampfmt() (audio configuration method), 212
setsampwidth() (aifc method), 202
setsid() (in module posix), 119
setslice() (in module operator), 29
setsockopt() (socket method), 108
settrace() (in module sys), 26
setuid() (in module posix), 119
setup() (SocketServer protocol), 187
setwidth() (audio configuration method), 212
SGML, 167, 169
sgmllib (standard module),167, 169
SGMLParser

class in sgmllib, 167
in module sgmllib, 169

shelve (standard module), 31,34, 35
shifting

operations, 6
show choice() (in module fl), 217
show file selector() (in module fl), 217
show form() (form method), 218
show input() (in module fl), 217
show message() (in module fl), 217
show object() (FORMS object method), 220
show question() (in module fl), 217
shutdown() (socket method), 108
SIG* (in module signal), 104
SIG DFL (in module signal), 104
SIG IGN (in module signal), 104
signal (built-in module),103, 110
signal() (in module signal), 104
SimpleHTTPServer (standard module), 189
sin()

in module cmath, 81
in module math, 80

sinh()
in module cmath, 81
in module math, 80

site (standard module),57, 59
site-packages

directory, 57
site-python

directory, 57
sitecustomize (module), 58
sizeofimage() (in module rgbimg), 204
slave() (NNTP method), 166
sleep() (in module time), 90
slice

assignment, 8
operation, 6

slice() (built-in function), 21, 57
SO* (in module socket), 105
SOCKDGRAM(in module socket), 105
SOCKRAW(in module socket), 105
SOCKRDM(in module socket), 105
SOCKSEQPACKET(in module socket), 105
SOCKSTREAM(in module socket), 105
socket

built-in module, 10,105, 149
SocketServer protocol, 186

socket() (in module socket), 106, 109
socket type (SocketServer protocol), 186
SocketServer (standard module),185
SocketType (in module socket), 107
softspace (file attribute), 11
SOL * (in module socket), 106
SOMAXCONN(in module socket), 105
sort (list method), 8
sort stats() (Stats method), 143
span() (MatchObject method), 70
split()

in module posixpath, 121
in module re, 68
in module regsub, 75
in module string, 63
RegexObject method, 69

splitext() (in module posixpath), 121
splitfields() (in module string), 63
splitx() (in module regsub), 75
sqrt()

in module cmath, 81
in module math, 80
in module mpz, 208

sqrtrem() (in module mpz), 208
ST ATIME (in module stat), 132
ST CTIME (in module stat), 132
ST DEV(in module stat), 132
ST GID (in module stat), 132
ST INO (in module stat), 131

Index 253

ST MODE(in module stat), 131
ST MTIME(in module stat), 132
ST NLINK (in module stat), 132
ST SIZE (in module stat), 132
ST UID (in module stat), 132
StandardError (built-in exception base class), 13
start() (MatchObject method), 70
start new thread() (in module thread), 110
stat (standard module), 119,131
stat()

in module posix, 119
NNTP method, 165

statement
assert , 13
del , 8
except , 12
exec , 10
if , 3
import , 15
print , 3
raise , 12
try , 12
while , 3

Stats (class in pstats), 143
status() (IMAP4 method), 163
stderr (in module sys), 26
stdin (in module sys), 26
stdout (in module sys), 26
stdwin (built-in module), 109, 135
STILL (in module cd), 214
stop() (CD player method), 215
storbinary() (FTP method), 160
store() (IMAP4 method), 163
storlines() (FTP method), 160
str()

built-in function, 21
in module locale, 100

strcoll() (in module locale), 100
strerror() (in module posix), 118
strftime() (in module time), 90
string

type, 6
string

MatchObject attribute, 70
standard module, 7,61, 100, 101

StringIO
class in StringIO, 77
standard module,77

StringType (in module types), 27
strip() (in module string), 63
strip dirs() (Stats method), 143
strop (built-in module), 63, 101
struct (built-in module),75, 108
structures

C, 75
strxfrm() (in module locale), 100
sub()

in module operator, 28
in module re, 68
in module regsub, 74
RegexObject method, 69

subn()
in module re, 68
RegexObject method, 69

subscribe() (IMAP4 method), 163
subscript

assignment, 8
operation, 6

suite() (in module parser), 40
SUNAUDIODEV(standard module), 228
sunaudiodev (built-in module),227
swapcase() (in module string), 63
sym name (in module symbol), 48
symbol (standard module),48
symbol table, 3
symcomp() (in module regex), 73
symlink() (in module posix), 119
sync() (in module gdbm), 124
syntax error() (XMLParser method), 172
SyntaxError (built-in exception), 14
sys (built-in module),24
sys version (BaseHTTPRequestHandler at-

tribute), 189
syslog (built-in module),130
syslog() (in module syslog), 130
system() (in module posix), 119
SystemError (built-in exception), 14
SystemExit (built-in exception), 14

T
tan()

in module cmath, 81
in module math, 80

tanh()
in module cmath, 81
in module math, 80

tcdrain() (in module termios), 124
tcflow() (in module termios), 125
tcflush() (in module termios), 124
tcgetattr() (in module termios), 124
tcgetpgrp() (in module posix), 119
tcsendbreak() (in module termios), 124
tcsetattr() (in module termios), 124
tcsetpgrp() (in module posix), 119
tell()

aifc method, 202
file method, 11

tempdir (in module tempfile), 92

254 Index

tempfile (standard module),92
template (in module tempfile), 92
temporary

file, 92
file name, 92

TERMIOS(standard module), 124,125
termios (built-in module),124, 125
test() (in module cgi), 152
tests (in module imghdr), 204
thread (built-in module),110
threads

IRIX, 111
POSIX, 110

tie() (in module fl), 218
time (built-in module),88
time() (in module time), 90
Time2Internaldate() (in module imaplib), 162
times() (in module posix), 119
timezone (in module time), 90
TMPDIR(in module tempfile), 92
tofile() (array method), 84
togglepause() (CD player method), 215
tok name (in module token), 49
token (standard module),48
tolist()

array method, 84
AST method, 42

tomono() (in module audioop), 199
tostereo() (in module audioop), 199
tostring() (array method), 84
totuple() (AST method), 42
tovideo() (in module imageop), 200
trace function, 26
traceback

object, 24, 30
traceback (standard module),30
tracebacklimit (in module sys), 26
TracebackType (in module types), 27
translate (regex attribute), 74
translate() (in module string), 63
translate references() (XMLParser

method), 171
true, 3
truncate() (file method), 11
truth

value, 3
try

statement, 12
ttob()

in module imgfile, 225
in module rgbimg, 204

tty
I/O control, 124, 125

tuple

type, 6
tuple() (built-in function), 21
tuple2ast() (in module parser), 40
TupleType (in module types), 27
type

Boolean, 3
complex number, 5
dictionary, 8
floating point, 5
integer, 5
list, 6, 7
long integer, 5
object, 21
operations on dictionary, 8
operations on list, 8
string, 6
tuple, 6

type() (built-in function), 10, 21, 26
typecode (array attribute), 84
TypeError (built-in exception), 14
types

built-in, 3
integer, 5
mapping, 8
mutable sequence, 7
numeric, 4, 5
operations on integer, 6
operations on mapping, 8
operations on mutable sequence, 8
operations on numeric, 5
operations on sequence, 6, 8
sequence, 6

types (standard module), 10, 21,26
TypeType (in module types), 26
tzname (in module time), 90

U
u-LAW, 197, 202, 227
uid() (IMAP4 method), 163
ulaw2lin() (in module audioop), 199
umask() (in module posix), 119
uname() (in module posix), 119
UnboundMethodType (in module types), 27
unfreeze form() (form method), 218
unfreeze object() (FORMS object method),

221
uniform() (in module whrandom), 82
UNIX

file control, 125
I/O control, 125

UnixMailbox (class in mailbox), 187
unknown charref()

SGMLParser method, 169
XMLParser method, 172

Index 255

unknown endtag()
SGMLParser method, 169
XMLParser method, 172

unknown entityref()
SGMLParser method, 169
XMLParser method, 172

unknown starttag()
SGMLParser method, 169
XMLParser method, 172

unlink() (in module posix), 120
unmimify() (in module mimify), 188
unpack() (in module struct), 75
unpack array() (Unpacker method), 183
unpack bytes() (Unpacker method), 183
unpack double() (Unpacker method), 182
unpack farray() (Unpacker method), 183
unpack float() (Unpacker method), 182
unpack fopaque() (Unpacker method), 183
unpack fstring() (Unpacker method), 182
unpack list() (Unpacker method), 183
unpack opaque() (Unpacker method), 183
unpack string() (Unpacker method), 183
Unpacker (class in xdrlib), 181
Unpickler (in module pickle), 32
unqdevice() (in module fl), 218
unquote() (in module urllib), 156
unquote plus() (in module urllib), 156
unsubscribe() (IMAP4 method), 163
update() (md5 method), 208
upper() (in module string), 63
uppercase (in module string), 61
URL, 150, 155, 166, 188

parsing, 166
relative, 166

urlcleanup() (in module urllib), 156
urljoin() (in module urlparse), 167
urllib (standard module),155, 157
urlopen() (in module urllib), 156
urlparse (standard module), 157,166
urlparse() (in module urlparse), 167
urlretrieve() (in module urllib), 156
urlunparse() (in module urlparse), 167
$USER, 160
user

configuration file, 58
user (standard module),58
UserDict

class in UserDict, 28
standard module,28

UserList
class in UserList, 28
standard module,28

UTC, 89
utime() (in module posix), 120

uu (standard module), 180,180

V
value

truth, 3
ValueError (built-in exception), 15
varray() (in module gl), 223
vars() (built-in function), 21
VERBOSE(in module re), 67
verify request() (SocketServer protocol), 186
version (in module sys), 26
version string() (BaseHTTPRequestHandler

method), 190
vnarray() (in module gl), 223
voidcmd() (FTP method), 160
vonmisesvariate() (in module random), 83

W
wait() (in module posix), 120
waitpid() (in module posix), 120
walk() (in module posixpath), 121
wdb (standard module), 135
weibullvariate() (in module random), 83
wfile (BaseHTTPRequestHandler attribute), 189
what() (in module imghdr), 204
whichdb (standard module),112
whichdb() (in module whichdb), 112
while

statement, 3
whitespace (in module string), 62
whrandom (standard module),82
WNOHANG(in module posix), 120
World-Wide Web, 149, 155, 166
write()

array method, 85
audio device method, 228
file method, 11
in module imgfile, 225
in module posix, 120

writeframes() (aifc method), 203
writeframesraw() (aifc method), 203
writelines() (file method), 11
writer (formatter attribute), 173
writesamps() (audio port method), 212
WWW, 149, 155, 166

server, 150, 188

X
X (in module re), 67
xatom() (IMAP4 method), 163
XDR, 31, 181
xdrlib (standard module),181
xgtitle() (NNTP method), 166
xhdr() (NNTP method), 166

256 Index

XML, 170
xmllib (standard module),170
XMLParser (class in xmllib), 171
xover() (NNTP method), 166
xpath() (NNTP method), 166
xrange() (built-in function), 21, 27
XRangeType (in module types), 27

Z
ZeroDivisionError (built-in exception), 15
zfill() (in module string), 63
zlib (built-in module),112

Index 257

	1 Introduction
	2 Built-in Types, Exceptions and Functions
	2.1 Built-in Types
	Truth Value Testing
	Boolean Operations
	Comparisons
	Numeric Types
	Bit-string Operations on Integer Types

	Sequence Types
	More String Operations
	Mutable Sequence Types

	Mapping Types
	Other Built-in Types
	Modules
	Classes and Class Instances
	Functions
	Methods
	Code Objects
	Type Objects
	The Null Object
	File Objects
	Internal Objects

	Special Attributes

	2.2 Built-in Exceptions
	2.3 Built-in Functions

	3 Python Services
	3.1 Built-in Module sys
	3.2 Standard Module types
	3.3 Standard Module UserDict
	3.4 Standard Module UserList
	3.5 Built-in Module operator
	3.6 Standard Module traceback
	3.7 Standard Module pickle
	3.8 Built-in Module cPickle
	3.9 Standard Module copyprotect unhbox voidb@x kern .06emvbox {hrule width.3em}reg
	3.10 Standard Module shelve
	3.11 Standard Module copy
	3.12 Built-in Module marshal
	3.13 Built-in Module imp
	Examples

	3.14 Built-in Module parser
	Creating AST Objects
	Converting AST Objects
	Queries on AST Objects
	Exceptions and Error Handling
	AST Objects
	Examples
	Emulation of compile()
	Information Discovery

	3.15 Standard Module symbol
	3.16 Standard Module token
	3.17 Standard Module keyword
	3.18 Standard Module code
	3.19 Standard Module pprint
	PrettyPrinter Objects

	3.20 Standard Module dis
	Python Byte Code Instructions

	3.21 Standard Module site
	3.22 Standard Module user
	3.23 Built-in Module protect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}builtinprotect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}
	3.24 Built-in Module protect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}mainprotect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}

	4 String Services
	4.1 Standard Module string
	4.2 Built-in Module re
	Regular Expression Syntax
	Module Contents
	Regular Expression Objects
	Match Objects

	4.3 Built-in Module regex
	Regular Expressions
	Module Contents

	4.4 Standard Module regsub
	4.5 Built-in Module struct
	4.6 Standard Module StringIO
	4.7 Built-in Module cStringIO

	5 Miscellaneous Services
	5.1 Built-in Module math
	5.2 Built-in Module cmath
	5.3 Standard Module whrandom
	5.4 Standard Module random
	5.5 Built-in Module array
	5.6 Standard Module fileinput

	6 Generic Operating System Services
	6.1 Standard Module os
	6.2 Built-in Module time
	6.3 Standard Module getopt
	6.4 Standard Module tempfile
	6.5 Standard Module errno
	6.6 Standard Module glob
	6.7 Standard Module fnmatch
	6.8 Standard Module locale
	Background, details, hints, tips and caveats
	For extension writers and programs that embed Python

	7 Optional Operating System Services
	7.1 Built-in Module signal
	7.2 Built-in Module socket
	Socket Objects
	Example

	7.3 Built-in Module select
	7.4 Built-in Module thread
	7.5 Standard Module Queue
	Queue Objects

	7.6 Standard Module anydbm
	7.7 Standard Module dumbdbm
	7.8 Standard Module whichdb
	7.9 Built-in Module zlib
	7.10 Standard Module gzip

	8 Unix Specific Services
	8.1 Built-in Module posix
	8.2 Standard Module posixpath
	8.3 Built-in Module pwd
	8.4 Built-in Module grp
	8.5 Built-in Module crypt
	8.6 Built-in Module dbm
	8.7 Built-in Module gdbm
	8.8 Built-in Module termios
	Example

	8.9 Standard Module TERMIOS
	8.10 Built-in Module fcntl
	8.11 Standard Module posixfile
	8.12 Built-in Module resource
	Resource Limits
	Resource Usage

	8.13 Built-in Module syslog
	8.14 Standard Module stat
	8.15 Standard Module commands

	9 The Python Debugger
	9.1 Debugger Commands
	9.2 How It Works

	10 The Python Profiler
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	The Stats Class

	10.6 Limitations
	10.7 Calibration
	10.8 Extensions --- Deriving Better Profilers
	OldProfile Class
	HotProfile Class

	11 Internet and WWW Services
	11.1 Standard Module cgi
	Introduction
	Using the cgi module
	Old classes
	Functions
	Caring about security
	Installing your CGI script on a Unix system
	Testing your CGI script
	Debugging CGI scripts
	Common problems and solutions

	11.2 Standard Module urllib
	11.3 Standard Module httplib
	HTTP Objects
	Example

	11.4 Standard Module ftplib
	FTP Objects

	11.5 Standard Module gopherlib
	11.6 Standard Module imaplib
	IMAP4 Objects
	IMAP4 Example

	11.7 Standard Module nntplib
	NNTP Objects

	11.8 Standard Module urlparse
	11.9 Standard Module sgmllib
	11.10 Standard Module htmllib
	11.11 Standard Module xmllib
	11.12 Standard Module formatter
	The Formatter Interface
	Formatter Implementations
	The Writer Interface
	Writer Implementations

	11.13 Standard Module rfc822
	Message Objects

	11.14 Standard Module mimetools
	Additional Methods of Message objects

	11.15 Standard Module binhex
	Notes

	11.16 Standard Module uu
	11.17 Built-in Module binascii
	11.18 Standard Module xdrlib
	Packer Objects
	Unpacker Objects
	Exceptions

	11.19 Standard Module mailcap
	11.20 Standard Module base64
	11.21 Standard Module quopri
	11.22 Standard Module SocketServer
	11.23 Standard Module mailbox
	Mailbox Objects

	11.24 Standard Module mimify
	11.25 Standard Module BaseHTTPServer

	12 Restricted Execution
	12.1 Standard Module rexec
	An example

	12.2 Standard Module Bastion

	13 Multimedia Services
	13.1 Built-in Module audioop
	13.2 Built-in Module imageop
	13.3 Standard Module aifc
	13.4 Built-in Module jpeg
	13.5 Built-in Module rgbimg
	13.6 Standard Module imghdr

	14 Cryptographic Services
	14.1 Built-in Module md5
	14.2 Built-in Module mpz
	14.3 Built-in Module rotor

	15 SGI IRIX Specific Services
	15.1 Built-in Module al
	Configuration Objects
	Port Objects

	15.2 Standard Module AL
	15.3 Built-in Module cd
	Player Objects
	Parser Objects

	15.4 Built-in Module fl
	Functions Defined in Module fl
	Form Objects
	FORMS Objects

	15.5 Standard Module FL
	15.6 Standard Module flp
	15.7 Built-in Module fm
	15.8 Built-in Module gl
	15.9 Standard Modules GL and DEVICE
	15.10 Built-in Module imgfile

	16 SunOS Specific Services
	16.1 Built-in Module sunaudiodev
	Audio Device Objects

	17 Undocumented Modules
	17.1 Frameworks; somewhat harder to document, but well worth the effort
	17.2 Stuff useful to a lot of people, including the CGI crowd
	17.3 Miscellaneous useful utilities
	17.4 Parsing Python
	17.5 Platform specific modules
	17.6 Code objects and files, debugger etc.
	17.7 Multimedia
	17.8 Oddities
	17.9 Obsolete
	17.10 Extension modules

	Module Index
	Index

