Python Library Reference
Release 1.5.1

Guido van Rossum

April 14, 1998

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addrigssftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file 1/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBExtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 BuUilt-in TYPES. . . o o o e 3
Truth Value Testing. 3
Boolean Operations e e e e e e e 4
CompariSONS o e e e e e e e e e 4
NUMENC TYPES . . o o o e e e e e e e e e 5
SequenCe TYPES o o e e e e 6
Mapping TYPES o e 8
Other Built-in TYpeS o e e e e e e e e 9
Special Attributes. e e 12
2.2 BUIlt-in EXCEPLIONS. o o e e e e e e e 12
2.3 Built-in FUNCtions. e e 15

3 Python Services 23
3.1 Built-in Modulesys e 24
3.2 Standard Modulypes e 26
3.3 Standard ModulBlserDict e 27
3.4 Standard ModulBJserList L. 28
3.5 Built-in Moduleoperator e e e e 28
3.6 Standard Modulgaceback 30
3.7 Standard Modulpickle 30
3.8 Built-in ModulecPickle 33
3.9 Standard Moduleopy _reg e e e e 33
3.10 Standard Modulshelve 34
3.11 Standard Moduleopy L e e 34
3.12 Built-in Modulemarshal 35
3.13 Built-in Moduleimp e 36
Examples e 38
3.14 Built-in Moduleparser e e e 39
Creating AST Objects e e e 40
Converting AST Objects. o o o e 40
Querieson AST Objects. o o e 41
Exceptionsand ErrorHandling 41
AST Objects. e e e 42
Examples e e e 42
3.15 Standard Modulsymbol 48
3.16 Standard Moduloken L e e 48

3.17 Standard Modulkeyword L e e e e e 49

3.18 Standard Moduleode e e 49
3.19 Standard Modulpprint L L 49
PrettyPrinter Objects. e 51
3.20 Standard Moduldis L 52
Python Byte Code InStructions e e e e 53
3.21 Standard Modulsite e e e 57
3.22 Standard Moduleser e 58
3.23 Built-in Module__builtin - __ 59
3.24 Built-in Module__main __ 59
String Services 61
4.1 Standard Modulstring L e 61
4.2 Built-inModulere L e 64
Regular EXpression SyNtaX v v v i i i e e e e e e e e e e e e 64
Module Contents. o e e e e 67
Regular Expression Objects. o e 69
Match Objects o 69
4.3 Built-in Moduleregex L e 70
Regular EXPressions. o o e e e e e e e e e e e e 71
Module CoNtents. e 72
4.4 Standard Moduleegsub L L 74
4.5 Built-in Modulestruct L e e 75
4.6 Standard Modul8tringlO L 77
4.7 Built-in ModulecStringlO L e e 77
Miscellaneous Services 79
5.1 Built-in Modulemath e 79
5.2 Built-in Modulecmath 80
5.3 Standard Modulehrandom 82
5.4 Standard Moduleandom L e e e 82
5.5 Built-in Modulearray L e 83
5.6 Standard ModulBleinput L 85
Generic Operating System Services 87
6.1 Standard Modules e e e 87
6.2 Built-in Moduletime L e e 88
6.3 Standard Modulgetopt L e e e 91
6.4 Standard Moduleempfile e 92
6.5 Standard Modulerrno L e e e 92
6.6 Standard Modulglob L 98
6.7 Standard Modulthmatch e 98
6.8 Standard Modullcale L 99
Background, details, hints, tipsand caveats. e 101
For extension writers and programs that embed Python. 102
Optional Operating System Services 103
7.1 Built-in Modulesignal e 103
7.2 Built-in Modulesocket e e 105
Socket Objects. 107
Example. . . . 108
7.3 Built-in Moduleselect 109
7.4 Built-in Modulethread e 110
7.5 Standard Modul®ueue e e e 111
Queue ObJeCts 111

10

11

7.6 Standard Modulanydbm L e e e 111

7.7 Standard Moduldumbdbm 112
7.8 Standard Modulevhichdb e 112
7.9 Built-in Modulezlib e e e e 112
7.10 Standard Modulgzip e e e 113
Unix Specific Services 115
8.1 Built-in Moduleposix e 115
8.2 Standard Modulposixpath 120
8.3 Built-in Modulepwd L e e 122
8.4 Built-in Modulegrp e e e 122
8.5 Built-in Modulecrypt L e 122
8.6 Built-in Moduledbm e e e 123
8.7 Built-in Modulegdbm L e 123
8.8 Built-in Moduletermios e e e e 124
Example. . . . 125
8.9 Standard ModulEERMIOS e 125
8.10 Built-in Modulefentl L e e e 125
8.11 Standard Modulposixfile 126
8.12 Built-in Moduleresource e e e e e e e e 128
Resource LIMItS e e e e e 128
Resource Usage 129
8.13 Built-in Modulesyslog 130
8.14 Standard Modulstat e e e 131
8.15 Standard Moduleommands e e e 132
The Python Debugger 135
9.1 DebuggerCommands. 136
9.2 HOWItWOIKS o e e e e e e e 137
The Python Profiler 139
10.1 Introduction tothe profiler. 139
10.2 How Is This Profiler Different From The Old Profiler? 139
10.3 InstantUsers Manual e e e e 140
10.4 What Is Deterministic Profiling? 141
10.5 Reference Manual. e e e e e 142
TheStats Class. o e e e e 143
10.6 Limitations e e e e e e e e e 144
10.7 Calibration e e 145
10.8 Extensions — Deriving Better Profilers 146
OldProfile Class e e e e 146
HotProfile Class e e e e 147
Internet and WWW Services 149
11.1 Standard Modulegi L e 150
Introduction e e e e e e e e e 150
Usingthecgimodule. e 150
Old Classes o i e e 152
FUuNnctions e e 152
Caring aboutsecurity. 153
Installing your CGl scriptonaunixsystem e 153
Testing your CGISCript. o e e e e e e e 154
Debugging CGISCrPtS. o o e e e e e e 154
Common problems and solutions. e 155
11.2 Standard Modulerllib e 155

12

13

11.3 Standard Modulbttplib e 157

HTTP Objects. o e e e e e e 157
Example. . . . 158
11.4 Standard Moduligplib L 158
FTP ODJECES. . . . o o o e e e e 159
11.5 Standard Modulgopherlib L 161
11.6 Standard Modulenaplib 161
IMAP4A ODJeCtS e 162
IMAP4 Example e e 163
11.7 Standard Modulentplib L 164
NNTP ObJeCtS o e e e 165
11.8 Standard Modulerlparse e e e e e 166
11.9 Standard Modulsgmllib 167
11.10Standard Modulletmllib 169
11.11Standard Modubemllib L 170
11.12Standard Modullermatter L L e 173
The Formatter Interface 173
Formatter Implementations L 175
The Writer Interface e 175
Writer Implementations L e e 176
11.13Standard Moduldc822 L e e 176
Message ObJECtS. e e e e 177
11.14Standard Modul@imetools e e e 178
Additional Methods of Message objects. 179
11.15Standard Modulleinhex L 179
NOtES . . . e e 179
11.16Standard Moduleu e 180
11.17Built-in Modulebinascii = 180
11.18Standard Modubedrlib L 181
Packer Objects. 181
Unpacker Objects o . e 182
EXCEpPLiONS e e e 183
11.19Standard Modulmailcap e e e 183
11.20Standard Modullease64 e e e e 184
11.21Standard Modulguopri = 185
11.22Standard ModulBocketServer L L 185
11.23Standard Modulmailbox 187
Mailbox Objects. e e e e 187
11.24Standard Modulimify L 187
11.25Standard ModulBaseHTTPServer e 188
Restricted Execution 193
12.1 Standard ModulEXec e e e 194
Anexample. . . . L 195
12.2 Standard ModulBastion e 196
Multimedia Services 197
13.1 Built-in Moduleaudioop 197
13.2 Built-in Moduleimageop e e 200
13.3 Standard Modulaifc L 201
13.4 Built-in Modulgpeg e e e e e 203
13.5 Built-in Modulergbimg 203
13.6 Standard Modulenghdr 204

14 Cryptographic Services
14.1 Built-in Modulemd5 e e e
14.2 Built-in Modulempz L
14.3 Built-in Modulerotor L e e e e

15 SGI IRIX Specific Services
15.1 Built-in Moduleal e
Configuration Objects e
Port Objects. e
15.2 Standard ModulBL
15.3 Built-in Modulecd L e e e e
Player Objects
Parser Objects e e
15.4 Built-in Modulefl
Functions Defined in Modul®
Form Objects. o
FORMS Objects o e e e e
15.5 Standard ModulEL L e
15.6 Standard ModulBp L. L
15.7 Built-in Modulefm
15.8 Built-in Modulegl L e e e
15.9 Standard ModuleSLandDEVICE e
15.10Built-in Moduleimgfile

16 SunOS Specific Services
16.1 Built-in Modulesunaudiodev e
Audio Device Objects e

17 Undocumented Modules

17.1 Frameworks; somewhat harder to document, but well worth the effart.
17.2 Stuff useful to a lot of people, includingthe CGlcrowd
17.3 Miscellaneous useful utilities. e e

17.4 Parsing Python. e e e
17.5 Platform specificmodules. L e
17.6 Code objects and files, debuggeretc..

17.7 Multimedia e e e e e e e
17.8 Oddities. o e e e e e e e
17.9 Obsolete o e e e e e
17.10Extension modules e e

Module Index

Index

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, like socket 1/O; others provide interfaces that are
specific to a particular application domain, like the World-Wide Web. Some modules are avaiable in all versions
and ports of Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see nmaddl¢ and read a section or two.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

Truth Value Testing

Any object can be tested for truth value, for use irifanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, e.d, OL, 0.0 .

e any empty sequence, e.y.,, () ,[] -

e any empty mapping, e.d} .

e instances of user-defined classes, if the class definesazero _() or_len _() method, when that method

returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retionfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and y | if xis false, therx, elsey 1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operators, so a@. a == is interpreted asot(a == b) ,
anda == not b is asyntax error.

Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily,xe.g.y <= z is equivalent to

x <y and y <= z , exceptthay is evaluated only once (but in both cages not evaluated at all when < y

is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
I= not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose beteeeand C! :-)

Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (e.g., win-
dows) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such
objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

Numeric Types

There are four numeric typeglain integers long integers floating point humbersand complex numbersPlain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the fame rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y quotient ofx andy Q)
X %y remainder ok / vy
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(X) x converted to floating point
complex(re, im) | a complex number with real pas, imaginary parim. im defaults to zero.
divmod(X, V) thepair(x / 'y, X %vy) 3)
pow(x, Y) x to the powely
X ¥y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is O.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdian(s
andceil() in modulemath for well-defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

2As a consequence, the Ijdt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-

isons; the unary operatiofi * has the same priority as the other unary numeric operatiensf(id ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
x|y bitwise or of x andy
X"y bitwise exclusive orf x andy
X &Yy bitwiseand of x andy
X << n | xshifted left byn bits 1), (2
x >> n | xshifted right byn bits D), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError
(2) A left shift by n bits is equivalent to multiplication bgow(2,

(3) A right shift by n bits is equivalent to division bgow(2,

Sequence Types

to be raised.

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotegzzy’

, "frobozz"

n) without overflow check.

n) without overflow check.

. See Chapter 2 of tHeython Reference

Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheses, Ip,gc or() . A single item tuple must

have a trailing comma, e.dd,)

Sequence types support the following operations. Thé and ‘not in ' operations have the same priorities as the
comparison operations. The'and **’ operations have the same priority as the corresponding numeric operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).

In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s| ncopies ofsconcatenated 3)
9 i] i'th item of s, origin O (1)
g i] slice ofsfromitoj D), 2
len() length ofs
min(s) smallest item of
max(s) largest item of

Notes:

(1) If i orj is negative, the index is relative to the end of the string,le@(s) +

But note thatO is still O.

3They must have since the parser can't tell the type of the operands.

iorlen(s) + |issubstituted.

Chapter 2. Built-in Types, Exceptions and Functions

(2) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < |. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usd. If j is omitted, usden(s). If i is greater than or equal {p
the slice is empty.

(3) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.as

More String Operations

String objects have one unique built-in operation: $%heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple*ditjediollowing format characters

are understood% c, s, i,d, u, 0, x, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurégpand%nare not supported. Since Python strings have

an explicit length%sconversions don’'t assume tH#Y' is the end of the string.

For safety reasons, floating point precisions are clipped t&/&Gonversions for numbers whose absolute value is
over 1e25 are replaced Bygconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> |anguage = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modtrlag and in built-in modulee .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

4A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

Operation Result Notes
gi] = x itemi of sis replaced by
qgi:j] =t slice ofsfromitoj is replaced by
del di:j] same ag i: j] =[]
s.append(X) same agllen(s)ylen(9] = [X
s.count(X) return number of's for whichg[i] == x
sindex(X) return smallest such thag[i] == x (1)
sinsert(i, X) | sameag[i:i] = [X ifi >= 0
sremove(X) same aslel g sindex(X)] Q)
s.reverse() reverses the items afin place 3)
s.sort() sort the items o§in place 2), (3)

Notes:

(1) Raises an exception wheris not found ins.

(2) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a listin
reverse order it is much faster to use callsoot() andreverse() thanto usesort() with a comparison
function that reverses the ordering of the elements.

(3) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thietionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (.@nd1.0) then they can be used interchangeably to index the same
dictionary entry.

value pairs within braces, for example:
'sjoerd’}

Dictionaries are created by placing a comma-separated lidtepf
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127:

The following operations are defined on mappings (wladesea mappingk is a key andk is an arbitrary object):

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
a k] = x setal k] tox
del al kK] removeal k] froma (1)
a.clear() remove all items frona
a.copy() a (shallow) copy ot
a.has key(k) | 1if ahas akey, else0
a.items() a copy ofa’s list of (key, item) pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k, v in b.items(): ak] = v 3)
a.values() a copy ofa’s list of values (2)
aget(k[, f]) | theitem ofawith keyk (4)

Notes:

8 Chapter 2. Built-in Types, Exceptions and Functions

(1) Raises an exceptionlkfis not in the map.
(2) Keys and values are listed in random order.
(3) b must be of the same type as

(4) Never raises an exceptionkfis not in the map, instead it returfisf is optional, when not provided ards not
in the mapNone is returned.

Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatghert statement is not, strictly
spoking, an operation on a module objeotport foo does not require a module object nanfiedto exist, rather it
requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every moduleigdict __. This is the dictionary containing the module’s symbol table. Mod-
ifying this dictionary will actually change the module’s symbol table, but direct assignment todioe __ at-
tribute is not possible (i.e., you can write __dict _[a] = 1 , which definesn.a to bel, but you can't write

m. _dict __ = {} .

Modules are written like thisskmodule ’sys’>

Classes and Class Instances

See Chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributdsnc _code is a function’scode objec{see below) and
f.func _globals isthe dictionary used as the function’s global name space (this is the same a&t __where
mis the module in which the functiohwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance mettiodsself is the object whose
method this is, andh.im _func is the function implementing the method. Callim§arg-1, arg-2, ..., arg-n)
is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

2.1. Built-in Types 9

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theirfunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdylhis defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

File Objects

File objects are implemented using G&lio package and can be created with the built-in functpen() de-
scribed under Built-in Functions below. They are also returned by some other built-in functions and methods, e.g.
posix.popen() andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/0O-related reason, the excep@&mnror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()

Close the file. A closed file cannot be read or written anymore.
flush ()

Flush the internal buffer, likstdio s fflush()
isatty ()

Returnl if the file is connected to a tty(-like) device, eBe

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friends.

read ([size])
Read at mossizebytes from the file (less if the read higF or no more data is immediately available on a
pipe, tty or similar device). If thgizeargument is negative or omitted, read all data untiF is reached. The
bytes are returned as a string object. An empty string is returned sbeis encountered immediately. (For
certain files, like ttys, it makes sense to continue reading afteicanis hit.)

10 Chapter 2. Built-in Types, Exceptions and Functions

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If thezeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢aien
is hitimmediately. Note: unlikstdio ’'sfgets() ,the returned string contains null characté® () if they
occurred in the input.

readlines ([sizehint])
Read untileoF using readline() and return a list containing the lines thus read. If the opticmhint
argument is present, instead of reading ugd, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read.

seek (offset, whende
Set the file’s current position, likstdio ’s fseek() . Thewhenceargument is optional and defaults @o
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file's end). There is no return value.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most) that size. The size
defaults to the current position. Availability of this function depends on the operating system version (e.g., not
all UNIx versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to meztdhnes() ;
writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attributesldbe() method
changes the value.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifdfpace attribute,
which should be initialized to zero. This will be automatic for classes implemented in Python; types imple-
mented in C will have to provide a writabs®ftspace attribute.

6The advantage of leaving the newline on is that an empty string can be returned t@ aragithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

Internal Objects

See thePython Reference Manu#br this information. It describes code objects, stack frame objects, traceback
objects, and slice objects.

Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

e X. __dict __is adictionary of some sort used to store an object’s (writable) attributes;

e X. _methods __ lists the methods of many built-in object types, e.d], __methods __ vyields
[append’, 'count’, 'index’, 'insert’, 'remove’, 'reverse’, 'sort’] ;

X. __members__ lists data attributes;

X. __class __is the class to which a class instance belongs;

X. __bases __is the tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5, all standard exceptions have been converted to class objects, and users are encouraged to the the same.
The source code for those exceptions is present in the standard library regdefgions ; this module never needs

to be imported explicitly.

For backward compatibility, when Python is invoked with tieoption, the standard exceptions are strings. This may
be needed to run some code that breaks because of the different semantics of class based excepiiormptiohe
will become obsolete in future Python versions, so the recommended solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit vehibrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argumentto theaise statement. For string exceptions, the associated value itself will be stored in the variable named
as the second argument of teecept clause (if any). For class exceptions derived from the root &aseption

that variable receives the exception instance, and the associated value is present as the exception anggance’s
attribute; this is a tuple even if the second argumeméise was not (then it is a singleton tuple).

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard exceptions
are used, they are tuples containing the directly derived classes.

12 Chapter 2. Built-in Types, Exceptions and Functions

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code).

StandardError
The base class for built-in exceptions. All built-in exceptions are derived from this class, which is itself derived
from the root clas&xception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @varflowError
ZeroDivisionError , FloatingPointError

LookupError

The base class for thise exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

The following exceptions are the exceptions that are actually raised. They are class objects, excepthepttbe
is used to revert back to string-based standard exceptions.

AssertionError
Raised when anssert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hittoF.) No associated value.

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined
in the ‘config.h’ file.

IOError
Raised when an I/O operation (such gt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

When class exceptions are used, and this exception is instantiat®Easr(errno, strerror) , the
instance has two additional attributeano and strerror set to the error code and the error message,
respectively. These attributes defaultNone.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to
find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integ@iypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lontrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in funatipait() orraw _input()) is waiting

2.2. Built-in Exceptions 13

for input also raise this exception. No associated value.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@afloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’'t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimparn statement, in aexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfilutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionstr() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpretersys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemExit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

When class exceptions are used, the instance has an attrdmgewhich is set to the proposed exit status or
error message (defaulting ione).

A call to sys.exit() is translated into an exception so that clean-up handfervally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

14 Chapter 2. Built-in Types, Exceptions and Functions

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—import _(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghet statement. For examples
of why and how you would do this, see the standard library modbtasks andrexec . See also the built-
in moduleimp, which defines some useful operations out of which you can build your_owmport _()
function.

For example, the statementimport spam ' results in the following call: __import __('spam’,
globals(), locals(), []) ; the statementfrom spam.ham import eggs results in
_import __('spam.ham’, globals(), locals(), [eggs’]) . Note that even thouglocals()

and['eggs’] are passed in as arguments, theport __() function does not set the local variable named
eggs ; this is done by subsequent code that is generated for the import statement. (In fact, the standard
implementation does not use iscals argument at all, and uses itgobals only to determine the package
context of themport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up

till the first dot) is returnednot the module named bygame However, when a non-empfyomlist argument
is given, the module named mameis returned. This is done for compatibility with the bytecode generated

for the different kinds of import statement; when usimgport spam.ham.eggs ’, the top-level package
spam must be placed in the importing namespace, but when ufioig‘ spam.ham import eggs ', the
spam.ham subpackage must be used to find gggs variable.

abs (x)

Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg{, keyworda)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)

and theargsargument must be a tuple. Thenctionis called withargsas argument list; the number of arguments
is the the length of the tuple. (This is different from just callfmgq args) , since in that case there is always
exactly one argument.) If the optionkdywordsargument is present, it must be a dictionary whose keys are
strings. It specifies keyword arguments to be added to the end of the the argument list.

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they haveadl _ () method.

chr (i)
Return a string of one character whasgci code is the integer e.g.,chr(97) returns the stringp’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusive.

cmp(X,)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

2.3. Built-in Functions 15

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pas&stgng>’
if it wasn't read from a file. Th&ind argument specifies what kind of code must be compiled,; it céaxss’
if string consists of a sequence of statemet@sal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the valgal + imagtj. Each argument may be any numeric type (including
complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion function like
int) ,long() andfloat()

delattr (object, namg
This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) is equivalenttalel x. foobar.

dir ()
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to re-
turn a list of valid attribute for that object. This information is gleaned from the objectist __, _methods __
and__members__ attributes, if defined. The list is not necessarily complete; e.g., for classes, attributes defined
in base classes are not included, and for class instances, methods are not included. The resulting list is sorted
alphabetically. For example:

>>> jmport sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]
>>>

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the samg@s/ b, a % b). For floating point numbers the result is the same as
(math.floor(al b, a%b).

eval (expressio[l, globals[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthigalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéeak is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1

>>> print eval('x+1’)
2

>>>

This function can also be used to execute arbitrary code objects (e.g. createchpiye()). In this case
pass a code object instead of a string. The code object must have been compiled’paabing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

16 Chapter 2. Built-in Types, Exceptions and Functions

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ¢iebals andlocals dictionaries as global and local name

space. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted,

the expression is executed in the environment weeezfile() is called. The return value done.

filter (function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufictionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly singed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensitraigoatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

getattr (object, namg
The arguments are an object and a string. The string must be the name of one of the object’s attributes. The
result is the value of that attribute. For exammetattr(%, ' foobar) is equivalent tox. foobar.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,
0if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disjunct may have the &fne value.) (Implementation
note: this is the address of the object.)

input ([prompt])
Almost equivalent teeval(raw _input(promp)) . Like raw _input() , thepromptargument is optional,
and thereadline module is used when loaded. The difference is that a long input expression may be broken

It is used relatively rarely so does not warrant being made into a statement.

2.3. Built-in Functions 17

over multiple lines using the backslash convention.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

int (X
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly singed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical
to string.atoi(X) . Otherwise, the argument may be a plain or long integer or a floating point number.
Conversion of floating point numbers to integers is defined by the C semantics; normally the conversion truncates
towards zerd.

isinstance (object, clasy
Return true if theobjectargument is an instance of tletassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns falstad$is neither a class object nor a
type object, al'ypeError exception is raised.

issubclass (classl, classp
Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordsrgagncs items. If sequenceds already
a list, a copy is made and returned, similarsequende] . For instancelist('abc’) returns returns
[a’, b, 'c] andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol table. Inside a function, modifying this dictionary
does not always have the desired effect.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly singed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idersicaigatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additionigdt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWittne items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis& arguments may be any kind of sequence; the result is
always a list.

max(s)
Return the largest item of a non-empty sequence (string, tuple or list).

8This is ugly — the language definition should require truncation towards zero.

18 Chapter 2. Built-in Types, Exceptions and Functions

min (s)
Return the smallest item of a non-empty sequence (string, tuple or list).

oct (X)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit mactoo&;1) vyields'037777777777° . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

open (filename{, mode{, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 'sfopen() : filenameis the file name to be openeahodeindicates how the file is to be openéd:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which omeUNIx
systems means thatl writes append to the end of the file, regardless of the current seek position). Modes
r+' ,'w+ and’at+’ open the file for updating, provided the underlystdio library understands this. On
systems that differentiate between binary and text fités, appended to the mode opens the file in binary mode.
If the file cannot be openedOError s raised. Ifmodeis omitted, it defaults t&r" . The optionabufsize
argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive
value means use a buffer of (approximately) that size. A neghatifgzemeans to use the system default, which
is usually line buffered for for tty devices and fully buffered for other ffles.

ord (¢
Return theascii value of a string of one character. E.grd(’a’) returns the integed7. This is the inverse
of chr()

pow(X, y[z])
Returnx to the powery; if zis present, returix to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2z). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; epgw(2, -1) orpow(2, 35000) is not allowed.

range ([start,] sto;{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used in
for loops. The arguments must be plain integers. If gtep argument is omitted, it defaults to
1. |If the start argument is omitted, it defaults t6. The full form returns a list of plain integers
[start, start + step start + 2 * step ..] . If stepis positive, the last element is the largest
start + i * stepless tharstop if stepis negative, the last element is the largstsirt + i * stepgreater
thanstop stepmust not be zero (or elséalueError is raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

i

>>> range(1, 0)

i

>>>

9Specifying a buffer size currently has no effect on systems that don’'tseveuf() . The interface to specify the buffer size is not done
using a method that calletvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 19

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &dirés read,
EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”
>>>

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, Iis{, initializer])
Apply the binary function to the items oflist so as to reduce the list to a single value. E.g.,
reduce(lambda x, y: x*y, list, 1) returns the product of the elements lift. The optional
initializer can be thought of as being prependedisb so as to allow reduction of an empligt. The list
arguments may be any kind of sequence.

reload (modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wWwith atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepysfor
__main __ and__builtin ~ __. In certain cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usiram ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefutmthe
statement, another is to useport and qualified namesi{odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (X, n)
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The resultis a floating point number. Values are rounded to the closest multiple of 10 to the powar;rifiitus

20 Chapter 2. Built-in Types, Exceptions and Functions

multiples are equally close, rounding is done away from O (sorewgnd(0.5) is 1.0 andround(-0.5)
is-1.0).

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The string
must be the name of one of the object’s attributes. The function assigns the value to the attribute, provided the
object allows it. For examplesetattr(x, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifiedrime(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittaies , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] '

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequencas already
a tuple, it is returned unchanged. For instartagle(’abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objec)
Return the type of anbject The return value is a type object. The standard motigdes defines names for
all built-in types. For instance:

>>> import types
>>> jf isinstance(x, types.StringType): print "It's a string"

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hdica __ attribute), returns a dictionary cor-
responding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefifiéd.

xrange ([start,] stop{, step])
This function is very similar te#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

10n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 21

22

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys — Access system specific parameters and functions.

types — Names for all built-in types.

UserDict — Class wrapper for dictionary objects.

UserList — Class wrapper for list objects.

operator — All Python’s standard operators as built-in functions.

traceback — Print or retrieve a stack traceback.

pickle — Convert Python objects to streams of bytes and back.

cPickle — Faster version gbickle , but not subclassable.

copy.reg — Registemickle support functions.

shelve — Python object persistency.

copy — Shallow and deep copy operations.

marshal — Convert Python objects to streams of bytes and back (with different constraints).
imp — Access the implementation of tiraport statement.

parser — Retrieve and submit parse trees from and to the runtime support environment.
symbol — Constants representing internal nodes of the parse tree.

token — Constants representing terminal nodes of the parse tree.

keyword — Test whether a string is a keyword in the Python language.

code — Code object services.

pprint — Data pretty printer.

dis — Disassembler.

site — A standard way to reference site-specific modules.

user — A standard way to reference user-specific modules.

__builtin __ — The set of built-in functions.

__main__ — The environment where the top-level script is run.

23

3.1 Built-in Module sys

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python sauigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingdtimmand
line option to the interpreteargv[0] is set to the string-c" . If no script name was passed to the Python
interpreterargv has zero length.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned driype value tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objed)ue gets the exception parameter (éssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thd@racebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best donigywith finally

statement) or to caéixc _info() in a function that does not itself handle an exception.

exc _type
exc _value

exc _traceback
Deprecated since release 1.&lseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handed, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local" . This can be set at build time with theexec-prefix argument to
the configure script. Specifically, all configuration files (e.g. thephfig.h’ header file) are installed in the
directoryexec _prefix + "/lib/python versioriconfig" , and shared library modules are installed in
exec _prefix + "/lib/python versiorlib-dynload" , whereversionis equal toversion[:3]

exit (n)

Exit from Python with numeric exit status This is implemented by raising tHf&ystemExit exception, so
cleanup actions specified by finally clausedrgf statements are honored, and it is possible to catch the exit
attempt at an outer level.

exitfunc

24 Chapter 3. Python Services

This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when the
interpreter exits in any way (except when a fatal error occurs: in that case the interpreter’s internal state cannot
be trusted).

getrefcount (objec)

last
last
last

Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeitréscount()

_type

_value

_traceback

These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a

debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter

“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegtoomfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke ftype etc.)

modules

path

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

A list of strings that specifies the search path for modules. Initialized from the environment variable
$PYTHONPAT}br an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script
is read from standard inputpath[0] is the empty string, which directs Python to search modules in the
current directory first. Notice that the script directory is inserbedore the entries inserted as a result of
$PYTHONPATH

platform

This string contains a platform identifier, e.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix

psl
ps2

A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the string/usr/local” . This can be set at build time with theprefix argu-

ment to theconfigure script. The main collection of Python library modules is installed in the directory
prefix + "“/lib/python version while the platform independent header files (all excephfig.h’) are
stored inprefix + "/include/python versionr' , whereversionis equal toversion[:3]

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case ae> ' and’... ' . If a non-string object is
assigned to either variable, #&() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)

Setthe interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltiseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuez= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

3.1. Built-in Module sys 25

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fgture.

stdin
stdout
stderr
File objects corresponding to the interpreter’'s standard input, output and error stretalims. is used for
all interpreter input except for scripts but including callariput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the promptemit() andraw _input()
The interpreter’s own prompts and (almost all of) its error messages giléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hadtey) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal008. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter.

3.2 Standard Module types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * " — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).

26 Chapter 3. Python Services

FloatType
The type of floating point numbers (e.3.0).

StringType
The type of character strings (e!§pam’).

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}).

DictionaryType
An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

3.3 Standard Module UserDict

3.3. Standard Module UserDict

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviours to dictionaries.

TheUserDict module defines th&serDict class:

UserDict ()
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which
is accessible via théata attribute ofUserDict instances.

data
A real dictionary used to store the contents oftheerDict class.

3.4 Standard Module UserList

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to lists.

TheUserList module defines thelserList class:

UserList ([Iist])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via thedata attribute ofUserList instances. The instance’s contents are initially set to a codistf
defaulting to the empty lisf] . list can be either a regular Python list, or an instanc&sérList (or a
subclass).

data
A real Python list object used to store the contents oltberList class.

3.5 Built-in Module operator

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailidgfe also provided for convenience.

Theoperator module defines the following functions:

add(a, b
add(a, b
Returna + b, for aandb numbers.

sub(a, b)
sub(a,b
Returna- b.

mul (a, b)
_mul__(a, b
Returna* b, for aandb numbers.

div (a, b
_div _(a, b
Returna/ b.

mod(a, b)

__mod__(a, b)
Returna %b.

28 Chapter 3. Python Services

neg(o)
__heg_(0)
Returno negated.

pos (0)
__pos _(0)
Returno positive.

abs (0)
abs(0)
Return the absolute value of

inv (0)
_inv _(0)
Return the inverse ad.

Ishift (a, b)
_Ishift _(a,b)
Returna shifted left byb.

rshift (a, b)
_rshift _(a, b
Returna shifted right byb.

and (a, b
_and__(a, b
Return the bitwise and & andb.

or (a,b
or(a,b
Return the bitwise or o andb.

concat (a,b)
_concat _(a,b
Returna + b for a andb sequences.

repeat (a, b
_repeat _(a,b
Returna* b whereais a sequence arlis an integer.

getitem (a, b
_getitem _(a,b
Return the value o at indexb.

setitem (a,b, 9
_setitem _(a,b, 9
Set the value o& at indexb to c.

delitem (a, b
_delitem _(a,b
Remove the value daf at indexb.

getslice (a, b, 9
_getslice _(a,b,9
Return the slice of from indexb to indexc-1 .

setslice (a,b,c,y

_setslice _(a,b,c,y
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a, b, 9
_delslice _(a,b,9

3.5. Built-in Module operator

Delete the slice of from indexb to indexc-1 .

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 Standard Module traceback

This module provides a standard interface to format and print stack traces of Python programs. It exactly mimics the
behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack traces under
program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayades _traceback
andsys.last _traceback

The module defines the following functions:

print _tb (tracebacl[, Iimit])
Print up tolimit stack trace entries fromtnaceback If limit is omitted orNone, all entries are printed.

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted fo@oeback It is useful for alternate
formatting of stack traces. limit is omitted orNone, all entries are extracted. A “pre-processed” stack trace
entry is a quadrupldilenameline numberfunction nameline tex) representing the information that is usually
printed for a stack trace. THme textis a string with leading and trailing whitespace stripped; if the source is
not available it ifNone.

print _exception (type, value, tracebatfklimit])
Print exception information and up timit stack trace entries fronaceback This differs fromprint _tb()
in the following ways: (1) itracebackis notNone, it prints a headefTraceback (innermost last): "
(2) it prints the exceptiotypeandvalueafter the stack trace; (3) tfpeis SyntaxError andvaluehas the
appropriate format, it prints the line where the syntax error occurred with a caret indicating the approximate

position of the error.

print _exc ([!imit])

This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit) .

print _last ([Iimit])
This is a shorthand for ptint _exception(sys.last type, sys.last _value,
sys.last _traceback, limit) .

3.7 Standard Module pickle

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”™). This is a more primitive notion than persistency — althopigtkle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thackle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to

30 Chapter 3. Python Services

write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on “dbm”-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thePickle module. This has the same interface except®ieitler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Unlike the built-in modulemarshal , pickle handles the following correctly:

e recursive objects (objects containing references to themselves)
e object sharing (references to the same object in different places)

e user-defined classes and their instances

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtel (and of some other characteristicsptkle ’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fointhe
argument to th&ickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichiimershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written usrickle , it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string ofssintable
characters. The resolution of such names is not defined byitkle module — the persistent object module will
have to implement a methqmkrsistent _load() . To write references to persistent objects, the persistent module
must define a methaggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, iteit __() method is normallyotinvoked.Note: This is a deviation

from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the change is that
in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to have to provide
a__getinitargs _() method.

If it is desirable that the__init _() method be called on unpickling, a class can define a method
__getinitargs —-() , which should return guple containing the arguments to be passed to the class constructor
(_init _()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the instance.

Classes can further influence how their instances are pickled — if the class defines the mgtheidte __() ,

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
_setstate _() , it is called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is ngetstate __() method, the instance’sdict __is pickled. If there is no
_setstate __() method, the pickled object must be a dictionary and its items are assigned to the new instance’s
dictionary. (If a class defines bothgetstate __ () and__setstate _() , the state object needn’t be a dictionary

— these methods can do what they want.) This protocol is also used by the shallow and deep copying operations
defined in thecopy module.

3.7. Standard Module pickle 31

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’'s_setstate _() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

u pickle.Unpickler(f)

u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the methddwrite() with a string argument. Thenpickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thPickler class has an optional second argumbint, If this is present and nonzero, the binary
pickle format is used; if it is zero or absent, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e strings

e tuples, lists and dictionaries containing only picklable objects
e classes that are defined at the top level in a module

e instances of such classes whaogtict __or __setstate _ () is picklable

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

32 Chapter 3. Python Services

It is possible to make multiple calls to tltump() method of the sam®ickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondingnpickler instance. If the same

object is pickled by multiplelump() calls, theload() will all yield references to the same objettarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the sd®itkler instance, the object is not pickled again — a reference to

it is pickled and theJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler —andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation obbect to the open file objectfile. This is equivalent to
‘Pickler(file, bin).dump(objec) . If the optionalbin argument is present and nonzero, the binary pickle
format is used; if it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objélet This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passBitkber.dump()

See Also:

3.9: Modulecopy reg (pickle interface constructor registration)
3.10: Moduleshelve (indexed databases of objects; upgkle)
3.11: Modulecopy (shallow and deep object copying)

3.12: Modulemarshal (high-performance serialization of built-in types)

3.8 Built-in Module cPickle

ThecPickle module provides a similar interface and identical functionality agptbkle module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteR&ctiat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingitide module, so it is possible to ugpéckle
andcPickle interchangably with existing pickles.

3.9 Standard Module copy _reg

Thecopy -reg module provides support for thegckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor.

3.8. Built-in Module cPickle 33

pickle (type, functimﬁ, constructoﬂ)
Declares thatunctionshould be used as a “reduction” function for objects of type or digses functionshould
return either a string or a tuple. The optiogahstructorparameter, if provided, is a callable object which can
be used to reconstruct the object when called with the tuple of arguments returheattignat pickling time.

3.10 Standard Module shelve

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatitkke module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):
import shelve
d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it
Restrictions:

e The choice of which database package will be used (dmor gdbm) depends on which interface is available.
Therefore it isn't safe to open the database directly udinmg. The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Wix file locking can be used to solve this, but this differs acrossXJversions and
requires knowledge about the database implementation used.

3.11 Standard Module copy

This module provides generic (shallow and deep) copying operations.

Interface summary:

34 Chapter 3. Python Services

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferéncesnto it to
the objects found in the original.

¢ A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g. administrative data structures that should be
shared even between copies.

Python'sdeepcopy() operation avoids these problems by:

e keeping a table of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket,
window, nor array, hor any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods
called__getinitargs () ,_getstate _() and_setstate _() . See the description of modubéckle for
information on these methods.

3.12 Built-in Module marshal

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistency” module. For general persistency and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules gi/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supptotes]:integers, long
integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where it should be understood

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.12. Built-in Module marshal 35

that tuples, lists and dictionaries are only supported as long as the values contained therein are themselves supported;
and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the comaesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout orreturned byopen() or posix.popen()

If the value has (or contains an object that has) an unsupported tyfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read balciatg)

load (file)
Read one value from the open file and return it. If no valid value is read, E&)é¢Error , ValueError or
TypeError . The file must be an open file object.

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, rdig@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.13 Built-in Module imp

This module provides an interface to the mechanisms used to implememigtbe statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code figs (“files”). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix mode type , wheresuffixis a string to be appended to the module name to form the filename to
search formodeis the mode string to pass to the built@pen function to open the file (this can bg
for text files or'rb’ for binary files), andypeis the file type, which has one of the value§_ SOURCE
PY_COMPILED or CEXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedgey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_.BUILTIN), then a frozen moduleP(Y_.FROZEN and on some systems some other places are

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would benatshiie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

36 Chapter 3. Python Services

looked in as well (on the Mac, it looks for a resouré&/(RESOURCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triplde, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, adéscriptionis a triple as
contained in the list returned lget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnetile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses dabove. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In ordePdAfine.,
submoduleM of packageP, usefind _module() andload _module() to find and load packade and then
usefind _module() with thepathargument sett®. __path __. WhenP itself has a dotted name, apply this
recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfiyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported, it
is equivalentto aeload() ! Thenameargument indicates the full module name (including the package name,
if this is a submodule of a package). Tfile argument is an open file, aritenameis the corresponding file
name; these can done and” , respectively, when the module is not being loaded from a file.dEseription
argument is a tuple as returnedfiyd _module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (ispatrror)
is raised.

Important: the caller is responsible for closing tfiee argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (namg
Return a new empty module object callegime This object isnotinserted insys.modules

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code obiject file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKGDIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (séte _frozen()).

The following constant and functions are obsolete; their functionality is available thrdugyh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (namg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it

3.13. Built-in Module imp 37

will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise arimportError ~ exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’freezeutility. See Tools/freeze/’ for now.)

is _builtin (namg
Returnl if there is a built-in module calledamewhich can be initialized again. Retusth if there is a built-in
module callechamewhich cannot be initialized again (sgdét _builtin()). ReturnO if there is no built-in
module callechame

is _frozen (namg
Returnl if there is a frozen module (sémit _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. The@athnameargument points to the byte-compiled code file. Tifeargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (nhame, pathnan[efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeajain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. Tieeneargument is used to construct
the name of the initialization function: an external C function calie@t * namd) ' in the shared library is
called. The optiondfile argment is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file. Note
that if a properly matching byte-compiled file (with suffiyyc’) exists, it will be used instead of parsing the
given source file.

Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thismplementationwouldn’t work in that version, sincénd _module() has been extended and
load _module() has been addedin1.4.)

38 Chapter 3. Python Services

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can’'t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incleelead() function can be
found in the standard modulmee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.14 Built-in Module parser

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

Theparser module was written and documented by Fred L. Drake fdiaKe @acm.org).

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of ugiagsre module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to fAgthon Language Referenc&he parser itself is created from

a grammar specification defined in the fi@ammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
theexpr() orsuite() functions, described below. The AST objects createddyuence2ast() faithfully

simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

Each element of the sequences returnech&tlist() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
‘Include/graminit.n’ and the Python modulsymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the

3.14. Built-in Module parser 39

parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywoifl in anif _stmt , are included in the node tree without any special treatment. For exam-
ple, theif keyword is represented by the tugle 'if’) , wherel is the numeric value associated with JAME

tokens, including variable and function names defined by the user. In an alternate form returned when line number
information is requested, the same token might be representéd &€, 12) , Where thel2 represents the line
number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of ithe keyword above is representative. The various types of
terminal symbols are defined in the C header filelide/token.h’ and the Python moduleken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create teeal’ and’exec’ forms.

expr (string)
Theexpr() function parses the parametgring as if it were an input tocompile(string, 'eval’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

suite (' string)
Thesuite() function parses the paramesdring as if it were an input tocompile(string, 'exec’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

sequence2ast (sequence
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be valid&®edseaError exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passecotopileast() . This may indicate
problems not related to syntax (such dd@amoryError exception), but may also be due to constructs such as
the result of parsindgel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form
(1, 'name’) or as three-element lists of the forfh, 'name’, 56) . If the third element is present,

itis assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols
in the input tree.

tuple2ast (sequence
This is the same function agquence?ast() . This entry point is maintained for backward compatibility.

Converting AST Objects

40 Chapter 3. Python Services

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (asl[, Iine_info])
This function accepts an AST object from the calleastand returns a Python list representing the equivelent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspectioast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which thendkerhis
information is omitted if the flag is false or omitted.

ast2tuple (ast[, Iine_info])
This function accepts an AST object from the calleagtand returns a Python tuple representing the equivelent
parse tree. Other than returning a tuple instead of a list, this function is identast2iost()

If line_infois true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, flename = '<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-eval() function. This function provides the interface to
the compiler, passing the internal parse tree fastto the parser, using the source file name specified by the
filenameparameter. The default value supplied fitsnameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example woulsylodexEr-

ror caused by the parse tree el f(0) : this statement is considered legal within the formal grammar for
Python but is not a legal language construct. BigataxError raised for this condition is actually generated
by the Python byte-compiler normally, which is why it can be raised at this point hyatteer module. Most
causes of compilation failure can be diagnosed programmatically by inspection of the parse tree.

Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source @ghe(Yia or suite()
or from a parse tree visequence2ast()

isexpr (ash
Whenastrepresents aleval’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created lmpmpileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

issuite (asf
This function mirrorssexpr() in that it reports whether an AST object representseaec’ form, com-

monly known as a “suite.” It is not safe to assume that this function is equivelenotoisexpr(asf) ’, as
additional syntactic fragments may be supported in the future.

Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

3.14. Built-in Module parser 41

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built @yntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed teequence2ast() and an explanatory string. Calls $equence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionsompileast() ,expr() ,andsuite() may throw exceptions which are normally thrown

by the parsing and compilation process. These include the built in exceMiem®ryError , OverflowError
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

AST Objects

AST objects returned bgxpr() ,suite() andsequence2ast() have no methods of their own.

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (usicigehe
module) is also supported.

ASTType
The type of the objects returned bypr() ,suite() andsequence2ast()

AST objects have the following methods:

compile ([filename])
Same agompileast(ast filenamg.

isexpr ()

Same assexpr(asf .
issuite ()

Same asssuite(asf) .

tolist ([line_info])
Same asist2list(ast line.info) .

totuple ([Iine_info])
Same asst2tuple(ast, line.info) .

Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulation obthpile() built-in function and the complex example

shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using tharser module to produce an intermediate data structure is equivelent to the
code

42 Chapter 3. Python Services

>>> code = compile(a + 5, 'eval)
>>> g = 5

>>> eval(code)

10

The equivelent operation using tharser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(a + 5
>>> code = parser.compileast(ast)

>>> g = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:
import parser

def load_suite(source_string):
ast = parser.suite(source_string)
code = parser.compileast(ast)
return ast, code

def load_expression(source_string):
ast = parser.expr(source_string)
code = parser.compileast(ast)
return ast, code

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter ingport . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located ibé¢hw/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defingef bgtatement at
column zero of a module, but not a function defined within a branch of an. else construct, though there are

some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large

3.14. Built-in Module parser 43

number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the fileGrammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (Sedofikring.py’.)

""Some documentation.

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> ast = parser.suite(open('docstring.py’).read())
>>> tup = parser.ast2tuple(ast)
>>> pprint.pprint(tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,
(293,
(294,
(295,
(296,
(297,
(298,
(299,
(300, (3, ™"Some documentation.\O12"")MNNNNNNN)),
C)E
“ "),
©, ")

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. Howevesyithigol andtoken modules provide symbolic

names for the node types and dictionaries which map from the integers to the symbolic hames for the node types.

In the output presented above, the outermost tuple contains four elements: the2dbeged three additional tuples.

Node type257 has the symbolic nanfde _input . Each of these inner tuples contains an integer as the first ele-
ment; these integer264, 4, and0, represent the node typssnt , NEWLINE andENDMARKERespectively. Note

that these values may change depending on the version of Python you are using; spmsultgy’ and ‘token.py’ for

details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the momensstifihe node is much more interesting. In
particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described
structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple pattern
matching approach to check any given subtree for equivelence to the general pattern for docstrings. Since the example

44 Chapter 3. Python Services

demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form, allowing
a simple variable representation to[bariable _name’] . A simple recursive function can implement the pattern
matching, returning a boolean and a dictionary of variable name to value mappings. (Seafilgé.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is None:
vars = {}

if type(pattern) is ListType:
vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return O, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (Seesfiteriple.py’.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,
(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, ['docstring’])

MMM
(token.NEWLINE, ")

)

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously

is easy:

3.14. Built-in Module parser 45

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found

1

>>> vars

{'docstring”: ""Some documentation.\012"""}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt node in a code blockfile _input or suite node types). A module consists of a sinflle _input

node, and class and function definitions each contain exactlysoi® node. Classes and functions are readily
identified as subtrees of code block nodes which start (gitlnt, (compound _stmt, (classdef, ... or

(stmt, (compound _stmt, (funcdef, Note that these subtrees cannot be matchedditgh() since

it does not support multiple sibling nodes to match without regard to number. A more elaborate matching function
could be used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it representdlcthiéelnfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

The public classes includ€lassinfo , Functioninfo , and Modulelnfo . All objects provide the meth-
ods get _name() , get _docstring() , get class _names() , and get class _.info() . The Class-
Inffo objects supportget _method _names() and get _method _info() while the other classes provide
get _function _names() andget _function _info()

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base SlaissinfoBase , with the accessors for function

and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of tdef statement to define both types of elements.

Most of the accessor functions are declaredintelnfoBase and do not need to be overriden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuitelnfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of th&uitelnfoBase definition from ‘example.py’:

46 Chapter 3. Python Services

class SuitelnfoBase:
_docstring = "
_name ="

def __init_ (self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:
self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) ==
found, vars = match(DOCSTRING_STMT_PATTERNI1], tree[1])
else:
found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:
self._docstring = eval(vars['docstring’])
discover inner definitions
for node in tree[l:]:
found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:
cstmt = vars['compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]

self._function_info[name] = FunctionIinfo(cstmt)
elif cstmt[0] == symbol.classdef:

name = cstmt[2][1]

self._class_info[name] = Classinfo(cstmt)

After initializing some internal state, the constructor calls teetract _info() method. This method performs

the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):
return x ** vy
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibdynatily, stmt

element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is on§naie _stmt node

in thesimple _stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds usmgtittg) function as described
above, and the value of the docstring is stored as an attribute SuiteinfoBase object.

3.14. Built-in Module parser 47

After docstring extraction, a simple definition discovery algorithm operates ostithie nodes of thesuite node.
The special case of the short form is not tested; since there agmo nodes in the short form, the algorithm will
silently skip the singlsimple _stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The repesentation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those providesuitgline
foBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-level function
can be used to extract the complete set of information from a source file. (Sesdilele.py’.)

def get_docs(fileName):
source = open(fileName).read()
import os
basename = os.path.basename(os.path.splitext(fileName)[0])
import parser
ast = parser.suite(source)
tup = parser.ast2tuple(ast)
return Modulelnfo(tup, basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

See Also:

3.15: Modulesymbol (useful constants representing internal nodes of the parse tree)

3.16: Module token (useful constants representing leaf nodes of the parse tree and functions for testing node
values)

3.15 Standard Module symbol

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to ti@&diemar/Grammar’ in the Python distribution for the
defintions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

3.14: Moduleparser (second example uses this module)

3.16 Standard Module token

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file Grammar/Grammar’ in the Python distribution for the defintions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

48 Chapter 3. Python Services

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok _name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(X)
Return true for terminal token values.

ISNONTERMINAL x)
Return true for non-terminal token values.

ISEOF(X)
Return true ifx is the marker indicating the end of input.

See Also:

3.14: Moduleparser (second example uses this module)

3.17 Standard Module keyword

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (9
Return true ifsis a Python keyword.

3.18 Standard Module code

Thecode module defines operations pertaining to Python code objects.
Thecode module defines the following functions:

compile _command source,[filename{, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This almcisin
always makes the same decision as the real interpreter main loop.

Arguments:sourceis the source strindilenameis the optional filename from which source was read, defaulting
to "<input>" ; andsymbolis the optional grammar start symbol, which should be eitk&rgle" (the
default) or"eval”

Return a code object (the sameaasnpile(source filename symba)) if the command is complete and
valid; returnNone if the command is incomplete; raiSyntaxError if the command is a syntax error.

3.19 Standard Module pprint

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. ConstrudrettyPrinter objects explicitly if you need to adjust the width constraint.

3.17. Standard Module keyword 49

Thepprint module defines one class:
PrettyPrinter (..)

Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tereamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters

may be used to control the formatted representation. The keywordiscena depth andwidth. The amount

of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... '. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuffl:])

>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)

[
'lusr/local/lib/pythonl.5’,
'fusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl1.5/sunos5’,
'lusr/local/lib/pythonl1.5/sharedmodules’,
"fusr/local/lib/pythonl.5/tkinter’],

'fusr/local/lib/pythonl1.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...))N))

ThePrettyPrinter class supports several derivative functions:

pformat (objec)

Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, strean’])

Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteacpdhts statement for in-
specting values. The default parameters for formatting are used.

50

Chapter 3. Python Services

>>> stuff = sys.path[:]

>>> gstuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

”

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation afbject protected against recursive data structures. If the rep-
resentation of object exposes a recursive entry, the recursive reference will be represented as
‘<Recursion on typenamewith id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", 'lusr/localllib/pythonl.5’, '/usr/loca
Illib/pythonl.5/test’, ’/usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation afject This takes into Account the options passed to Eret-
tyPrinter constructor.

pprint (objec)
Print the formatted representationadjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.19. Standard Module pprint 51

3.20 Standard Module dis

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the file Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functiomyfunc :
def myfunc(alist):
return len(alist)
the following command can be used to get the disassembtyyfiinc()

>>> dis.dis(myfunc)

0 SET_LINENO 1
3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)
12 CALL_FUNCTION 1

15 RETURN_VALUE

16 LOAD_CONST 0 (None)

19 RETURN_VALUE

Thedis module defines the following functions:

dis ([bytesourcé)
Disassemble thbytesourcebject.bytesourcean denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

distb ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, Iasti])
Disassembles a code object, indicating the last instructitastf was provided. The output is divided in the
following columns:

1.the current instruction, indicated as> ’,
2.a labelled instruction, indicated with>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, Iasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of a operation names, indexable using the byte code.

52 Chapter 3. Python Services

cmp_op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

hascompare
Sequence of byte codes of boolean operations.

Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STORCODE
Indicates end-of-code to the compiler, not used by the interpreter.

POPTOP
Removes the top-of-stack (TOS) item.

ROTTWO
Swaps the two top-most stack items.

ROTTHREE
Lifts second and third stack item one position up, moves top down to position three.

DURTOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.
UNARYPOSITIVE

ImplementsTOS = +TOS
UNARYNEG

ImplementsTOS = -TOS
UNARYNOT

ImplementsTOS = not TOS.
UNARYCONVERT

ImplementsTOS = ‘TOS'.
UNARYINVERT

ImplementsTOS = "TOS

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY_POWER
ImplementsTOS = TOS1 ** TOS

BINARY_MULTIPLY

3.20. Standard Module dis 53

ImplementsTOS = TOS1 * TOS

BINARY_DIVIDE
ImplementsTOS = TOS1 / TOS

BINARY_.MODULO
ImplementsTOS = TOS1 %TQS

BINARY_ADD
ImplementsTOS = TOS1 + TOS

BINARY_SUBTRACT
ImplementsTOS = TOS1 - TOS

BINARY_SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY_LSHIFT
ImplementsTOS = TOS1 << TOS

BINARY_RSHIFT
ImplementsTOS = TOS1 >> TOS

BINARY_AND

ImplementsTOS = TOS1 and TOS
BINARY_XOR

ImplementsTOS = TOS1 = TOS
BINARY_.OR

ImplementsTOS = TOS1 or TOS
The slice opcodes take up to three parameters.

SLICE+0
ImplementsTOS

SLICE+1
ImplementsTOS

SLICE+2
ImplementsTOS = TOS1[:TOS1] .

SLICE+3
ImplementsTOS = TOS2[TOS1:TOS].

TOS[] .

TOS1[TOS] .

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.
STORESLICE+O

ImplementsTOS[:]] = TOS1 .
STORESLICE+1

ImplementsTOS1[TOS:] = TOS2.
STORESLICE+2

ImplementsTOS1[:TOS] = TOS2.

STORESLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3.

DELETESLICE+O
Implementsddel TOS[]

DELETESLICE+1
Implementsdel TOS1[TOS:]

54 Chapter 3. Python Services

DELETESLICE+2
Implementsdel TOS1[:TOS]

DELETESLICE+3
Implementsdel TOS2[TOS1:.TOS] .

STORESUBSCR
ImplementsTOS1[TOS] = TOS2.
DELETESUBSCR
Implementsdel TOS1[TOS] .
PRINT_EXPR

Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminatedP@BSTACK

PRINT_ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT_NEWLINE

Prints a new line orsys.stdout . This is generated as the last operation of a print statement, unless the
statement ends with a comma.

BREAKLOOP
Terminates a loop due to a break statement.

LOADLOCALS

Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

EXECSTMT
Implementsexec TOS2,TOS1,TOS . The compiler fills missing optional parameters with None.

POPBLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

ENDFINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD_CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORENAME namei
Implementsname = TOS nameiis the index ofnamein the attributeco _names of the code object. The
compiler tries to usSSTORELOCALor STOREGLOBALIf possible.

DELETENAME namei
Implementsgdel name , wherenameiis the index intaco _names attribute of the code object.

UNPACKTUPLE count
Unpacks TOS int@ountindividual values, which are put onto the stack right-to-left.

UNPACKLIST count
Unpacks TOS int@ountindividual values.

STOREATTR namei

3.20. Standard Module dis 55

ImplementsTOS.name = TOSI, wherenameiis the index of name igo _names.

DELETEATTR namei
Implementdel TOS.name , usingnameias index intaco _names.

STOREGLOBAL namei
Works asSTORENAME but stores the name as a global.

DELETEGLOBAL namei
Works asDELETENAMEDbut deletes a global name.

LOADCONST consti
Pushesc¢o _consts[const] ' onto the stack.

LOADNAME namei
Pushes the value associated with :names[name] ' onto the stack.

BUILD_TUPLE count
Creates a tuple consumirguntitems from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST count
Works asBUILD _TUPLE but creates a list.

BUILD _MAP zero
Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOADATTR namei
Replaces TOS witlgetattr(TOS,co _names[name] .

COMPARBP opname
Performs a boolean operation. The operation name can be fownepirop[opnamé.

IMPORTNAME namei
Imports the moduleo _names[name] . The module object is pushed onto the stack. The current name space
is not affected: for a proper import statement, a subseddi€OREFAST instruction modifies the name space.

IMPORT.FROM namei
Imports the attributeo _-names[name] . The module to import from is found in TOS and left there.

JUMPFORWARDdEelta
Increments byte code counter bglta

JUMPIF _-TRUE delta
If TOS is true, increment the byte code counterdgjta TOS is left on the stack.

JUMPRIF _FALSE delta
If TOS is false, increment the byte code counteidejta TOS is not changed.

JUMPABSOLUTE target
Set byte code counter target

FORLOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code countdeltyy Otherwise, push the sequence, the incremented
counter, and the current item onto the stack.

LOADGLOBAL namei
Loads the global namezb _names[hame] onto the stack.

SETUPLOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with algita of
bytes.

SETUREXCEPT delta

56 Chapter 3. Python Services

Pushes a try block from a try-except clause onto the block sthtapoints to the first except block.

SETUPFINALLY delta
Pushes a try block from a try-except clause onto the block sthdtapoints to the finally block.

LOADFAST var_num
Pushes a reference to the local_.varnames[var_nuni onto the stack.

STOREFAST var.num
Stores TOS into the locab _varnames[var_nuni .

DELETEFAST var_num
Deletes locato _varnames[var_nun .

SET.LINE _NO lineno
Sets the current line number lineno.

RAISE_VARARGS argc
Raises an exceptiorargc indicates the number of parameters to the raise statement, ranging from 1 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL.FUNCTION argc
Calls a function. The low byte @frgcindicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKEFUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to havargc default parameters, which are found below TOS.

BUILD _SLICE argc
Pushes a slice object on the staekgc must be 2 or 3. If it is 2slice(TOS1, TOS) is pushed; ifitis 3,
slice(TOS2, TOS1, TOS) s pushed. See thaice() built-in function.

3.21 Standard Module site

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsifsipesfix and
sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses firstlib/pythonversiorisite-packages’ and then lib/site-python’ (on UNIX). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgdpath , and also inspected for path
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added tgys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped.

For example, supposys.prefix andsys.exec _prefix are setto/usr/local’. The Python 1.5.1 library is then
installed in 7usr/local/lib/pythonl1.5" (note that only the first three characterssyk.version are used to form the
path name). Suppose this has a subdirectasy/local/lib/pythonl.5/site-packages’ with three subsubdirectoriedpb’,
‘bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains the following:

3.21. Standard Module site 57

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedsys.path , in this order:

Jusr/localllib/python1.5/site-packages/bar
/usr/local/lib/pythonl.5/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; theat’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module rsif@egstomize , which can perform
arbitrary site-specific customizations. If this import fails withlarportError ~ exception, it is silently ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.22 Standard Module user

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file .pythonrc.py’ in the user's home directory and if it can be opened, exececutes it
(usingexecfile()) in its own (i.e. the moduleser 's) global namespace. Errors during this phase are not caught;
that's up to the program that imports theer module, if it wishes. The home directory is assumed to be named by
the $HOME environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpjthonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabter.spam _verbose , as follows:

58 Chapter 3. Python Services

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaudlimport this module; a user can easily break into a a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoutdtimport this module; it may interfere with the operation of the importing program.
See Also:

3.21: Modulesite (site-wide customization mechanism)

3.23 Built-in Module __builtin

This module provides direct access to all ‘built-in’ identifiers of Python; e.builtin ~ __.open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.24 Built-in Module _main __

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input or from a script file.

3.23. Built-in Module __builtin __ 59

60

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string — Common string operations.

re — New Perl-style regular expression search and match operations.
regex — Regular expression search and match operations.

regsub — Substitution and splitting operations that use regular expressions.
struct — Interpret strings as packed binary data.

Stringl0 — Read and write strings as if they were files.

cStringlO — Faster version oBtringlO , but not subclassable.

4.1 Standard Module string

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:
digits
The string0123456789’

hexdigits
The string'0123456789abcdefABCDEF’

letters
The concatenation of the strinjavercase() anduppercase() described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopqgrstuvwxyz’ . Do not change its definition — the effect on the routinpper()
andswapcase() is undefined.

octdigits
The string'01234567"

uppercase

A string containing all the characters that are considered uppercase letters. On most systems this is the string
'ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifmser()
andswapcase() is undefined.

61

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

The functions defined in this module are:

atof (s)
Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

atoi (s[, base])
Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{* or ‘-). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sig@x’ ‘or ‘0X' means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leadingOx’ or ‘0X' is always accepted. Note that when invoked withbaseor
with baseset to 10, this behaves identical to the built-in functiotf) when passed a string. (Also note: for
a more flexible interpretation of numeric literals, use the built-in functieal() .)

atol (s[, basé)
Convert strings to a long integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign<{’ or ‘- ’). The baseargument has the same meaning asafor() . Atrailing ‘I "or ‘L’
is not allowed, except if the base is 0. Note that when invoked withas¢or with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize (word)
Capitalize the first character of the argument.

capwords (9
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s, tabsizg
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences.

find (s, sul{, start{,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained ir§[start end .
Return-1 on failure. Defaults fostart andendand interpretation of negative values is the same as for slices.

rfind (s, suk[, starl{, end]])
Like find() but find the highest index.
index (s, suki, starl{, end]])
Like find() but raisevalueError when the substring is not found.
rindex (s, suli, start[, end]])
Like rfind() but raiseValueError ~ when the substring is not found.
count (s, suk{, starl[, end]])
Return the number of (non-overlapping) occurrences of substtib@n string9[start end . Defaults forstart
andendand interpretation of negative values is the same as for slices.

lower (s)
Convert letters to lower case.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each

62 Chapter 4. String Services

character iffrominto the character at the same positiondnfrom andto must have the same length.

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more items than the number of non-overlapping occurrences of the separator in the string.
The optional third argumembaxsplitdefaults to 0. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahaxestlit-1

elements).

splitfields (s[, se;{, maxsplit]])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrenceepfThe default value fosepis a single
space character. It is always true thgtting.join(string.split(s, sep, sep’equalss.

joinfields (Words[, sep])
This function behaves identical join() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.)

Istrip (9
Remove leading whitespace from the string

rstrip (9
Remove trailing whitespace from the striag

strip (9
Remove leading and trailing whitespace from the stang

swapcase (9)
Convert lower case letters to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters fromthat are indeletechargif present), and then translate the characters usibtp
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper ()
Convert letters to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stemgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill - (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firstaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldeverimport the latter module directly. Whestring discovers thastrop exists,

it transparently replaces parts of itself with the implementation fstnop . After initialization, there is1o0 overhead

in usingstring instead ofstrop

4.1. Standard Module string 63

4.2 Built-in Module re

This module provides regular expression matching operations similar to those found in Perl. It's 8-bit clean: the strings
being processed may contain both null bytes and characters whose high bit is set. Regular expression patterns may not
contain null bytes, but they may contain characters with the high bit setteTimeodule is always available.

Regular expressions use the backslash charas&tgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Write as the pattern

string, because the regular expression musi\bé, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ™. So r'\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressiraidiB are both regular expressions,
thenABis also an regular expression. If a stripghatches A and another striggnatches B, the stringg will match

AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Most ordinary charactes,‘ Bkeor

‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast . (In the rest of this section, we’'ll write RE’s itthis special style I

usually without quotes, and strings to be matcliedsingle quotes’)

Some characters, lik¢ *or * (', are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline. IGAALLflag has been
specified, this matches any character including a newline.

>

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string, and MULTILINE mode also matches before a newliffeo ; matches
both 'foo’ and 'foobar’, while the regular expressiioo$; matches only 'foo’.

‘*' Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* ; will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+' Causes the resulting RE to match 1 or more repetitions of the precedingtREwill match 'a’ followed
by any non-zero number of 'b’s; it will not match just 'a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedindgBE.will match either 'a’ or
‘ab’.

64 Chapter 4. String Services

*?,+?,7?7?

{m, n}

{m, n}?

(..)

..)

(?iLmsx)

(?:...)

The *’, *+', and '?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn’'t desired; if the RE.*> | is matched againstH1>title</H1>’ , it will match the
entire string, and not juskH1>" . Adding ‘?’ after the qualifier makes it perform the matchrion-
greedyor minimal fashion; affew characters as possible will be matched. Usiig ;in the previous
expression will match onRgH1>" .

Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examfd€3,5} ; will match from 3 to 5 &’ characters. Omittingn
is the same as specifying 0 for the lower bound; omittirgpecifies an infinite upper bound.

Causes the resulting RE to match froamto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strinpaaaaa’ , 'a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefs Jik®'; and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For exampl§akm$] ; will match any of the charactera”, ‘k’, ‘m, or ‘$’; Ta-z] ;will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes subl as

or\S (defined below) are also acceptable inside a range. If you want to inclydeoaa ‘-’ inside a

set, precede it with a backslash, or place it as the first character. The ddkterwill match'] , for
example.

You can match the characters not within a rangedayplementinghe set. This is indicated by including
a "’ as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] ;will match any character exceg"

A|B, where A and B can be arbitrary RESs, creates a regular expression that will match either A or B.
This can be used inside groups (see below) as well. To match a literalse\|), or enclose it inside a
character class, as iff] .

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litefats“’) ’, use\(;or

\) , or enclose them inside a character cld¢k:[)] .

This is an extension notation (2'‘following a ‘(' is not meaningful otherwise). The first character after

the ?’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group{?P< name-...) | is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the sét’; ‘L’, ‘m, ‘s’, *x’.) The group matches the empty string; the letters
set the corresponding flage(l ,re.L ,re.M ,re.S ,re.X) for the entire regular expression. This is
useful if you wish to include the flags as part of the regular expression, instead of paBamgrgument

to thecompile() function.

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the gramotbe retrieved after performing a match or referenced
later in the pattern.

4.2. Built-in Module re 65

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-

bolic group hamename Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named 'id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\Ww*) ,, the group can be referenced by its name
in arguments to methods of match objects, sucmagoup(’id’) or m.end(’id") , and also by
name in pattern text (e.q(?P=id)) and replacement text (e.@g<id>).

(?P=namg Matches whatever text was matched by the earlier group naiaed

(?#..)
(?=..)
(21...)

A comment; the contents of the parentheses are simply ignored.

Matchesifl... jmatches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) ;will match’lsaac ' only if it's followed by ’Asimov’

Matches if ... | doesn't match next. This is a negative lookahead assertion. For example,
Isaac (?!Asimov) willmatch’lsaac * only if it's notfollowed by’AsimoVv’

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exariplenatches the characte$’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B
\d
\D
\s
\S

\w

\W

\Z
\

example/(.+) \1 ;matchesthe the’ or’55 55 | butnot'the end” (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber Inside the [' and ‘] ’ of a character class, all numeric escapes are
treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a hon-alphanumeric character.
Inside a character rang#h | represents the backspace character, for compatibility with Python’s string
literals.

Matches the empty string, but only when irnst at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the e8] ..

Matches any non-digit character; this is equivalent to thg€e8] .

Matches any whitespace character; this is equivalent to the Sat\r\fiv] 5
Matches any non-whitespace character; this is equivalent to ti{g $8nh\r\fiv] .

When theLOCALEflag is not specified, matches any alphanumeric character; this is equivalent to the set
Ta-zA-Z0-9], With LOCALE it will match the sef[0-9 _], plus whatever characters are defined as
letters for the current locale.

When theLOCALEflag is not specified, matches any non-alphanumeric character; this is equivalent to
the set["a-zA-Z0-9], With LOCALE it will match any character not in the s§2-9], and not
defined as a letter for the current locale.

Matches only at the end of the string.

Matches a literal backslash.

66

Chapter 4. String Services

Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to
result = re.match(pat, str)
but the version usingompile() is more efficient when the expression will be used several times in a single

program.

|

IGNORECASE
Perform case-insensitive matching; expressions ikezZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make \w, \W, \b ;, \B , dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defautlhatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S

DOTALL
Make the ! ' special character match any character at all, including a newline; without this .flagill match
anythingexcepta newline.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line egsmaitieea *

in a character class or preceded by an unescaped backslash, all characters from the leftm&5sttsocigh

the end of the line are ignored.

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

match (pattern, string{, flags])
If zero or more characters at the beginningwing match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

4.2. Built-in Module re 67

search (pattern, string{, flags])

split

sub (

subn

error

Scan througlstring looking for a location where the regular expresspatternproduces a match, and return a
corresponding/iatchObject instance. Returhlone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

(pattern, string,[, maxsplit = 0])
Split string by the occurrences gdattern If capturing parentheses are used in pattern, then occurrences of
patterns or subpatterns are also returnethdksplitis nonzero, at moshaxsplitsplits occur, and the remainder
of the string is returned as the final element of the list. (Incompatibility note: in the original Python 1.5 release,
maxsplitwas ignored. This has been fixed in later releases.)

>>> re.split([\W]+’, 'Words, words, words.’)
[Words’, 'words’, 'words’, "]

>>> re.split((\W]+)’, 'Words, words, words.’)
[Words’, ', ’, 'words’, ', ', 'words’, ", "]

>>> re.splitC[\W]+’, 'Words, words, words.’, 1)
[Words’, 'words, words.’]

This function combines and extends the functionality of theetub.split() andregsub.splitx()

pattern, repl, strini, count = 0])

Return the string obtained by replacing the leftmost non-overlapping occurrenpastainin string by the
replacementepl. If the pattern isn’t foundstringis returned unchangedepl can be a string or a function; if a
function, it is called for every non-overlapping occurancgattern The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == '-: return '’
else: return -
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use
a regex object, or use embedded modifiers in a pattern; sudh(“(?i)b+", "x", "bbbb BBBB") '
returns’x x’

The optional argumertgountis the maximum number of pattern occurrences to be replamaitmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous match, so
‘sub(’x*', ’-’, 'abc’) " returns’-a-b-c-’

If replis a string, any backslash escapes in it are processed. That'igs tonverted to a single newline charac-

ter, \r ’is converted to a linefeed, and so forth. Unknown escapes sudh aare left alone. Backreferences,

such as\6 ’, are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described &ipaveme> ' will use the substring
matched by the group namedame’, as defined by th§?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ’ is therefore equivalent td2 ’, but isn’t ambiguous in a replacement
such as\g<2>0 . ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactel0".

(pattern, repl, strin&, count = O])
Perform the same operationsish() , but return a tupl¢ newstring, numberof subsmadg .

Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

68

Chapter 4. String Services

Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos][, endpoﬁ)
If zero or more characters at the beginningstifing match this regular expression, return a corresponding
MatchObject instance. Returbone if the string does not match the pattern; note that this is different from
a zero-length match.

The optional second paramet@sgives an index in the string where the search is to start; it defaults The
‘"’ pattern character will not match at the index where the search is to start.

The optional parametamdpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters fromsto endposwill be searched for a match.

search (string[, pos][, endpoi)
Scan througtstring looking for a location where this regular expression produces a match. Rédmenif no
position in the string matches the pattern; note that this is different from finding a zero-length match at some
point in the string.

The optionaposandendposparameters have the same meaning as fomaeh() method.

split (string,[, maxsplit = O])
Identical to thesplit() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compil€df oo flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(®l< id>) | to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

Match Objects

MatchObject instances support the following methods and attributes:

group ([groupl, group2, ..])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there

are multiple arguments, the result is a tuple with one item per argument. Without argugrentsl defaults

to zero (i.e. the whole match is returned). IgeupN argument is zero, the corresponding return value is

the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result illone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses tfeP< name-...) ;syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattetex&ror
exception is raised.

A moderately complicated example:

4.2. Built-in Module re 69

m = re.match(r'(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchn.group(1) is'3’ , asism.group(’int’) ,andm.group(2) is’'14’

groups ()
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
Groups that did not participate in the match have valuddafe. (Incompatibility note: in the original Python
1.5 release, if the tuple was one element long, a string would be returned instead. In later versions, a singleton
tuple is returned in such cases.)

start ([group])

end (| group])
Return the indices of the start and end of the substring matchegtoly, group defaults to zero (meaning the
whole matched substring). Retudone if groupexists but did not contribute to the match. For a match olject
and a groum that did contribute to the match, the substring matched by ggdeguivalent tan.group(g))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equal m.end(group) if group matched a null string. For example, af-
ter m = re.search('b(c?)’, 'cha’) , m.start(0) is 1, mend(0) is 2, m.start(1) and
m.end(1) are both 2, andh.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group, m.end(group) . Note that ifgroupdid not
contribute to the match, this (lone, None) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() function. This is the index into the string at
which the regex engine started looking for a match.

endpos
The value ofendposwhich was passed to tteearch() or match() function. This is the index into the
string beyond which the regex engine will not go.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() or search()

See Also:

Jeffrey Friedl,Mastering Regular Expression®’Reilly. The Python material in this book dates from beforerge
module, but it covers writing good regular expression patterns in great detail.

4.3 Built-in Module regex

This module provides regular expression matching operations similar to those found in Emacs.

Obsolescence noteThis module is obsolete as of Python version 1.5; it is still being maintained because much
existing code still uses it. All new code in need of regular expressions should use tihe meadule, which supports

the more powerful and regular Perl-style regular expressions. Existing code should be converted. The standard library
modulereconvert helps in convertingegex style regular expressionste style regular expressions. (For more
conversion help, see Andrew Kuchling'segex-to-re HOWTQO" at http://www.python.org/doc/howto/regex-to-

rel.)

By default the patterns are Emacs-style regular expressions (with one exception). There is a way to change the syntax
to match that of several well-knownnNux utilities. The exception is that Emacdas*’ pattern is not supported, since

70 Chapter 4. String Services

the original implementation references the Emacs syntax tables.
This module is 8-bit clean: both patterns and strings may contain null bytes and characters whose high bit is set.

Please note: There is a little-known fact about Python string literals which means that you don't usually have to
worry about doubling backslashes, even though they are used to escape special characters in string literals as well as
in regular expressions. This is because Python doesn’t remove backslashes from string literals if they are followed
by an unrecognized escape charactdowever if you want to include a literabackslashin a regular expression
represented as a string literal, you havegt@mdrupleit or enclose it in a singleton character class. E.g. to extract

IATEX “\section{ ...}’ headers from a document, you can use this patt@ieection{\(.*\)}’ . Another
exceptionithe escape sequede ' is significant in string literals (where it means the ASCII bell character) as well as

in Emacs regular expressions (where it stands for a word boundary), so in order to search for a word boundary, you
should use the pattef\b’ . Similarly, a backslash followed by a digit 0-7 should be doubled to avoid interpretation

as an octal escape.

Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expresshaansB are both regular expressions, then

ABis also an regular expression. If a stripghatches A and another strimgnatches B, the stringgwill match AB.

Thus, complex expressions can easily be constructed from simpler ones like the primitives described here. For details
of the theory and implementation of regular expressions, consult almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordinary charactéy's, Bkedr '0’, are
the simplest regular expressions; they simply match themselves. You can concatenate ordinary chardagtrs, so’
matches the characters 'last’. (In the rest of this section, we’ll write RElsi$n special font , usually without
guotes, and strings to be matched ’in single quotes’.)

Special characters either stand for classes of ordinary characters, or affect how the regular expressions around them
are interpreted.

The special characters are:

(Dot.) Matches any character except a newline.
" (Caret.) Matches the start of the string.

$ Matches the end of the stringoo matches both 'foo’ and 'foobar’, while the regular expressitoo$ ’
matches only 'foo’.

* Causes the resulting RE to match 0 or more repetitions of the precedingbREwill match 'a’, 'ab’, or 'a’
followed by any number of 'b’s.

+ Causes the resulting RE to match 1 or more repetitions of the precedingbRBvill match 'a’ followed by
any non-zero number of 'b’s; it will not match just 'a’.

? Causes the resulting RE to match 0 or 1 repetitions of the precedingtR®Ewill match either 'a’ or 'ab’.

\ Either escapes special characters (permitting you to match characters like *?+&$’), or signals a special se-
quence; special sequences are discussed below. Remember that Python also uses the backslash as an escaps
sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and subse-
guent character are included in the resulting string. However, if Python would recognize the resulting sequence,
the backslash should be repeated twice.

4.3. Built-in Module regex 71

[Used to indicate a set of characters. Characters can be listed individually, or a range is indicated by giving two
characters and separating them by a '-’. Special characters are not active inside sets. For gatamtjle will
match any of the characters 'a’, 'k’, 'm’, or '$[a-z] will match any lowercase letter.

If you want to include § inside a set, it must be the first character of the set; to includeptace it as the first
or last character.

Charactersot within a range can be matched by including as the first character of the setplsewhere will
simply match the™’ character.

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exandlejatches the character '$’. Ones where the
backslash should be doubled in string literals are indicated.

\| A\IB ,where A and B can be arbitrary RES, creates a regular expression that will match either A or B. This can
be used inside groups (see below) as well.

\(\) Indicates the start and end of a group; the contents of a group can be matched later in the string[d48i the
special sequence, described next.

\1, ... \W\7,\8, \9
Matches the contents of the group of the same number. For exaifiplg, \\1 matches 'the the’ or '55
55, but not 'the end’ (note the space after the group). This special sequence can only be used to match one of
the first 9 groups; groups with higher numbers can be matched usiing tbequence\8 and\9 don't need a
double backslash because they are not octal digits.)

\\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
\B Matches the empty string, but when itrist at the beginning or end of a word.

\v Must be followed by a two digit decimal number, and matches the contents of the group of the same number.
The group number must be between 1 and 99, inclusive.

\w Matches any alphanumeric character; this is equivalent to tHa2#t-Z0-9]
\W Matches any non-alphanumeric character; this is equivalent to tifi@se-Z0-9]

\< Matches the empty string, but only at the beginning of a word. A word is defined as a sequence of alphanumeric
characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.

\> Matches the empty string, but only at the end of a word.
\W Matches a literal backslash.
\' Like ", this only matches at the start of the string.

\\' Like $, this only matches at the end of the string.

Module Contents

The module defines these functions, and an exception:

match (pattern, string
Return how many characters at the beginningtohg match the regular expressipattern Return-1 if the
string does not match the pattern (this is different from a zero-length match!).

72 Chapter 4. String Services

search (pattern, string
Return the first position istring that matches the regular expresspattern Return-1 if no position in the
string matches the pattern (this is different from a zero-length match anywhere!).

compile (patterr{, translate])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below. The optional argunteanslate if present, must
be a 256-character string indicating how characters (both of the pattern and of the strings to be matched) are
translated before comparing them; thitl element of the string gives the translation for the characteragthi
codei. This can be used to implement case-insensitive matching; seasbéold data item below.

The sequence

prog = regex.compile(pat)
result = prog.match(str)

is equivalent to
result = regex.match(pat, str)

but the version usingompile() is more efficient when multiple regular expressions are used concurrently in a
single program. (The compiled version of the last pattern passedéx.match() or regex.search()

is cached, so programs that use only a single regular expression at a time needn’t worry about compiling regular
expressions.)

set _syntax (flag9
Set the syntax to be used by future callsctimpile() , match() andsearch() . (Already compiled
expression objects are not affected.) The argument is an integer which is the OR of several flag bits. The
return value is the previous value of the syntax flags. Names for the flags are defined in the standard module
regex _syntax ;read the file fegex_syntax.py’ for more information.

get syntax ()
Returns the current value of the syntax flags as an integer.

symcomp(patterr{, translate])
This is like compile() , but supports symbolic group names: if a parenthesis-enclosed group begins with
a group name in angular brackets, e{<id>[a-z][a-z0-9]*\)’ , the group can be referenced by
its name in arguments to tlgroup() method of the resulting compiled regular expression object, like this:
p.group(id’) . Group names may contain alphanumeric character$ andnly.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. (It is never an error if a
string contains no match for a pattern.)

casefold
A string suitable to pass as tlianslateargument tocompile() to map all upper case characters to their
lowercase equivalents.

Compiled regular expression objects support these methods:

match (string[, pos])
Return how many characters at the beginningtdhg match the compiled regular expression. Retdrnif the
string does not match the pattern (this is different from a zero-length match!).

The optional second parametpns gives an index in the string where the search is to start; it defaulls to
This is not completely equivalent to slicing the string; the pattern character matches at the real begin of the
string and at positions just after a newline, not necessarily at the index where the search is to start.

search (string[, pos])
Return the first position istring that matches the regular expresspatitern . Return-1 if no position in the

4.3. Built-in Module regex 73

string matches the pattern (this is different from a zero-length match anywhere!).
The optional second parameter has the same meaning as foatbk() method.

group (index, index, .).
This method is only valid when the last call to theatch() orsearch() method found a match. It returns
one or more groups of the match. If there is a sirigtexargument, the result is a single string; if there are
multiple arguments, the result is a tuple with one item per argument. lhtltexis zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the
corresponding parenthesized group (using the default syntax, groups are parenthesiz¢d asuty). If no
such group exists, the corresponding resuNdase.

If the regular expression was compiledfymcomp() instead ofcompile() , theindexarguments may also
be strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs
When the last call to thenatch() or search() method found a match, this is a tuple of pairs of indexes
corresponding to the beginning and end of all parenthesized groups in the pattern. Indices are relative to the
string argument passed toatch() or search() . The 0-th tuple gives the beginning and end or the whole
pattern. When the last match or search failed, thidage.

last
When the last call to thmatch() orsearch() method found a match, this is the string argument passed to
that method. When the last match or search failed, tHiise.

translate
This is the value of thé&ranslateargument taegex.compile() that created this regular expression object.
If the translateargument was omitted in thregex.compile() call, this isNone.

givenpat
The regular expression pattern as passamtopile() or symcomp() .

realpat
The regular expression after stripping the group names for regular expressions compilsgmétimp() .
Same agjivenpat otherwise.

groupindex

A dictionary giving the mapping from symbolic group names to numerical group indexes for regular expressions
compiled withsymcomp() . None otherwise.

4.4 Standard Module regsub

This module defines a number of functions useful for working with regular expressions (see built-in negge).
Warning: these functions are not thread-safe.

Obsolescence noteThis module is obsolete as of Python version 1.5; it is still being maintained because much
existing code still uses it. All new code in need of regular expressions should use the meadule, which supports

the more powerful and regular Perl-style regular expressions. Existing code should be converted. The standard library
modulereconvert helps in convertingegex style regular expressionste style regular expressions. (For more
conversion help, see Andrew Kuchling's “regex-to-re HOWTO@t://www.python.org/doc/howto/regex-to-re/.)

sub (pat, repl, stj
Replace the first occurrence of pattgatin stringstr by replacementepl. If the pattern isn’t found, the string is
returned unchanged. The pattern may be a string or an already compiled pattern. The replacement may contain
references\'digit’ to subpatterns and escaped backslashes.

gsub (pat, repl, st)

74 Chapter 4. String Services

Replace all (non-overlapping) occurrences of patpatin stringstr by replacementepl. The same rules as for
sub() apply. Empty matches for the pattern are replaced only when not adjacent to a previous match, so e.g.
gsub(”, -, 'abc’) returns'’-a-b-c-’

split (str, pa{, maxsplit])
Split the stringstr in fields separated by delimiters matching the patgat and return a list containing the
fields. Only non-empty matches for the pattern are considered, soseldg(a:b’, :*) returns
[a’, 'bT] and split('abc’,) returns['abc’l] . The maxsplitdefaults to 0. If it is nonzero,
only maxsplithumber of splits occur, and the remainder of the string is returned as the final element of the list.

splitx (str, pal[, maxsplit])
Split the stringstr in fields separated by delimiters matching the patgat and return a list containing the
fields as well as the separators. For examgdditx('a:::b’, ":*) returnsf'a’, ', 'b’]
Otherwise, this function behaves the samepi

capwords (s[, pat])
Capitalize words separated by optional patigsth The default pattern uses any characters except letters, digits
and underscores as word delimiters. Capitalization is done by changing the first character of each word to upper
case.

clear _cache ()
The regsub module maintains a cache of compiled regular expressions, keyed on the regular expression string
and the syntax of the regex module at the time the expression was compiled. This function clears that cache.

4.5 Built-in Module struct

This module performs conversions between Python values and C structs represented as Python strinfmniatises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packeddack(fmt, ...))according to the given format. The resultis a tuple
even if it contains exactly one item. The string must contain exactly the amount of data required by the format
(i.e.len(string) must equatalcsize(fmtf)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

4.5. Built-in Module struct 75

Format | C Type Python
‘X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char| integer
‘h’ short integer
‘H unsigned short integer
g int integer
1 unsigned int | integer
1 long integer
‘L unsigned long | integer
f float float
d’ double float
‘s’ char[] string

A format character may be preceded by an integral repeat count; e.g. the formatstringneans exactly the same
as’hhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the’'s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.g10s’ means a single 10-byte string, whilDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&se, means a single, empty string (whilg&c’ means

0 characters).

Forthe’l’ and’L’ format characters, the return value is a Python long integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
‘= native standard
‘<’ little-endian standard
>’ big-endian standard
‘e network (= big-endian) standard

If the first character is not one of the$@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes); short
is 2 bytes; int and long are 4 bytes. Float and double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betweeé@’ and’=" : both use native byte order, but the size and alignment of the latter is
standardized.

The form’!" is available for those poor souls who claim they can’t remember whether network byte order is big-
endian or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate chdiceoof
1>)

76 Chapter 4. String Services

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
'\000\001\000\002\000\000\000\003'

>>> unpack(hhl’, \000\001\000\002\000\000\000\003")

1, 2, 3)

>>> calcsize('hhl’)
8

>>>

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero, e.g. the foriitladl’ specifies two pad bytes at the end, assuming longs

are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See Also:

5.5: Modulearray (packed binary storage of homogeneous data)

4.6 Standard Module StringlO

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresnory
fileg. See the description on file objects for operations.

StringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, th&tringlO will start empty.

The following methods o8tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeShianglO object’sclose() method is called.

close ()
Free the memory buffer.

4.7 Built-in Module cStringlO

The modulecStringlO provides an interface similar to that of ti&ringlO module. Heavy use o&trin-
glO.StringlO objects can be made more efficient by using the funcisinglO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiS&inglO module in that case.

4.6. Standard Module StringlO 77

78

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

math — Mathematical functionssfn() etc.).

cmath — Mathematical functions for complex numbers.

whrandom — Floating point pseudo-random number generator.

random — Generate pseudo-random numbers with various common distributions.
array — Efficient arrays of uniformly typed numeric values.

fileinput — Perl-like iteration over lines from multiple input streams, with “save in place” capability.

5.1 Built-in Module math

This module is always available. It provides access to the mathematical functions defined by the C standard. They are:

acos (x)

Return the arc cosine af
asin (x)

Return the arc sine of

atan (x)
Return the arc tangent af

atan2 (x,Y)

Returnatan(x / vy).
ceil (X

Return the ceiling ok as a real.
cos (x)

Return the cosine of.

cosh (x)
Return the hyperbolic cosine &f

exp (X)
Returne** x.

fabs (x)
Return the absolute value of the real

79

floor (x)
Return the floor ok as a real.

fmod (x,y)
Returnx % y.

frexp (X
Return the matissa and exponentfoifhe mantissa is positive.
hypot (x,Y)
Return the Euclidean distancgrt(x*x + y*y).
Idexp (X, i)
Returnx * (2** i).
log (X)
Return the natural logarithm of
log10 (x)
Return the base-10 logarithm xf
modf (X)
Return the fractional and integer partsxoBoth results carry the sign &f The integer part is returned as a real.
pow(X, y)
Returnx** y.
sin (X)
Return the sine af.
sinh (x)
Return the hyperbolic sine af
sqrt (x)
Return the square root &f
tan (X)
Return the tangent of
tanh (X)

Return the hyperbolic tangent rf

Note thatfrexp() = andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi

The mathematical constapi.
e

The mathematical constaat
See Also:

5.2: Modulecmath (Complex number versions of many of these functions.)

5.2 Built-in Module cmath

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

80 Chapter 5. Miscellaneous Services

acos (X)
Return the arc cosine aof

acosh (x)

Return the hyperbolic arc cosine xf
asin (x)

Return the arc sine of
asinh (x)

Return the hyperbolic arc sine »f
atan (x)

Return the arc tangent af
atanh (x)

Return the hyperbolic arc tangentof
cos (x)

Return the cosine of.
cosh (x)

Return the hyperbolic cosine &f
exp (X)

Return the exponential valug™* x.
log (x)

Return the natural logarithm of
log10 (X)

Return the base-10 logarithm xf
sin (X)

Return the sine of.
sinh (X)

Return the hyperbolic sine af
sqrt (X)

Return the square root a&f
tan (X)

Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

The module also defines two mathematical constants:

pi
The mathematical constapit, as a real.

The mathematical constagtas a real.

Note that the selection of functions is similar, but not identical, to that in mothalés . The reason for having two
modules is, that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.2. Built-in Module cmath 81

5.3 Standard Module whrandom

This module implements a Wichmann-Hill pseudo-random number generator class that is alsontaearetbm .
Instances of thevhrandom class have the following methods:

choice (seq
Chooses a random element from the non-empty sequsatand returns it.

randint (a, b)
Returns a random integ8f such thata<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X, Y, 2
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numkersuch that<=N<b.

When imported, thevhrandom module also creates an instance of Wwlgandom class, and makes the methods of
that instance available at the module level. Therefore one can write Bitrerwhrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

See Also:
5.4: Modulerandom (generators for various random distributions)

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190

5.4 Standard Module random

This module implements pseudo-random number generators for various distributions: on the real line, there are func-
tions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta distributions. For generating
distribution of angles, the circular uniform and von Mises distributions are available.

The module exports the following functions, which are exactly equivalent to those iwlhendom module:
choice() ,randint() ,random() anduniform() . See the documentation for tehrandom module for
these functions.

The following functions specific to theandom module are also defined, and all return real values. Function pa-
rameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical
practice; most of these equations can be found in any statistics text.

betavariate (alpha, beta
Beta distribution. Conditions on the parametersapha >- 1 andbeta > -1 . Returned values will range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distributionmeanis the mean angle, araic is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range betweenReamthed values will
range betweemean - arc/2 andmean + arc/2 .

expovariate (lambd

82 Chapter 5. Miscellaneous Services

Exponential distributionlambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values will range from 0 to positive infinity.

gammd alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parametersafpka > -1 andbeta > 0.

gauss (mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatisigma mucan have any value, arsijmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 and giappdis the concentration parameter, which
must be greater then or equal to zerokdppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 for.

paretovariate (alphg)
Pareto distributionalphais the shape parameter.

weibullvariate (‘alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

See Also:

5.3: Modulewhrandom (the standard Python random number generator)

5.5 Built-in Module array

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

Type code | C Type Minimum size in bytes
'c’ character 1
b’ signed integer 1
‘B’ unsigned intege 1
'n signed integer 2
'H’ unsigned intege 2
i) signed integer 2
T unsigned intege 2
T signed integer 4
v unsigned intege 4
' floating point 4
d’ floating point 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed throughehesizeattribute. The values stored fir and’l’ items will

be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the full
range of C’s unsigned (long) integers.

The module defines the following function and type object:

5.5. Built-in Module array 83

array (typecodé, initializer])
Return a new array whose items are restrictedyipecode and initialized from the optionahitializer value,
which must be a list or a string. The list or string is passed to the new afraxitist() or fromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returneddogy()

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tupl€ address length giving the current memory address and the length in bytes of the buffer used
to hold array’s contents. This is occasionally useful when working with low-level (and inherently unsafe) 1/0
interfaces that require memory addresses, such as cextdif) operations. The returned numbers are valid
as long as the array exists and no length-changing operations are applied to it.

byteswap (X)
“Byteswap” all items of the array. This is only supported for integer values. It is useful when reading data from
a file written on a machine with a different byte order.

fromfile (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availabledcOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else witead() method won't do.

fromlist (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' exceptthatif thereis a
type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had been read

from a file using thdromfile() method).
insert (i, x)
Insert a new item with valurin the array before position
read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availabldcOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

reverse ()
Reverse the order of the items in the array.
tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes

84 Chapter 5. Miscellaneous Services

that would be written to a file by thefile() method.)

write ()
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representadag typecode initializer). The

initializer is omitted if the array is empty, otherwise it is a string if typecodeis 'c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes’(). Examples:

array('l')

array(’c’, ’hello world’)
array(l', [1, 2, 3, 4, 5)])
array('d’, [1.0, 2.0, 3.14])

See Also:

4.5: Modulestruct (Packing and unpacking of heterogeneous binary data.)

5.6 Standard Module fileinput

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.
The typical use is:
import fileinput

for line in fileinput.input():
process(line)

This iterates over the lines of all files listed sys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is-’ , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the first
argument tanput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading EXteror s raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. ussyg.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([files[, inplace[, backud]])
Create an instance of thelelnput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration.

The following functions use the global state createdrput() ; if there is no active statedRuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, Kgines

lineno ()

5.6. Standard Module fileinput 85

Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, retukfter the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline 0
Return true iff the line just read is the first line of its file.

isstdin ()
Returns true iff the last line was read fraps.stdin

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

Filelnput ([filed], inplacd , backug]]])
ClassFilelnput is the implementation; its methoddename() , lineno() , fileline() , is-
firstline() , isstdin() , hextfile() andclose() correspond to the functions of the same name in
the module. In addition it hasraadline() method which returns the next input line, andgetitem __()
method which implements the sequence behavior. The sequence must be accessed in strictly sequential order;
random access amdadline() cannot be mixed.

Optional in-place filtering: if the keyword argumentplace=1 is passed tinput() or to theFilelnput con-

structor, the file is moved to a backup file and standard output is directed to the input file. This makes it possible to
write a filter that rewrites its input file in place. If the keyword argumesmtkup-".<some extension>’ is also

given, it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
"bak’ anditis deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

86 Chapter 5. Miscellaneous Services

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modelled aftaxtioe © interfaces but
they are available on most other systems as well. Here’s an overview:

0s — Miscellaneous OS interfaces.

time — Time access and conversions.

getopt — Parser for command line options.

tempfile — Generate temporary file names.

errno — Standard errno system symbols.

glob — UNix shell style pathname pattern expansion.
fnmatch — UNix shell style pathname pattern matching.

locale — Internationalization services.

6.1 Standard Module os

This module provides a more portable way of using operating system (OS) dependent functionality than importing an
OS dependent built-in module likmsix .

When the optional built-in modulposix is available, this module exports the same functions and dgtasis ;
otherwise, it searches for an OS dependent built-in modulentike and exports the same functions and data as
found there. The design of all Python’s built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the funamstat(file) returns stat info abouile in a format
compatible with the POSIX interface.

Extensions peculiar to a particular OS are also available througbstimeodule, but using them is of course a threat
to portability!

Note that after the first times is imported, there isi0 performance penalty in using functions fram instead of
directly from the OS dependent built-in module, so there shoulidreason not to uses!

In addition to whatever the correct OS dependent module exports, the following variables and functions are always
exported byos:

name
The name of the OS dependent module imported. The following names have currently been registered:
‘posix’ ,'nt' ,’dos’ ,’'mac’ .

87

path
The corresponding OS dependent standard module for pathname operationpospath or mac-

path . Thus, (given the proper importsds.path.split(file) is equivalent to but more portable than
posixpath.split(file) .

curdir
The constant string used by the OS to refer to the current directory,’e.g. for POSIX or’’ for the
Macintosh.

pardir
The constant string used by the OS to refer to the parent directory, .€.g. for POSIX or’::’ for the
Macintosh.

sep
The character used by the OS to separate pathname componentg, e.fpr POSIX or’.’ for the Mac-
intosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — better use
os.path.split() andos.path.join() —but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname componewts)eoif only one separator
character exists. This is set'to on DOS/Windows systems whesep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch componergPfdHne.g..’ for
POSIX or’;” for MS-DOS.

defpath

The default search path usedéxec*p*() if the environment doesn’'t have RATH' key.

execl (path, argO, argl, .).
This is equivalent texecv(path (arg0, argl, ...))

execle (path, arg0, arg1l, ..., env
This is equivalent texecve(path (arg0, argl, ...), eny .

execlp (path, arg0, arg1, .).
This is equivalent t@xecvp(path (arg0, argl, ...))

execvp (path, arg$
This is likeexecv(path args but duplicates the shell’s actions in searching for an executable file in a list of
directories. The directory list is obtained fraanviron[PATH’]

execvpe (path, args, eny
This is a cross betwearxecve() andexecvp() . The directory list is obtained fromnf'PATH’]

(The functionexecv() andexecve() are not documented here, since they are implemented by the OS dependent
module. If the OS dependent module doesn't define either of these, the functions that rely on it will raise an exception.
They are documented in the section on modgudsix , together with all other functions thas imports from the OS
dependent module.)

6.2 Built-in Module time

This module provides various time-related functions. It is always available.
An explanation of some terminology and conventions is in order.
e Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For WX, the epoch is 1970. To find out what the epoch is, loafratime(0)

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time). The acronym UTC is not a

88 Chapter 6. Generic Operating System Services

mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

e The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on mostii systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

e On the other hand, the precisiontohe() andsleep() is better than their Nix equivalents: times are
expressed as floating point numbetimje() returns the most accurate time available (usingiXJget-
timeofday() = where available), angleep() will accept a time with a nonzero fraction (x select()
is used to implement this, where available).

e The time tuple as returned lgmtime() andlocaltime() , or as accpted bynktime() is a tuple of 9
integers: year (e.g. 1993), month (1-12), day (1-31), hour (0-23), minute (0-59), second (0-59), weekday (0—
6, monday is 0), Julian day (1-366) and daylight savings flag (-1, 0 or 1). Note that unlike the C structure, the
month value is a range of 1-12, not 0-11. A year value less than 100 will typically be silently converted to 1900
plus the year value. Al argument as daylight savings flag, passedtdime() will usually result in the
correct daylight savings state to be filled in.

The module defines the following functions and data items:

altzone
The offset of the local DST timezone, in seconds west of the Oth meridian, if one is defined. Negative if the local
DST timezone is east of the Oth meridian (as in Western Europe, including the UK). Only usel#yikght
is nonzero.

asctime (tuple
Convert a tuple representing a time as returnedryime() orlocaltime() to a 24-character string of the
following form: 'Sun Jun 20 23:21:05 1993 . Note: unlike the C function of the same name, there is
no trailing newline.

clock ()
Return the current CPU time as a floating point number expressed in seconds. The precision, and in fact the
very definiton of the meaning of “CPU time”, depends on that of the C function of the same name, but in any
case, this is the function to use for benchmarking Python or timing algorithms.

ctime (secd
Convert a time expressed in seconds since the epoch to a string representing locattimeg. sec3 is
equivalent taasctime(localtime(secy) .

daylight

Nonzero if a DST timezone is defined.

gmtime (sec$
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag is always zero.
Fractions of a second are ignored.

localtime (sec$
Like gmtime() but converts to local time. The dst flag is sefitavhen DST applies to the given time.

mktime (tuple)
This is the inverse function dbcaltime . Its argument is the full 9-tuple (since the dst flag is needed
— pass-1 as the dst flag if it is unknown) which expresses the timéogal time, not UTC. It returns a
floating point number, for compatibility witime() . If the input value cannot be represented as a valid time,
OverflowError is raised.

6.2. Built-in Module time 89

sleep (sec$
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time.

stritime (format, tuple
Convert a tuple representing a time as returnedrgyime() orlocaltime() to a string as specified by the
format argument.

The following directives, shown without the optional field width and precision specification, are replaced by the
indicated characters:

Directive | Meaning

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%l Hour (12-hour clock) as a decimal number [01,12].
%] Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale’s equivalent of either AM or PM.

%S Second as a decimal number [00,61].

%U Week number of the year (Sunday as the first day of the
week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.
%ow Weekday as a decimal number [0(Sunday),6].

%W Week number of the year (Monday as the first day of the
week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%X Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (or by no characters if no time zone exists).

%% %
Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow theYsofial
directive in the following order; this is also not portable. The field width is normally 2 exceptfavhere it is
3.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than
1 second.

timezone
The offset of the local (hon-DST) timezone, in seconds west of the Oth meridian (i.e. negative in most of Western
Europe, positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

90 Chapter 6. Generic Operating System Services

6.3

Standard Module getopt

This module helps scripts to parse the command line argumestsiargv . It supports the same conventions as

the UNIx getopt() function (including the special meanings of arguments of the fermand ‘-- ’). Long options

similar to those supported by GNU software may be used as well via an optional third argument. This module provides
a single function and an exception:

getopt (args, optiong, Iongoptions])

error

Parses command line options and parameter &sgs is the argument list to be parsed, without the leading
reference to the running program. Typically, this measys. argv[1:] '. optionsis the string of option

letters that the script wants to recognize, with options that require an argument followed by a colon (i.e., the
same format that Nix getopt() uses). If specifiedong optionsis a list of strings with the names of the

long options which should be supported. The leadidg characters should not be included in the option
name. Options which require an argument should be followed by an equal=sigi (

The return value consists of two elements: the first is a ligtadtion value pairs; the second is the list

of program arguments left after the option list was stripped (this is a trailing slice of the first argument). Each
option-and-value pair returned has the option as its first element, prefixed with a hyphehx(e.g., and the

option argument as its second element, or an empty string if the option has no argument. The options occur in
the list in the same order in which they were found, thus allowing multiple occurrences. Long and short options
may be mixed.

This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised.

An example using only Nix style options:

>>> import getopt, string

>>> args = string.split(-a -b -cfoo -d bar al a2’)
>>> args

[-a’, -b’, '-cfoo’, '-d’, 'bar, 'al’, 'a2?’]

>>> optlist, args = getopt.getopt(args, 'abc:d:’)
>>> optlist

[("a,! ”)1 ("b’1 ”)l ('-C’, ’fOO’), (,'dir 7bar’)]

>>> args

[al’, 'a2’]

>>>

Using long option names is equally easy:

>>> s = ’'--condition=foo --testing --output-file abc.def -x al a2’
>>> args = string.split(s)
>>> args

['--condition=foo’, '--testing’, '--output-file’, 'abc.def, '-x’, 'al’, 'a2’]
>>> optlist, args = getopt.getopt(args, X, [
‘condition=", 'output-file=", 'testing’])
>>> optlist
[(--condition’, 'foo’), (--testing’, ™), (--output-file’, 'abc.def’), (-x’,
M
>>> args
[al’, 'a2’]
>>>

6.3. Standard Module getopt 91

6.4 Standard Module tempfile

This module generates temporary file names. It is netXdUspecific, but it may require some help on norii
systems.

Note: the modules does not create temporary files, nor does it automatically remove them when the current process
exits or dies.

The module defines a single user-callable function:

mktemp()
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at the time the
call is made. No two calls will return the same filename.

The module uses two global variables that tell it how to construct a temporary name. The caller may assign values to
them; by default they are initialized at the first callidtemp() .

tempdir
When set to a value other th&one, this variable defines the directory in which filenames returnedky
temp() reside. The default is taken from the environment varid#DIR if this is not set, either/tsr/tmp’
is used (on Wix), or the current working directory (all other systems). No check is made to see whether its
value is valid.

template
When set to a value other th&one, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of decimal digits is added to generate unique filenames. The default is either
‘@pid.” wherepid is the current process ID (onNux), or ‘tmp’ (all other systems).

Warning: if a UNIX process usemktemp() , then callsfork() and both parent and child continue to usk-
temp() , the processes will generate conflicting temporary names. To resolve this, the child process should assign
None totemplate , to force recomputing the default on the next calitktemp() .

6.5 Standard Module errno

This module makes available standard errno system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed fiibx/include/errno.h’, which should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcodeferrno.EPERM] maps toEPERM’ .

To translate a numeric error code to an error message&austeerror()

Of the following list, symbols that are not used on the current platform are not defined by the module. Symbols
available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

92 Chapter 6. Generic Operating System Services

ENXIO

No such device or address

E2BIG

Arg list too long
ENOEXEC

Exec format error
EBADF

Bad file number
ECHILD

No child processes
EAGAIN

Try again
ENOMEM

Out of memory
EACCES

Permission denied
EFAULT

Bad address
ENOTBLK

Block device required
EBUSY

Device or resource busy
EEXIST

File exists
EXDEV

Cross-device link
ENODEV

No such device
ENOTDIR

Not a directory
EISDIR

Is a directory
EINVAL

Invalid argument
ENFILE

File table overflow
EMFILE

Too many open files
ENOTTY

Not a typewriter
ETXTBSY

Text file busy
EFBIG

File too large

6.5. Standard Module errno

93

ENOSPC
No space left on device

ESPIPE
lllegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

94

Chapter 6. Generic Operating System Services

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

6.5. Standard Module errno

95

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
lllegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

96

Chapter 6. Generic Operating System Services

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

6.5. Standard Module errno

97

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.6 Standard Module glob

Theglob module finds all the pathnames matching a specified pattern according to the rules used foytisbell.

No tilde expansion is done, btif ?, and character ranges expressed Wittwill be correctly matched. This is done by
using theos.listdir() andfnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, wsepath.expanduser() andos.path.expandvars() J)

glob (pathnamg
Returns a possibly-empty list of path names that mpthnamewhich must be a string containing a path spec-
ification. pathnamecan be either absolute (likéusr/src/Python-1.5/Makefile’) or relative (like “../../Tools/*.gif"),
and can contain shell-style wildcards.

For example, consider a directory containing only the following fildsgif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob(’./[0-9].*")
[./1.gif, ".J2.txt]

>>> glob.glob(*.gif")
[1.gif, ’'card.gif]

>>> glob.glob(’?.gif")
[1.9if]

6.7 Standard Module fnmatch

This module provides support forNux shell-style wildcards, which aneot the same as regular expressions (which
are documented in thre module). The special characters used in shell-style wildcards are:

* matches everything

? matches any single character

[sed matches any character seq

98 Chapter 6. Generic Operating System Services

[' sed matches any character notsaq

Note that the filename separatdf (on UNIX) is not special to this module. See moduob for pathname
expansiondlob usesfnmatch() to match filename segments).

fnmatch (filename, pattern
Test whether thdéilenamestring matches thpatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparision is
performed. If you require a case-sensitive comparision regardless of whether that’s standard for your operating
system, usénmatchcase() instead.

fnmatchcase (filename, pattern
Test whethefilenamematchegattern returning true or false; the comparision is case-sensitive.

See Also:

6.6: Moduleglob (Shell-style path expansion)

6.8 Standard Module locale

Thelocale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows applications to integrate certain cultural aspects into an applications, without requiring the programmer to know
all the specifics of each country where the software is executed.

Thelocale module is implemented on top of thincale module, which in turn uses an ANSI C locale imple-
mentation if available.

Thelocale module defines the following exception and functions:

setlocale (categor)[, value])
If valueis specified, modifies the locale setting for ttegegory The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the excepti@nror is raised. If successful, the new locale setting is returned.

If no valueis specified, the current setting for tbategoryis returned.
setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL,™)

This sets the locale for all categories to the user’s default setting (typically specifiedlidi@environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Error
Exception raised whesetlocale() fails.

localeconv ()
Returns the database of of the local conventions as a dictionary. This dictionary has the following strings as
keys:

edecimal _point specifies the decimal point used in floating point number representations for the
LC_NUMERICzategory.

egrouping is a sequence of numbers specifying at which relative positionshihwesands _sep is
expected. If the sequence is terminated vattale. CHAR _MAX no further grouping is performed. If
the sequence terminates witld athe last group size is repeatedly used.

ethousands _sep is the character used between groups.
eint _curr _symbol specifies the international currency symbol fromitiieMONETAR¥ategory.

6.8. Standard Module locale 99

ecurrency _symbol is the local currency symbol.

emondecimal _point is the decimal point used in monetary values.

emonthousands _sep is the separator for grouping of monetary values.

emongrouping has the same format as theouping key; it is used for monetary values.

epositive _sign andnegative _sign gives the sign used for positive and negative monetary quanti-
ties.

eint frac _digits andfrac _digits specify the number of fractional digits used in the international
and local formatting of monetary values.

ep_cs _precedes andn_cs _precedes specifies whether the currency symbol precedes the value for
positive or negative values.

ep_sep _by space andn_sep _by space specifies whether there is a space between the positive or neg-
ative value and the currency symbol.

ep_sign _posn andn_sign _posn indicate how the sign should be placed for positive and negative mon-
etary values.

The possible values fqr_sign _posn andn_sign _posn are given below.

Value | Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
LC_MAX| Nothing is specified in this locale.

strcoll ('stringl,string3
Compares two strings according to the curle@tCOLLATEsetting. As any other compare function, returns a
negative, or a positive value, 0r depending on whethetringl collates before or aftestring2or is equal to it.

strxfrm (' string)
Transforms a string to one that can be used for the built-in funatmop() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format (format, vaI,[grouping =0])
Formats a numberal according to the curreitC_NUMERIGsetting. The format follows the conventions of the
%operator. For floating point values, the decimal point is modified if appropriaggolipingis true, also takes
the grouping into account.

str (floaf)
Formats a floating point number using the same format as the built-in fursttionfloat) , but takes the decimal
point into account.

atof (string)
Converts a string to a floating point number, following th@ NUMERIGsettings.

atoi (' string)
Converts a string to an integer, following th€_ NUMERICconventions.

LCCTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
modulestring dealing with case change their behaviour.

LC_COLLATE
Locale category for sorting strings. The functigiecoll() andstrxfrm() of thelocale module are
affected.

100 Chapter 6. Generic Operating System Services

LC_TIME
Locale category for the formatting of time. The functiime.strftime() follows these conventions.

LC_MONETARY
Locale category for formatting of monetary values. The available options are available frdocahe
conv() function.

LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those retuosesttsrror() might be affected
by this category.

LC_NUMERIC
Locale category for formatting numbers. The functidosnat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LCALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHARMAX
This is a symbolic constant used for different values returnelddgleconv()

Example:

>>> import locale

>>> |oc = locale.setlocale(locale.LC_ALL) # get current locale

>>> |ocale.setlocale(locale.LC_ALL, "de") # use German locale

>>> |ocale.strcoll("\344n", "foo") # compare a string containing an umlaut
>>> |ocale.setlocale(locale.LC_ALL, ") # use user's preferred locale

>>> |ocale.setlocale(locale.LC_ALL, "C") # use default (C) locale

>>> |ocale.setlocale(locale.LC_ALL, loc) # restore saved locale

Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is ti& locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by cadliogale(LC ~ _ALL, ™)

It is generally a bad idea to cadktlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by the
locale (e.gstring.lower() , or certain formats used witime.strftime())), you will have to find a way to

do it without using the standard library routine. Even better is convincing yourself that using locale settings is okay.
Only as a last resort should you document that your module is not compatible witlChiogdle settings.

The case conversion functions in teging andstrop modules are affected by the locale settings. When

a call to thesetlocale() function changes thé C_CTYPE settings, the variablestring.lowercase .
string.uppercase andstring.letters (and their counterparts istrop) are recalculated. Note that this
code that uses these variable throuffbrh ... import .., e.g. from string import letters , is not af-

6.8. Standard Module locale 101

fected by subsequenetlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() ,atoi() ,format() , str()

For extension writers and programs that embed Python

Extension modules should never caditlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale isC).

When Python is embedded in an application, if the application sets the locale to something specific before initializing
Python, that is generally okay, and Python will use whatever locale isxxatpthat theLC_NUMERIQocale should
always be C.

Thesetlocale() function in thelocale module contains gives the Python progammer the impression that you

can manipulate theC_.NUMERIClocale setting, but this not the case at the C level: C code will always find that

the LC_.NUMERICocale setting isC. This is because too much would break when the decimal point character is

set to something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding
Python’s global interpreter lock may occasionally find that the numeric locale setting differs; this is because the only
portable way to implement this feature is to set the numeric locale settings to what the user requests, extract the relevant
characteristics, and then restore t@erumeric locale.

When Python code uses tlezale module to change the locale, this also affect the embedding application. If the
embedding application doesn’t want this to happen, it should removddbale extension module (which does

all the work) from the table of built-in modules in theohfig.c’ file, and make sure that thédocale module is not
accessible as a shared library.

102 Chapter 6. Generic Operating System Services

CHAPTER
SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modelled aftemthedd C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

signal — Set handlers for asynchronous events.

socket — Low-level networking interface.

select — Wait for I/O completion on multiple streams.

thread — Create multiple threads of control within one namespace.

Queue — A stynchronized queue class.

anydbm — Generic interface to DBM-style database modules.

whichdb — Guess which DBM-style module created a given database.

zlib

gzip — Compression and decompression compatible withgttie program glib is the low-level interfacegzip
the high-level one).

7.1 Built-in Module signal

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals
handlers:

e A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD which follows the underlying implementation.

e There is no way to “block” signals temporarily from critical sections (since this is not supported byidl U
flavors).

¢ Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can only
occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on large bodies of text) may be delayed
for an arbitrary amount of time.

e When a signal arrives during an I/O operation, it is possible that the 1/O operation raises an exception after
the signal handler returns. This is dependent on the underlying Wystem’s semantics regarding interrupted
system calls.

103

e Because the C signal handler always returns, it makes little sense to catch synchronous elS6@&HHE or
SIGSEGV

e Python installs a small number of signal handlers by def@IEPIPE is ignored (so write errors on pipes and
sockets can be reported as ordinary Python excepti@GINT is translated into &eyboardinterrupt
exception, andBIGTERMis caught so that necessary cleanup (especsgiyexitfunc) can be performed
before actually terminating. All of these can be overridden.

e Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always pesfonail() operations in the main
thread of execution. Any thread can performadarm() , getsignal() ,orpause() ;onlythe mainthread
can set a new signal handler, and the main thread will be the only one to receive signals (this is enforced by the
Pythonsignal module, even if the underlying thread implementation supports sending signals to individual
threads). This means that signals can’t be used as a means of interthread communication. Use locks instead.

The variables defined in treéggnal module are:

SIG_DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default actiorsSIGQUIT is to dump core and exit, while the default action
for SIGCLDis to simply ignore it.

SIG_IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defirgd- as
nal. SIGHUP ; the variable names are identical to the names used in C programs, as foysidnal.h¢'.
The UNIX man page forsignal() ' lists the existing signals (on some systems thisignal2), on others the
listis in signal7)). Note that not all systems define the same set of signal names; only those names defined by
the system are defined by this module.

NSIG
One more than the number of the highest signal number.

Thesignal module defines the following functions:

alarm (time
If timeis non-zero, this function requests thaBBSALRMsignal be sent to the processtime seconds. Any
previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any time). The returned value
is then the number of seconds before any previously set alarm was to have been delivéneglisfero, no
alarm id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds remaining
before a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled. (Sethe U
man pagelarm(2).)

getsignal (signalnum
Return the current signal handler for the sigsighalnum The returned value may be a callable Python object,
or one of the special valuesgnal.SIG _IGN, signal.SIG _DFL or None. Here,signal.SIG _IGN
means that the signal was previously ignorgidnal.SIG _DFL means that the default way of handling the
signal was previously in use, afbne means that the previous signal handler was not installed from Python.

pause ()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.
(See the Wix man pagesignal2).)

signal (signalnum, handler
Set the handler for signaignalnumto the functionhandler. handlercan be any callable Python object, or one
of the special valuesignal.SIG ~ _IGN orsignal.SIG _DFL. The previous signal handler will be returned
(see the description gfetsignal() above). (See the Wlx man pagesignal2).)

104 Chapter 7. Optional Operating System Services

When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause ®alueError exception to be raised.

The handleris called with two arguments: the signal number and the current stack fidoree (or a frame
object; see the reference manual for a description of frame objects).

7.2 Built-in Module socket

This module provides access to the BS@xrketinterface. It is available on Mix systems that support this interface.

For an introduction to socket programming (in C), see the following pap@mnstntroductory 4.3BSD Interprocess
Communication Tutoriglby Stuart Sechrest andin Advanced 4.3BSD Interprocess Communication Tutobgl
Samuel J. Leffler et al, both in theNux Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and
PS1:8). The Wix manual pages for the various socket-related system calls are also a valuable source of information
on the details of socket semantics.

The Python interface is a straightforward transliteration of thaxJsystem call and library interface for sockets

to Python’s object-oriented style: ttsmcket() function returns asocket objectvhose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interfacereasl{)ithand

write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit
on send operations.

Socket addresses are represented as a single string fAFthiNIX address family and as a pdihost port) for

the AF_INET address family, wherbostis a string representing either a hostname in Internet domain notation like
'daring.cwi.nl’ or an IP address likd00.50.200.5’ , andport is an integral port number. Other address
families are currently not supported. The address format required by a particular socket object is automatically selected
based on the address family specified when the socket object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string 1&AEE2RIANY,
and the string<broadcast>" representéiNADDRBROADCAST

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errors related to socket or address semantics raise theamket.error

Non-blocking mode is supported through getblocking() method.
The modulesocket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either a string telling
what went wrong or a pairerrno, string) representing an error returned by a system call, similar to the value
accompanyings.error . See the modulerrno , which contains names for the error codes defined by the
underlying operating system.

AF_UNIX

AF_INET
These constants represent the address (and protocol) families, used for the first argeoekat® . If the
AF_UNIX constant is not defined then this protocol is unsupported.

SOCKSTREAM

SOCKDGRAM

SOCKRAW

SOCKRDM

SOCKSEQPACKET
These constants represent the socket types, used for the second argwsueket) . (Only SOCKSTREAM
andSOCKDGRAMppear to be generally useful.)

SQ*
SOMAXCONN

7.2. Built-in Module socket 105

MSG*

SOoL*

IPPROTQ*

IPPORT_*

INADDR*

P _*
Many constants of these forms, documented in thexXUdocumentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in argumentssttsihekopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined mixhe U
header files are defined; for a few symbols, default values are provided.

gethostbyname (hostnamg
Translate a host name to IP address format. The IP address is returned as a strin@0e5.200.5’ f
the host name is an IP address itself it is returned unchanged.

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently executing.
If you want to know the current machine’'s IP address, gs&thostbyname(gethostname())
Note: gethostname() doesn't always return the fully qualified domain name; use
gethostbyaddr(gethostname()) (see below).

gethostbyaddr (ip_addres$
Return a triplg hostname aliaslist, ipaddrlist) wherehostnamas the primary host name responding to the
givenip_addressaliaslistis a (possibly empty) list of alternative host names for the same addrespaaladlist
is a list of IP addresses for the same interface on the same host (most likely containing only a single address).
To find the fully qualified domain name, chebkstnameand the items o#liaslist for an entry containing at
least one period.

getprotobyname (protocolnamég
Translate an Internet protocol name (éigmp’) to a constant suitable for passing as the (optional) third argu-
ment to thesocket() function. This is usually only needed for sockets opened in “raw” m&deGKRAVY,
for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

getservbyname (servicename, protocolname
Translate an Internet service name and protocol name to a port number for that service. The protocol name
should bétcp’ or’udp’

socket (family, type[, proto])
Create a new socket using the given address family, socket type and protocol number. The address family should
beAF_INET or AF_UNIX. The socket type should IBOCKSTREAMSOCKDGRAMTr perhaps one of the other
‘SOCK’ constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, typ¢, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file olfjlectty))
method). Address family, socket type and protocol number are as faroitleet function above. The file
descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the
file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by xhimét daemon).

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same as

106 Chapter 7. Optional Operating System Services

network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

SocketType
This is a Python type object that represents the socket object type. It is the sipe(ascket(...))

Socket Objects

Socket objects have the following methods. Exceptnfiakefile() these correspond toNUx system calls appli-
cable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn addres}) whereconnis anewsocket object usable to send and receive data on the connection,
andaddresss the address bound to the socket on the other end of the connection.

bind (addres$
Bind the socket taddress The socket must not already be bound. (The formaadifressdepends on the
address family — see above.)

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect (addres}
Connect to a remote socketaddress (The format ofaddressdepends on the address family — see above.)

connect _ex(addres}
Like connect(addres$, but return an error indicator instead of raising an exception. The error indicator is
0 if the operation succeeded, otherwise the value oétheo variable. This is useful, e.g., for asynchronous
connects.

fileno ()
Return the socket’s file descriptor (a small integer). This is useful satlct.select()

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IP socket, for instance. (The format of the address returned depends on the address family — see above.)
On some systems this function is not supported.

getsockname ()
Return the socket's own address. This is useful to find out the port number of an IP socket, for instance. (The
format of the address returned depends on the address family — see above.)

getsockopt (level, optnam[e, buflen])
Return the value of the given socket option (see thexXUman pagegetsockog®)). The needed symbolic
constants$Q* etc.) are defined in this module.Bfiflenis absent, an integer option is assumed and its integer
value is returned by the function. Iuflenis present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a string. It is up to the caller to decode the contents of the
buffer (see the optional built-in modus¢ruct for a way to decode C structures encoded as strings).

listen (backlog
Listen for connections made to the socket. Haeklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile ([modd, bufsizd])
Return dfile objectassociated with the socket. (File objects were described earlier in 2.1, “File Objects.”) The

7.2. Built-in Module socket 107

file object referencesdup() ped version of the socket file descriptor, so the file object and socket object may
be closed or garbage-collected independently. The optinndeandbufsizearguments are interpreted the same
way as by the built-iopen() function.

recv (bufsize{, flags])
Receive data from the socket. The return value is a string representing the data received. The maximum amount
of data to be received at once is specifiedbysize See the biix manual pageecy?2) for the meaning of the
optional argumentiags it defaults to zero.

recvfrom (bufsize{, flags])
Receive data from the socket. The return value is a(ptiing, addres$ wherestringis a string representing
the data received aratidresds the address of the socket sending the data. The opfiagabrgument has the
same meaning as foecv() above. (The format ciddressdepends on the address family — see above.)

send (string[, fIags])
Send data to the socket. The socket must be connected to a remote socket. The ftgajgerglument has the
same meaning as foecv() above. Returns the number of bytes sent.

sendto (string[, flags], addres}
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified byaddress The optionafflagsargument has the same meaning agéav() above. Return the
number of bytes sent. (The formataddresdepends on the address family — see above.)

setblocking (flag)
Set blocking or non-blocking mode of the sockefflafy is O, the socket is set to hon-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking moder&cv() call doesn't find any data,
or if a send call can't immediately dispose of the datagaor exception is raised; in blocking mode, the
calls block until they can proceed.

setsockopt (level, optname, valge
Set the value of the given socket option (see theXJman pageetsockofR)). The needed symbolic constants
are defined in theocket module SO* etc.). The value can be an integer or a string representing a buffer.
In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional built-in
modulestruct for a way to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connectiomdivis 0, further receives are disallowed.néwis 1, further
sends are disallowed. owis 2, further sends and receives are disallowed.

Note that there are no methodsad() orwrite() ;userecv() andsend() withoutflagsargumentinstead.

Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the segoeke) , bind() |,

listen() , accept() (possibly repeating thaccept() to service more than one client), while a client only
needs the sequensecket() , connect() . Also note that the server does re@nd() /recv() on the socket it

is listening on but on the new socket returneddogept()

108 Chapter 7. Optional Operating System Services

Echo server program
from socket import *
HOST =~ # Symbolic nhame meaning the local host
PORT = 50007 # Arbitrary non-privileged server
s = socket(AF_INET, SOCK_STREAM)
s.bind(HOST, PORT)
s.listen(1)
conn, addr = s.accept()
print ’Connected by’, addr
while 1:
data = conn.recv(1024)
if not data: break
conn.send(data)
conn.close()

Echo client program

from socket import *

HOST = ’daring.cwi.nl’ # The remote host

PORT = 50007 # The same port as used by the server
s = socket(AF_INET, SOCK_STREAM)

s.connect(HOST, PORT)

s.send('Hello, world)

data = s.recv(1024)

s.close()

print 'Received’, ‘data’

See Also:
11.22: Module SocketServer (classes that simplify writing network servers)
7.3 Built-in Module select

This module provides access to the functsmtect() available in most Wix versions. It defines the following:

error

The exception raised when an error occurs. The accompanying value is a pair containing the numeric error code
fromerrno and the corresponding string, as would be printed by the C funptoror()

select (iwtd, owtd, ewt«ﬂ, timeout])

This is a straightforward interface to thenix select() system call. The first three arguments are lists of
‘waitable objects’: either integers representingi¥ file descriptors or objects with a parameterless method
namedfileno() returning such an integer. The three lists of waitable objects are for input, output and
‘exceptional conditions’, respectively. Empty lists are allowed. The optitim&loutargument specifies a time-

out as a floating point number in seconds. Whenttimeoutargument is omitted the function blocks until at
least one file descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objectsys.gtdin , or objects returned
by open() oros.popen()), socket objects returned tspcket.socket() , and the modulstdwin
which happens to define a functiditeno() for just this purpose. You may also definavaapper class
yourself, as long as it has an approprifiteno() method (that really returns aNUx file descriptor, not just
a random integer).

7.3. Built-in Module select 109

7.4 Built-in Module thread

This module provides low-level primitives for working with multiple threads (a.kglt-weight processesr taskg
— multiple threads of control sharing their global data space. For synchronization, simple locksnfatiexesor
binary semaphorgsare provided.

The module is optional. It is supported on Windows NT and '95, SGI IRIX, Solaris 2.x, as well as on systems that
have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

error
Raised on thread-specific errors.

start _new_thread (func, arg
Start a new thread. The thread executes the fundtinowith the argument lisarg (which must be a tuple).
When the function returns, the thread silently exits. When the function terminates with an unhandled exception,
a stack trace is printed and then the thread exits (but other threads continue to run).

exit ()
This is a shorthand faexit _thread()

exit _thread ()
Raise theSystemExit exception. When not caught, this will cause the thread to exit silently.

allocate _lock ()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get _ident ()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence), and
returnsNone. If the integerwaitflagargument is present, the action depends on its value: if it is zero, the lock
is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as before. If an argument is present, the return vallid the lock is acquired successfully,

if not.
release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.
locked ()
Return the status of the lock:if it has been acquired by some thre@df not.
Caveats:
e Threads interact strangely with interrupts: theyboardinterrupt exception will be received by an arbi-
trary thread. (When thsignal module is available, interrupts always go to the main thread.)
e Calling sys.exit() or raising theSystemExit exception is equivalent to callirexit _thread()
e Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep() ,fileread() , select.select()) work as expected.)
e Itis not possible to interrupt thecquire() method on a lock — th&eyboardinterrupt exception will

happen after the lock has been acquired.

110 Chapter 7. Optional Operating System Services

e When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without exéguting
finally clauses or executing object destructors.

e When the main thread exits, it does not do any of its usual cleanup (exceptythat. finally clauses are
honored), and the standard I/O files are not flushed.

7.5 Standard Module Queue

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple thread3u&he class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python.

The Queue module defines the following class and exception:

Queue(maxsizg
Constructor for the classnaxsizds an integer that sets the upperbound limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsizas less than or equal to zero, the queue size is infinite.

Empty
Exception raised when non-blocking get (eggt _nowait()) is called on &Queue object which is empty,
or for which the emptyiness cannot be determined (i.e. because the appropriate locks cannot be acquired).

Queue Objects

ClassQueue implements queue objects and has the methods described below. This class can be derived from in order
to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See the source
code for details. The public methods are:

gsize ()
Returns the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Returnsl if the queue is empty) otherwise. Because of multithreading semantics, this is not reliable.

full ()
Returnsl if the queue is fullQ otherwise. Because of multithreading semantics, this is not reliable.

put (item)
Putsiteminto the queue.

get ()
Gets and returns an item from the queue, blocking if necessary until one is available.

get _nowait ()
Gets and returns an item from the queue if one is immediately available. Raigga@y exception if the
queue is empty or if the queue’s emptiness cannot be determined.

7.6 Standard Module anydbm

anydbm is a generic interface to variants of the DBM databasdbkhash , gdbm, ordbm. If none of these modules
is installed, the slow-but-simple implementation in moddlenbdbmwill be used.

open (filenam({, flag[, mode]])
Open the database fifdenameand return a corresponding object. The optidied argument can b&’ to

7.5. Standard Module Queue 111

open an existing database for reading oy, to open an existing database for reading and writicg, to
create the database if it doesn't exist,ior , which will always create a new empty database. If not specified,
the default value i§’

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 (and will be modified by the prevailing umask).

error
An alternate name for therror exception defined by the underlying database implementation.

The object returned bygpen() supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, andabekey() andkeys() methods are available. Keys and values
must always be strings.

7.7 Standard Module dumbdbm

A simple and slow database implemented entirely in Python. This should only be used when no other DBM-style
database is available.

open (filenam({, flag[, mode]])
Open the database fifdenameand return a corresponding object. The optidied argument can b&' to
open an existing database for reading oy, to open an existing database for reading and writicg, to
create the database if it doesn’t exist,ror , which will always create a new empty database. If not specified,
the default value i§’

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 (and will be modified by the prevailing umask).

error
Raised for errors not reported KsyError errors.

7.8 Standard Module whichdb

The single function in this module attempts to guess which of the several simple database modules available—dbm,
gdbm, or dbhash—should be used to open a given file.

whichdb (filenamé
Returns one of the following valueslone if the file can't be opened because it's unreadable or doesn't exist;
the empty string'(’) if the file’s format can’t be guessed; or a string containing the required module name, such
as"dbm" or"gdbm" .

7.9 Built-in Module zlib

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home pagetat//www.cdrom.com/pub/infozip/zlib/. Version 1.0.4
is the most recent version as of December, 1997; use a later version if one is available.

The available exception and functions in this module are:

error
Exception raised on compression and decompression errors.

adler32 (string[, value])
Computes a Adler-32 checksumsgifing. (An Adler-32 checksum is almost as reliable as a CRC32 but can be
computed much more quickly.) Wfalueis present, it is used as the starting value of the checksum; otherwise,

112 Chapter 7. Optional Operating System Services

a fixed default value is used. This allows computing a running checksum over the concatenation of several
input strings. The algorithm is not cryptographically strong, and should not be used for authentication or digital
signatures.

compress (string[, Ievel])
Compresses the data #tring, returning a string contained compressed d#¢ael is an integer fronil to 9
controlling the level of compressiof;is fastest and produces the least compres8ias slowest and produces
the most. The default value & Raises therror exception if any error occurs.

compressobj ([Ievel])
Returns a compression object, to be used for compressing data streams that won't fit into memoryleteince.
is an integer fronl to 9 controlling the level of compressiod;is fastest and produces the least compression,
9 is slowest and produces the most. The default valée is

crc32 (string[, value])
Computes a CRC (Cyclic Redundancy Check) checksustriofg. If valueis present, it is used as the starting
value of the checksum; otherwise, a fixed default value is used. This allows computing a running checksum over
the concatenation of several input strings. The algorithm is not cryptographically strong, and should not be used
for authentication or digital signatures.

decompress (string)
Decompresses the datastring, returning a string containing the uncompressed data. Raisesrtre excep-
tion if any error occurs.

decompressobj ([Wbits])
Returns a compression object, to be used for decompressing data streams that won't fit into memory at once.
Thewbitsparameter controls the size of the window buffer; usually this can be left alone.

Compression objects support the following methods:

compress (string)
Compressstring, returning a string containing compressed data for at least part of the datagp This data
should be concatenated to the output produced by any preceding call€tortpeess() method. Some input
may be kept in internal buffers for later processing.

flush ()
All pending input is processed, and an string containing the remaining compressed output is returned. After
callingflush() , thecompress() method cannot be called again; the only realistic action is to delete the
object.

Decompression objects support the following methods:

decompress (string)
Decompresstring, returning a string containing the uncompressed data corresponding to at least part of the
data instring. This data should be concatenated to the output produced by any preceding calldeodhe
press() method. Some of the input data may be preserved in internal buffers for later processing.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
callingflush() ,thedecompress() method cannot be called again; the only realistic action is to delete the
object.

See Also:

7.10: Modulegzip (reading and writingyzip-format files)

7.10 Standard Module gzip

7.10. Standard Module gzip 113

The data compression provided by tHid module is compatible with that used by the GNU compression program
gzip. Accordingly, thegzip module provides th&zipFile class to read and writgzip-format files, automatically
compressing or decompressing the data so it looks like an ordinary file object.

GzipFile objects simulate most of the methods of a file object, though it's not possible to used¢k@ and
tell() methods to access the file randomly.

open (fileobj[, filenam({, mod{, compresslevél]])
Returns a newszipFile object on top offileobj, which can be a regular file, @tringlO object, or any
object which simulates a file.

Thegzip file format includes the original filename of the uncompressed file; when ope@agé&ile object
for writing, it can be set by thlenameargument. The default value is an empty string.

modecan be eithefr’ or'w’ depending on whether the file will be read or writtecompresslevelk an
integer from1 to 9 controlling the level of compressiof;is fastest and produces the least compression9and
is slowest and produces the most compression. The default vatwengiressleveat 9.

Calling aGzipFile object'sclose() method does not clodéeobj, since you might wish to append more
material after the compressed data. This also allows you to p&&snglO object opened for writing as
fileobj, and retrieve the resulting memory buffer using 8tenglO object’'sgetvalue() method.

See Also:

7.9: Modulezlib (the basic data compression module)

114 Chapter 7. Optional Operating System Services

CHAPTER
EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique toxheperating system, or
in some cases to some or many variants of it. Here’s an overview:

posix — The most common POSIX system calls (normally used via moalkije

posixpath — Common POSIX pathname manipulations (normally usedsipath).

pwd — The password databasgepwnam() and friends).

grp — The group databasgétgrnam() and friends).

crypt — Thecrypt() function used to check Nix passwords.

dbm — The standard “database” interface, basedadm.

gdbm — GNU's reinterpretation of dom.

termios — POSIX style tty control.

TERMIOS — The symbolic constants required to usetimgnios module.

fentl — Thefentl() andioctl() system calls.

posixfile — A file-like object with support for locking.

resource — An interface to provide resource usage information on the current process.

syslog — An interface to the Wix syslog library routines.

stat — Constants and functions for interpreting the resultsso$tat() , 0S.Istat() andos.fstat()

commands — Wrapper functions foos.popen()

8.1 Built-in Module posix

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguisedNux interface).

Do not import this module directly. Instead, import the modules, which provides gortable version of this
interface. On Wix, theos module provides a superset of thesix interface. On non-Wix operating systems the
posix module is not available, but a subset is always available througbstheterface. Onc®s is imported, there
is no performance penalty in using it insteadpafsix . In addition,os provides some additional functionality, such
as automatically callingutenv() when an entry iros.environ is changed.

115

The descriptions below are very terse; refer to the corresponding thanual (or POSIX documentation) entry for
more information. Arguments callgghthrefer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raiseerror , described below.

Moduleposix defines the following data items:

environ
A dictionary representing the string environment at the time the interpreter was started. For example,
posix.environ[HOME’] is the pathname of your home directory, equivalengétenv(*"HOME") in
C.

Modifying this dictionary does not affect the string environment passed axbégv() , popen() or sys-
tem() ;if you need to change the environment, pagsgiron toexecve() or add variable assignments and
export statements to the command stringdgstem() or popen() .

However: If you are using this module via thes module (as you should — see the introduction above),
environ is a a mapping object that behaves almost like a dictionary but inyoliesiv() automatically
called whenever an item is changed.

error
This exception is raised when a POSIX function returns a POSIX-related error (e.g., not for illegal argument
types). The accompanying value is a pair containing the numeric error codefrom and the corresponding
string, as would be printed by the C functiperror() . See the modulerrno , which contains names for
the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attrileutes, andstrerror . The first holds the
value of the Cerrno variable, and the latter holds the corresponding error messagesfrermor()

When exceptions are strings, the string for the exceptitsigrror’ ; this reflects the more portable access
to the exception through thees module.

It defines the following functions and constants:

chdir (path)
Change the current working directorypath

chmod(path, modg
Change the mode gfathto the numerianode

chown (path, uid, gig
Change the owner and group idmdthto the numeriaiid andgid. (Not on MS-DOS.)

close (fd)
Close file descriptofd.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returnpe oy
orpipe() . To close a “file object” returned by the built-in functiopen() or bypopen() orfdopen() ,
use itsclose() method.

dup (fd)
Return a duplicate of file descript.

dup2 (fd, fd2
Duplicate file descriptofd to fd2, closing the latter first if necessary.

execv (path, arg3
Execute the executabpathwith argument listargs replacing the current process (i.e., the Python interpreter).
The argument list may be a tuple or list of strings. (Not on MS-DOS.)

execve (path, args, eny
Execute the executabfeathwith argument listargs, and environmenény, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. The environment must be a dictionary

116 Chapter 8. Unix Specific Services

mapping strings to strings. (Not on MS-DOS.)

_exit (n)
Exit to the system with statug without calling cleanup handlers, flushing stdio buffers, etc. (Not on MS-DOS.)
Note: the standard way to exitsys.exit(n). _exit() should normally only be used in the child process
after afork()

fdopen (fd[, mode[, bufsizd])
Return an open file object connected to the file descrifstoiThe modeandbufsizearguments have the same
meaning as the corresponding arguments to the budpen() function.

fork ()
Fork a child process. Retufhin the child, the child’s process id in the parent. (Not on MS-DOS.)

fstat (fd)
Return status for file descriptfd, like stat()

ftruncate (fd, length
Truncate the file corresponding to file descridrso that it is at modengthbytes in size.

getcwd ()

Return a string representing the current working directory.
getegid ()

Return the current process’ effective group id. (Not on MS-DOS.)
geteuid ()

Return the current process’ effective user id. (Not on MS-DOS.)
getgid ()

Return the current process’ group id. (Not on MS-DOS.)
getpgrp ()

Return the current process group id. (Not on MS-DOS.)
getpid ()

Return the current process id. (Not on MS-DOS.)
getppid ()

Return the parent’s process id. (Not on MS-DOS.)
getuid ()

Return the current process’ user id. (Not on MS-DOS.)
kil (pid, sig

Kill the processid with signalsig. (Not on MS-DOS.)
link (src, ds)

Create a hard link pointing terc nameddst (Not on MS-DOS.)

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not include
the special entries’ and’..” even if they are present in the directory.

Iseek (fd, pos, howy
Set the current position of file descripforto positionpos modified byhow: 0 to set the position relative to the
beginning of the filel to set it relative to the current positioR;to set it relative to the end of the file.

Istat (path
Like stat() , but do not follow symbolic links. (On systems without symbolic links, this is identical to
stat() .)

mkfifo (path], mode])
Create a FIFO (a POSIX named pipe) narpathwith numeric modenode The defaulimodeis 0666 (octal).

8.1. Built-in Module posix 117

The current umask value is first masked out from the mode. (Not on MS-DOS.)

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Notertkifio() doesn’t open the

FIFO — it just creates the rendezvous point.

mkdir (patr{, modd)
Create a directory namgmhthwith numeric modenode The defaulimodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out.

nice (incremeny
Add incremento the process

open (file, flags[, modd)
Open the filefile and set various flags accordingftagsand possibly its mode accordingitwode The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file.

niceness”. Return the new niceness. (Not on MS-DOS.)

For a description of the flag and mode values, see thexldr C run-time documentation; flag constants (like
O.RDONLYandO.WRONL)vare defined in this module too (see below).

Note: this function is intended for low-level 1/O. For normal usage, use the built-in funopen() , which
returns a “file object” wittread() andwrite() methods (and many more).

pipe ()
Create a pipe. Return a pair of file descriptérs w) usable for reading and writing, respectively. (Not on
MS-DOS.)

plock (op)
Lock program segments into memory. The valuepf{defined in<sys/lock.h>) determines which seg-
ments are locked. (Not on MS-DOS.)

popen (comman@, mode{, bufsize]])
Open a pipe to or fromommand The return value is an open file object connected to the pipe, which can be read
or written depending on whetharodeis'r' (default) orw’ . Thebufsizeargument has the same meaning as
the corresponding argument to the builtepen() function. The exit status of the command (encoded in the
format specified fowait()) is available as the return value of thiwse() = method of the file object. (Not
on MS-DOS.)

putenv (varname, valug
Set the environment variable namettnameto the stringvalue Such changes to the environment affect subpro-
cesses started withs.system() , os.popen() oros.fork() andos.execv() . (Noton all systems.)

Whenputenv() is supported, assignments to itemsenviron are automatically translated into cor-
responding calls t@utenv() ; however, calls tqputenv() don’t updateos.environ , so it is actually
preferable to assign to items o$.environ

strerror (code
Return the error message corresponding to the error cottedim

read (fd, n)
Read at most bytes from file descriptoid. Return a string containing the bytes read.

Note: this function is intended for low-level /0 and must be applied to a file descriptor as returopey
orpipe() . Toread a “file object” returned by the built-in functiopen() or by popen() orfdopen() |,
orsys.stdin , useitsread() orreadline() methods.

readlink (path)
Return a string representing the path to which the symbolic link points. (On systems without symbolic links,
this always raiseerror .)

remove (path)

118 Chapter 8. Unix Specific Services

Remove the filpath Seermdir() below to remove a directory. This is identical to tim@ink() function
documented below.

rename (src, dsj)
Rename the file or directoisrc to dst

rmdir (path)
Remove the directorgath

setgid (gid)
Set the current process’ group id. (Not on MS-DOS.)

setpgrp ()
Calls the system cafletpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).
See the Wix manual for the semantics. (Not on MS-DOS.)

setpgid (pid, pgrp
Calls the system cafletpgid() . See the Wix manual for the semantics. (Not on MS-DOS.)

setsid ()
Calls the system cafletsid() . See the Wix manual for the semantics. (Not on MS-DOS.)

setuid (uid)
Set the current process’ user id. (Not on MS-DOS.)

stat (path
Perform astat() system call on the given path. The return value is a tuple of at least 10 integers giving
the most important (and portable) members of $ket structure, in the ordest _mode, st _ino , st _dev,
st _nlink , st _uid , st _gid , st _size , st _atime , st _mtime , st _ctime . More items may be added at
the end by some implementations. (On MS-DOS, some items are filled with dummy values.)

Note: The standard modus¢at defines functions and constants that are useful for extracting information from
a stat structure.

symlink ('src, ds)
Create a symbolic link pointing terc nameddst (On systems without symbolic links, this always raises
error .)

system (commandl
Execute the command (a string) in a subshell. This is implemented by calling the Standard C faystion
tem() , and has the same limitations. Changegdsix.environ , Sys.stdin etc. are not reflected in the
environment of the executed command. The return value is the exit status of the process encoded in the format
specified fowait()

tcgetpgrp (fd)
Return the process group associated with the terminal givefd lfgn open file descriptor as returned by
open()). (Noton MS-DOS.)

tcsetpgrp (fd, pg
Set the process group associated with the terminal givdd tgn open file descriptor as returneddgyen())

to pg. (Not on MS-DOS.)

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’s user time, children’s system time, and elapsed real time since a fixed
point in the past, in that order. See thalld manual pagémeg?2). (Not on MS-DOS.)

umask(masR
Set the current numeric umask and returns the previous umask. (Not on MS-DOS.)

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysnamg nodenamge release version maching. Some systems truncate the nodename to 8 charac-

8.1. Built-in Module posix 119

ters or to the leading component; a better way to get the hostnastzket.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . (Not on MS-DOS, nor on older Wix systems.)

unlink (path)
Remove the filpath This is the same function asmove ; theunlink name is its traditional NiX name.

utime (path,(atime, mtimg)
Set the access and modified time of the file to the given values. (The second argument is a tuple of two items.)

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced. (Not on MS-DOS.)

waitpid (pid, option$
Wait for completion of a child process given by proces id, and return a tuple containing its pid and exit status
indication (encoded as favait()). The semantics of the call are affected by the value of the intggeons
which should beD for normal operation. (If the system does not suppaaitpid() , this always raises
error . Not on MS-DOS.)

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returopeif
orpipe() . To write a “file object” returned by the built-in functiapen() or by popen() orfdopen() ,
orsys.stdout orsys.stderr , useitswrite() method.

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately.

O.RDONLY
OWRONLY
ORDWR
ONDELAY
O.NONBLOCK
OAPPEND
ODSYNC
ORSYNC
OSYNC
ONOCTTY
OCREAT
OEXCL
O.TRUNC
Options for theflag argument to thepen() function. These can be bit-wise OR'd together.

8.2 Standard Module posixpath

This module implements some useful functions on POSIX pathnames.
Do not import this module directly. Instead, import the modules and usens.path

basename (p)
Return the base name of pathnamd his is the second half of the pair returneddmsixpath.split(p) .

commonprefix (list)
Return the longest string that is a prefix of all stringéish If list is empty, return the empty string ().

exists (p)
Return true ifp refers to an existing path.

120 Chapter 8. Unix Specific Services

expanduser (p)
Return the argument with an initial component of br ‘'~ user replaced by thatisefs home directory. An
initial 7" is replaced by the environment varial#1OME an initial " usef is looked up in the password
directory through the built-in modulewd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged.

expandvars (p)
Return the argument with environment variables expanded. Substrings of thefioamé or ‘ ${ nameé ’ are
replaced by the value of environment variableme Malformed variable names and references to non-existing
variables are left unchanged.

isabs (p)
Return true ifp is an absolute pathname (begins with a slash).

isfile (p)
Return true ifp is an existing regular file. This follows symbolic links, so battink() andisfile() can
be true for the same path.

isdir (p)
Return true ifp is an existing directory. This follows symbolic links, so baghnk() andisdir() can be
true for the same path.

islink (p)
Return true ifp refers to a directory entry that is a symbolic link. Always false if symbolic links are not
supported.

ismount (p)
Return true if pathname is a mount point a point in a file system where a different file system has been
mounted. The function checks whethes parent, p/..’, is on a different device thap, or whether p/.." and p
point to the same i-node on the same device — this should detect mount points fanalhbd POSIX variants.

join (p[, o[, ..]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenatiparmd optionallyg, etc., with
exactly one slash/{) inserted between components, unlpss empty.

normcase (p)
Normalize the case of a pathname. ORIk, this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (p)
Normalize a pathname. This collapses redundant separators and up-level refereno®8Be,g/./B and
Al/fool..IB all becomeA/B . It does not normalize the case (usermcase() for that). On Windows, it
does converts forward slashes to backward slashes.

samefile (p, 0
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception ibsistat() call on either pathname fails.

split (p)
Split the pathnamp in a pair(head tail) , wheretail is the last pathname component drehdis everything
leading up to that. Thaail part will never contain a slash; jfends in a slastail will be empty. If there is no
slash inp, headwill be empty. Ifp is empty, bottheadandtail are empty. Trailing slashes are stripped from
headunless it is the root (one or more slashes only). In nearly all cgsag, head tail) equalsp (the only
exception being when there were multiple slashes sepatagiadfrom tail).

splitext (p)
Splitthe pathnampin a pair(root, ex suchthatoot + ext == p, andextis empty or begins with a period
and contains at most one period.

walk (p, visit, arg

8.2. Standard Module posixpath 121

Calls the functiorvisit with argumentg arg, dirname name$ for each directory in the directory tree rooted
atp (includingp itself, if it is a directory). The argumenltirnamespecifies the visited directory, the argument
namedlists the files in the directory (gotten froos.listdir(dirnamg). Thevisit function may modify
namedo influence the set of directories visited beldiwname e.g., to avoid visiting certain parts of the tree.
(The object referred to bgamesmust be modified in place, usirel or slice assignment.)

8.3 Built-in Module pwd

This module provides access to thelld password database. It is available on allii versions.

Password database entries are reported as 7-tuples containing the following items from the password database (see
‘ipwd.h¢’), in order: pw_name, pw_passwd , pw_uid , pw_gid , pw_gecos , pw.dir , pw_shell . The uid and gid
items are integers, all others are stringKéyError exception is raised if the entry asked for cannot be found.

It defines the following items:

getpwuid (' uid)
Return the password database entry for the given numeric user ID.

getpwnam (name
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

8.4 Built-in Module grp

This module provides access to thelild group database. It is available on alklX versions.

Group database entries are reported as 4-tuples containing the following items from the group datahggel{sge *

in order: gr _name, gr _passwd, gr _gid , gr _-mem The gid is an integer, name and password are strings, and the
member list is a list of strings. (Note that most users are not explicitly listed as members of the group they are in
according to the password databaseKeyError exception is raised if the entry asked for cannot be found.

It defines the following items:

getgrgid (gid)

Return the group database entry for the given numeric group ID.
getgrnam (name

Return the group database entry for the given group name.

getgrall ()
Return a list of all available group entries, in arbitrary order.

8.5 Built-in Module crypt

This module implements an interface to trgpt(3) routine, which is a one-way hash function based upon a modified
DES algorithm; see the 1ux man page for further details. Possible uses include allowing Python scripts to accept
typed passwords from the user, or attempting to cragkxUpasswords with a dictionary.

crypt (word, sal)
word will usually be a user’'s passwordalt is a 2-character string which will be used to select one of 4096
variations of DES. The charactersdalt must be either , / , or an alphanumeric character. Returns the hashed
password as a string, which will be composed of characters from the same alphabet as the salt.

122 Chapter 8. Unix Specific Services

The module and documentation were written by Steve Majewski.

8.6 Built-in Module dbm

Thedbmmodule provides an interface to theilx (n)dbm library. Dbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a dbm object doesn't print the keys and values, and the
items() andvalues() methods are not supported.

See also thgdbm module, which provides a similar interface using the GNU GDBM library.
The module defines the following constant and functions:

error
Raised on dbm-specific errors, such as I/O errides/Error is raised for general mapping errors like specify-
ing an incorrect key.

open (filename,[flag, [mode]])
Open a dbm database and return a dbm object fillr@ameargument is the name of the database file (without
the “dir’ or ‘ .pag’ extensions).
The optionaflagargument can b (to open an existing database for reading only — default), (to open

an existing database for reading and writig), (which creates the database if it doesn’t existjnor (which
always creates a new empty database).

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 .

8.7 Built-in Module gdbm

This module is quite similar to thdbm module, but usegdbm instead to provide some additional functionality.
Please note that the file formats createdydipm anddbmare incompatible.

Thegdbm module provides an interface to the GNU DBM libragglbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printiggbem object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

The module defines the following constant and functions:

error
Raised orgdbm-specific errors, such as 1/O errotséeyError is raised for general mapping errors like speci-
fying an incorrect key.

open (filename,[flag, [mode]])
Open agdbm database and returrgalbm object. Thefilenameargument is the name of the database file.

The optionaflagargument can b (to open an existing database for reading only — default), (to open
an existing database for reading and writirlg), (which creates the database if it doesn’t existjnor (which
always creates a new empty database).

Appendingf to the flag opens the database in fast mode; altered data will not automatically be written to the
disk after every change. This results in faster writes to the database, but may result in an inconsistent database
if the program crashes while the database is still open. Ussytin) method to force any unwritten data to

be written to the disk.

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 .

In addition to the dictionary-like methodggbm objects have the following methods:

8.6. Built-in Module dbm 123

firstkey ()
It's possible to loop over every key in the database using this method antegtikey() = method. The
traversal is ordered bydbm's internal hash values, and won't be sorted by the key values. This method returns
the starting key.

nextkey (key)
Returns the key that followleeyin the traversal. The following code prints every key in the datalbsevithout
having to create a list in memory that contains them all:

k=db.firstkey()

while k!=None:
print k
k=db.nextkey(k)

reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used dgtthefile, this routine will
reorganize the databaggdbm will not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key,value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

8.8 Built-in Module termios

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls, see
the POSIX or Wix manual pages. It is only available for thosel¥ versions that support POSKE€rmiosstyle tty
I/0 control (and then only if configured at installation time).

All functions in this module take a file descriptfat as their first argument. This must be an integer file descriptor,
such as returned kgys.stdin.fileno()

This module should be used in conjunction with TEERMIOSmodule, which defines the relevant symbolic constants
(see the next section).

The module defines the following functions:

tcgetattr (fd)
Return a list containing the tty attributes for file descripfyr as follows: [iflag, oflag cflag Iflag, ispeed
ospeedcc whereccis a list of the tty special characters (each a string of length 1, except the items with indices
TERMIOS.VMIN andTERMIOS.VTIME, which are integers when these fields are defined). The interpretation
of the flags and the speeds as well as the indexing irt¢taray must be done using the symbolic constants
defined in theTERMIOSmodule.

tcsetattr (fd, when, attributes
Set the tty attributes for file descriptdd from the attributes which is a list like the one returned by
tcgetattr() . The whenargument determines when the attributes are chang&RMIOS. TCSANOW
to change immediately, TERMIOS. TCSADRAIN to change after transmitting all queued output, or
TERMIOS.TCSAFLUSHo change after transmitting all queued output and discarding all queued input.

tcsendbreak (fd, duration
Send a break on file descriptfat. A zerodurationsends a break for 0.25-0.5 seconds; a nonderation has
a system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptdd has been transmitted.

tcflush (fd, queug

124 Chapter 8. Unix Specific Services

Discard queued data on file descripfdr The queueselector specifies which queueERMIOS.TCIFLUSH
for the input queueTERMIOS. TCOFLUSHor the output queue, o0FEERMIOS.TCIOFLUSHfor both queues.

tcflow (fd, action
Suspend or resume input or output on file descrifito heactionargument can bEERMIOS.TCOOFHRo sus-
pend outputTERMIOS.TCOON restart outpuffl ERMIOS.TCIOFF to suspend input, SF ERMIOS.TCION
to restart input.

Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a gegerate
tattr() call and atry ... finally statement to ensure that the old tty attributes are restored exactly no matter
what happens:

def getpass(prompt = "Password: "):
import termios, TERMIOS, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & "TERMIOS.ECHO # Iflags
try:
termios.tcsetattr(fd, TERMIOS.TCSADRAIN, new)
passwd = raw_input(prompt)
finally:
termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)
return passwd

8.9 Standard Module TERMIOS

This module defines the symbolic constants required to useetireos module (see the previous section). See the
POSIX or INIXx manual pages (or the source) for a list of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library directory. You may have to
generate it for your particular system using the scfipbfs/scripts/h2py.py’.

8.10 Built-in Module fcntl

This module performs file control and 1/O control on file descriptors. Itis an interface fortti@ andioctl()
UNIX routines. File descriptors can be obtained withftlemo() method of a file or socket object.

The module defines the following functions:

fentl (fd, op{, arg])
Perform the requested operation on file descrifdorThe operation is defined kgp and is operating system
dependent. Typically these codes can be retrieved from the library me@Ne&L The argumendrgis optional,
and defaults to the integer valQe When present, it can either be an integer value, or a string. With the argument
missing or an integer value, the return value of this function is the integer return value of¢chd(call.
When the argument is a string it represents a binary structure, e.g. creatgddiypack() . The binary
data is copied to a buffer whose address is passed to thetl)) call. The return value after a successful
call is the contents of the buffer, converted to a string object. In cadenti@ fails, anlOError is raised.

ioctl (fd, op, arg

8.9. Standard Module TERMIOS 125

This function is identical to th&entl() function, except that the operations are typically defined in the library
modulelOCTL.

flock (fd, op
Perform the lock operatioop on file descriptofd. See the Wix manualflock(3) for details. (On some systems,
this function is emulated usirfigntl() .)

lockf (fd, code,[len, [start, [whencd]])
This is awrapper around thHeCNTL.F_SETLKandFCNTL.F_SETLKW fcntl() calls. See the Nix manual
for details.

If the library modulesFCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fcntl.h> and <sys/ioctl.h> . You can create the modules yourself with th2py script, found in
the Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):
import struct, FCNTL

file = open(...)
rv = fentl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack(hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)
rv = fentl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variaklewill hold an integer value; in the second example it will hold
a string value. The structure lay-out for tleekdatavariable is system dependent — therefore usingfithek()
call may be better.

8.11 Standard Module posixfile

Note: This module will become obsolete in a future release. The locking operation that it provides is done better and
more portably by thécntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it implements file
locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new file
object, the posixfile object. It has all the standard file object methods and adds the methods described below. This
module only works for certain flavors ofNUXx, since it usescntl.fcntl() for file locking.

To instantiate a posixfile object, use thygen() function in theposixfile module. The resulting object looks and
feels roughly the same as a standard file object.

Theposixfile module defines the following constants:

SEEKSET
Offset is calculated from the start of the file.

SEEKCUR
Offset is calculated from the current position in the file.

SEEKEND
Offset is calculated from the end of the file.

Theposixfile module defines the following functions:

open (filenam({, mode[, bufsizd])
Create a new posixfile object with the given filename and mode filEmame modeandbufsizearguments are
interpreted the same way as by the builbpen() function.

126 Chapter 8. Unix Specific Services

fileopen (fileobjec)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

The posixfile object defines the following additional methods:

lock (fmt, [Ien[, starl{, Whencd]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a table.
Thelen argument specifies the length of the section that should be locked. The defautitést specifies the
starting offset of the section, where the defauld isThewhenceargument specifies where the offset is relative
to. It accepts one of the constaEEK SET, SEEKCURor SEEKEND The default iISSEEKSET. For more
information about the arguments refer to thetl(2) manual page on your system.

flags ([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Withdlagbargument a string
indicating the current flags is returned (this is the same asZhmodifier). For more information about the
flags refer to thécntl(2) manual page on your system.

dup()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it

were newly opened.

dup2 (fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the given
file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file ()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods raisdOError when the request fails.

Format characters for tHeck() = method have the following meaning:

Format | Meaning

‘u’ unlock the specified region
‘r’ request a read lock for the specified section
‘W request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier | Meaning | Notes
17 wait until the lock has been granted
e return the first lock conflicting with the requested lockNmne if there is no conflict.| (1)
Note:

(1) The lock returned is in the forméimode len, start, whence pid) wheremodeis a character representing
the type of lock ('r' or 'w’). This modifier prevents a request from being granted; it is for query purposes only.

Format characters for tfags() = method have the following meanings:

Format | Meaning

a append only flag

‘c’ close on exec flag

‘n’ no delay flag (also called non-blocking flag)
‘s’ synchronization flag

8.11. Standard Module posixfile 127

In addition the following modifiers can be added to the format:

Modifier | Meaning | Notes
D turn the specified flags 'off’, instead of the default 'on’ 1)
= replace the flags, instead of the default 'OR’ operation Q)
i return a string in which the characters represent the flags that are sgt)

Note:
(1) The 1’ and ‘=" modifiers are mutually exclusive.
(2) This string represents the flags after they may have been altered by the same call.

Examples:
import posixfile

file = posixfile.open(/tmp/test’, 'w’)
file.lock('w|)

file.lock('u’)
file.close()

8.12 Built-in Module resource

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

A single exception is defined for errors:

error
The functions described below may raise this error if the underlying system call failures unexpectedly.

Resource Limits

Resources usage can be limited usinggéglimit() function described below. Each resource is controlled by

a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are describgdtitirtti#2) man page. The
resources listed below are supported when the underlying operating system supports them; resources which cannot be
checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit (resource
Returns a tupl€ soft hard) with the current soft and hard limits eésource RaisesValueError if an
invalid resource is specified, error if the underyling system call fails unexpectedly.

setrlimit (resource, limity
Sets new limits of consumption odsource Thelimits argument must be a tup{esoft, hard) of two integers
describing the new limits. A value el can be used to specify the maximum possible upper limit.

RaisesValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a

128 Chapter 8. Unix Specific Services

process tries to raise its hard limit (unless the process has an effective UID of super-user). Can aswraise
if the underyling system call fails.

These symbols define resources whose consumption can be controlled usietyliimét() andgetrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The UNIX man page fogetrlimit(2) lists the available resources. Note that not all systems use the same symbol or
same value to denote the same resource.

RLIMIT _CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation of
a partial core file if a larger core would be required to contain the entire process image.

RLIMIT _CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceXGPU
signal is sent to the process. (Seesignal module documentation for information about how to catch this
signal and do something useful, e.g. flush open files to disk.)

RLIMIT _FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in a
multi-threaded process.

RLIMIT _DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT _STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT _RSS
The maximum resident set size that should be made available to the process.

RLIMIT _NPROC
The maximum number of processes the current process may create.

RLIMIT _NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT _OFILE
The BSD name foRLIMIT _NOFILE.

RLIMIT "MEMLOC
The maximm address space which may be locked in memory.

RLIMIT -VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT _AS
The maximum area (in bytes) of address space which may be taken by the process.

Resource Usage

These functiona are used to retrieve resource usage information:

getrusage (who
This function returns a large tuple that describes the resources consumed by either the current process or its
children, as specified by tivehoparameter. Thevhoparameter should be specified using one oRRESAGE
constants described below.

The elements of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some values
are dependent on the clock tick internal, e.g. the amount of memory the process is using.

8.12. Built-in Module resource 129

The first two elements of the return value are floating point values representing the amount of time spent execut-
ing in user mode and the amount of time spent executing in system mode, respectively. The remaining values
are integers. Consult thgetrusag€?) man page for detailed information about these values. A brief summary

is presented here:

Offset | Resource

time in user mode (float)
time in system mode (float)
maximum resident set size
shared memory size
unshared memory size
unshared stack size

page faults not requiring 1/0O
page faults requiring 1/O
number of swap outs

block input operations

10 | block output operations

11 | messages sent

12 | messages received

13 | signals received

14 | voluntary context switches
15 | involuntary context switches

©Ooo~NOOOUThA~,WNPEFLO

This function will raise avalueError if an invalid who parameter is specified. It may also raeseor
exception in unusual circumstances.

getpagesize ()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of the
tuple returned bgetrusage() = describes memory usage in pages; multiplying by page size produces number
of bytes.

The followingRUSAGE symbols are passed to thetrusage() function to specify which processes information
should be provided for.

RUSAGESELF
RUSAGESELF should be used to request information pertaining only to the process itself.

RUSAGECHILDREN
Pass tgetrusage() to request resource information for child processes of the calling process.

RUSAGEBBOTH
Pass tggetrusage() to request resources consumed by both the current process and child processes. May
not be available on all systems.

8.13 Built-in Module syslog

This module provides an interface to thevtd syslog library routines. Refer to the ilx manual pages for a
detailed description of thgyslog facility.

The module defines the following functions:

syslog ([priority,] message
Send the stringnessageo the system logger. A trailing newline is added if necessary. Each message is
tagged with a priority composed offacility and alevel The optionalpriority argument, which defaults to
(LOG_USER | LOGINFO), determines the message priority.

openlog (idem[, Iogopl[, facility]])

130 Chapter 8. Unix Specific Services

Logging options other than the defaults can be set by explicitly opening the log filopathiog() prior to
callingsyslog() . The defaults are (usuallyjent=‘syslog ’, logopt= 0, facility = LOGUSER Theident
argument is a string which is prepended to every message. The oftigoptargument is a bit field - see below
for possible values to combine. The optiofedility argument sets the default facility for messages which do
not have a facility explicitly encoded.

closelog ()
Close the log file.

setlogmask (maskpr)
This function set the priority mask tmaskpriand returns the previous mask value. Callsyslog with a
priority level not set irmaskpriare ignored. The default is to log all priorities. The functlddGMASK (pri)
calculates the mask for the individual priorityi. The functionLOGUPTO(pri) calculates the mask for all
priorities up to and includingri.

The module defines the following constants:

Priority levels (high to low): LOGEMERGLOGALERT, LOGCRIT, LOGERR LOGWARNINGLOGNOTICE,
LOGINFO, LOGDEBUG

Facilities: LOGKERN LOGUSER LOGMAIL, LOGDAEMONLOGAUTH LOGLPR, LOGNEWSLOGUUCR
LOGCROMNNALOGLOCALOto LOGLOCALYT.

Log options: LOGPID, LOGCONSLOGNDELAY LOGNOWAITandLOGPERROR defined in ‘syslog.h’.

8.14 Standard Module stat

Thestat module defines constants and functions for interpreting the resubis stat() andos.Istat() (if
they exist). For complete details about 8tat() andlstat() system calls, consult your local man pages.

Thestat module defines the following functions:

S_ISDIR (modg
Return non-zero if the mode was gotten from a directory.

S_ISCHR(modg
Return non-zero if the mode was gotten from a character special device.

S_ISBLK (modg
Return non-zero if the mode was gotten from a block special device.

S_ISREG(mod§
Return non-zero if the mode was gotten from a regular file.

S_ISFIFO (mode
Return non-zero if the mode was gotten from a FIFO.

S_ISLNK(modg
Return non-zero if the mode was gotten from a symbolic link.

S_ISSOCK(modg
Return non-zero if the mode was gotten from a socket.

All the data items below are simply symbolic indexes into the 10-tuple returned.stat() or os.lIstat()

ST_MODE
Inode protection mode.

ST.INO
Inode number.

8.14. Standard Module stat 131

ST_.DEV
Device inode resides on.

ST_NLINK

Number of links to the inode.
ST.UID

User id of the owner.
ST.GID

Group id of the owner.
ST_SIZE

File size in bytes.
STATIME

Time of last access.
ST_-MTIME

Time of last modification.
ST_.CTIME

Time of last status change (see manual pages for details).

Example:

import os, sys
from stat import *

def process(dir, func):
"recursively descend the directory rooted at dir, calling func for
each regular file™

for f in os.listdir(dir):
mode = os.stat('%s/%s’ % (dir, f))[ST_MODE]
if S_ISDIR(mode):
recurse into directory
process('%s/%s’ % (dir, f), func)
elif S_ISREG(mode):
func(%s/%s’ % (dir, f))
else:
print 'Skipping %s/%s’ % (dir, f)

def f(file):
print 'frobbed’, file

if _name__ == '_ main__" process(sys.argv[l], f)

8.15 Standard Module commands

Thecommands module contains wrapper functions fas.popen() which take a system command as a string and
return any output generated by the command and, optionally, the exit status.

The commands module is only usable on systems which supmaipopen() (currently UNIX). It defines the
following functions:

getstatusoutput (cmad

132 Chapter 8. Unix Specific Services

Execute the stringmdin a shell withos.popen() and return a 2-tupléstatus outpu) . cmdis actually

run as{ cmd ; }2>&1 , so that the returned output will contain output or error messages. A trailing newline

is stripped from the output. The exit status for the command can be interpreted according to the rules for the C
functionwait()

getoutput (cmd
Like getstatusoutput() , except the exit status is ignored and the return value is a string containing the
command’s output.

getstatus (file)
Return the output ofls -Id file’ as a string. This function uses tigetoutput() function, and properly
escapes backslashes and dollar signs in the argument.

Example:

>>> import commands

>>> commands.getstatusoutput(ls /bin/Is’)

(0, '/bin/ls’)

>>> commands.getstatusoutput(’cat /bin/junk’)
(256, 'cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput(’/bin/junk’)

(256, 'sh: /binfjunk: not found’)

>>> commands.getoutput(’ls /bin/ls’)

'Ibin/Is’
>>> commands.getstatus('/bin/Is’)
-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

8.15. Standard Module commands 133

134

CHAPTER
NINE

The Python Debugger

The modulepdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control.

The debugger is extensible — it is actually defined as a dbais This is currently undocumented but easily
understood by reading the source. The extension interface uses the (also undocumented)adbdcandsmd.

A primitive windowing version of the debugger also exists — this is moadb, which requirestdwin (see the
chapter on STDWIN specific modules).

The debugger’s prompt igPdb) . Typical usage to run a program under control of the debugger is:

>>> import pdb

>>> import mymodule

>>> pdb.run(mymodule.test()’)
> <string>(0)?()

(Pdb) continue

> <string>(1)?()

(Pdb) continue

NameError: 'spam’

> <string>(1)?()

(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /usr/local/lib/pythonl.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

135

>>> import pdb
>>> jmport mymodule
>>> mymodule.test()
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "./mymodule.py”, line 4, in test
test2()
File "./mymodule.py", line 3, in test2
print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run (statemer{t, globals[, Iocals]])
Execute thestatemen(given as a string) under debugger control. The debugger prompt appears before any code
is executed; you can set breakpoints and typetinue , or you can step through the statement usitep
or next (all these commands are explained below). The optigi@bals andlocals arguments specify the
environment in which the code is executed; by default the dictionary of the modéén __ is used. (See the
explanation of thexec statement or theval() built-in function.)

runeval (expressioﬁ, globals{, Iocals]])
Evaluate theexpressior{given as a a string) under debugger control. Whereval() returns, it returns the
value of the expression. Otherwise this function is similanuia()

runcall (functior{, argument, ..])
Call thefunction (a function or method object, not a string) with the given arguments. Winecall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

set _trace ()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post _mortem (tracebach
Enter post-mortem debugging of the givieacebackobject.

pm()

Enter post-mortem debugging of the traceback fourgyslast _traceback

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
“h(elp) " means that eitherlf” or “help " can be used to enter the help command (but f&™or “hel ”, nor

“H" or “Help or “HELP’). Arguments to commands must be separated by whitespace (spaces or tabs). Optional
arguments are enclosed in square brackdts {f'in the command syntax; the square brackets must not be typed.
Alternatives in the command syntax are separated by a vertical |pgr (*

Entering a blank line repeats the last command entered. Exception: if the last commandistas acommand, the
next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamation Poiiith{s is a
powerful way to inspect the program being debugged; it is even possible to change a variable or call a function. When

136 Chapter 9. The Python Debugger

an exception occurs in such a statement, the exception name is printed but the debugger’s state is not changed.

h(elp) [command] Without argument, print the list of available commands. Wittbenmandas argument, print help
about that commandheélp pdb ' displays the full documentation file; if the environment variaBIRGERs
defined, the file is piped through that command instead. Sincedimmandargument must be an identifier,
‘help exec ’'must be entered to get help on tHe tommand.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an older frame).

u(p) Move the current frame one level up in the stack trace (to a newer frame).

b(reak) [Iinenol function[, " condition’]] With a lineno argument, set a break there in the current file. With a
functionargument, set a break at the entry of that function. Without argument, list all breaks. If a second
argument is present, it is a string (included in string quotes!) specifying an expression which must evaluate to
true before the breakpoint is honored.

cl(ear) [Iineno] With alinenoargument, clear that break in the current file. Without argument, clear all breaks (but
first ask confirmation).

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or on the next line
in the current function).

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference between
next andstep is thatstep stops inside a called function, whiteext executes called functions at (nearly)
full speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.
c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

I(ist) [first[, Iast]] List source code for the current file. Without arguments, list 11 lines around the current line or
continue the previous listing. With one argument, list 11 lines around at that line. With two arguments, list the
given range; if the second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expressionEvaluate thexpressiorin the current context and print its value. (Nopgint can also be used, but is
not a debugger command — this executes the Pyt~ statement.)

[!]statementExecute the (one-linegtatementn the context of the current stack frame. The exclamation point can
be omitted unless the first word of the statement resembles a debugger command. To set a global variable, you
can prefix the assignment command withgégobal ” command on the same line, e.g.:

(Pdb) global list_options; list_options = [-I']
(Pdb)

g(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

e sys.settrace(fung sets the global trace function

9.2. How It Works 137

e there can also a local trace function (see later)

Trace functions have three argumentsame event andarg. frameis the current stack frameeventis a string:
‘call ,’line’ | ’return’ or 'exception’ . arg depends on the event type.

The global trace function is invoked (widtventset to’call’) whenever a new local scope is entered; it should
return a reference to the local trace function to be used that scopenerif the scope shouldn't be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that scope), or
None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.
The events have the following meaning:

‘call’ A function is called (or some other code block entered). The global trace function is called; arg is the
argument list to the function; the return value specifies the local trace function.

line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one line exist).
The local trace function is called; arg in None; the return value specifies the new local trace function.

return’ A function (or other code block) is about to return. The local trace function is called; arg is the value that
will be returned. The trace function’s return value is ignored.

‘'exception’ An exception has occurred. The local trace function is called; arg is a triple (exception, value,
traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callelex@eption’ event is generated at each level.

For more information on code and frame objects, refer tdPython Reference Manual

138 Chapter 9. The Python Debugger

CHAPTER
TEN

The Python Profiler

Copyright(© 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskint.

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any purpose
(subject to the restriction in the following sentence) without fee is hereby granted, provided that the above copyright
notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. This permission is explicitly restricted to the copying and modifi-
cation of the software to remain in Python, compiled Python, or other languages (such as C) wherein the modified or
derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably clumsy code, but |
don't know for sure yet 'cause I'm a beginner :-). | did work hard to make the code run fast, so that profiling would
be a reasonable thing to do. | tried not to repeat code fragments, but I'm sure | did some stuff in really awkward ways
at times. Please send suggestions for improvementart@netscape.com. | won't promiseany support. ...but I'd
appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modariefie andpstats . This profiler
providesdeterministic profilingof any Python programs. It also provides a series of report generation tools to allow
users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU time. It's not a
trade-off, it's a trade-up.

1Updated and converted t8TEX by Guido van Rossum. The references to the old profiler are left in the text, although it no longer exists.

139

To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct functions.

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for platform is supported,
file reads are not dortey profiler during profiling (and charged to user’s code!).

Speed increased:Overhead CPU cost was reduced by more than a factor of two (perhaps a factor of five), lightweight
profiler module is all that must be loaded, and the report generating maqukikty) is not needed during
profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; recursive entries are
counted.

Large growth in report generating Ul: Distinct profiles runs can be added together forming a comprehensive re-
port; functions that import statistics take arbitrary lists of files; sorting criteria is now based on keywords (in-
stead of 4 integer options); reports shows what functions were profiled as well as what profile file was referenced;
output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows a
user to rapidly perform profiling on an existing application.

To profile an application with a main entry point é66() ’, you would add the following to your module:

import profile
profile.run(’foo()’)

The above action would caus®06() ’to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profile into
a file for later examination, you can supply a file name as the second argumentua(he function:

import profile
profile.run(‘foo()’, 'fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /usr/local/lib/pythonl.5/profile.py myscript.py
When you wish to review the profile, you should use the methods ipstets module. Typically you would load
the statistics data as follows:

import pstats
p = pstats.Stats('fooprof’)

The classStats (the above code just created an instance of this class) has a variety of methods for manipulating and
printing the data that was just read infid.' When you rarprofile.run() above, what was printed was the result
of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries

140 Chapter 10. The Python Profiler

according to the standard module/line/name string that is printed (this is to comply with the semantics of the old
profiler). The third method printed out all the statistics. You might try the following sort calls:

p.sort_stats('name’)
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:
p.sort_stats('time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats('__init__ ")

This will sort all the statistics by file name, and then print out statistics for only the class init methods (‘cause they are
spelled with __init __"in them). As one final example, you could try:

p.sort_stats('time’, 'cum’).print_stats(.5, 'init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out some
of the statistics. To be specific, the list is first culled down to 50% (r&:") of its original size, then only lines
containinginit are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could npWwiq'still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you're going to have to read the manual, or guess what the following functions do:

p.print_callees()
p.add('fooprof’)

10.4 What Is Deterministic Profiling?

Deterministic profilingis meant to reflect the fact that dlinction call function return and exceptionevents are
monitored, and precise timings are made for the intervals between these events (during which time the user’s code
is executing). In contrasstatistical profiling (which is not done by this module) randomly samples the effective

10.4. What Is Deterministic Profiling? 141

instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to
do deterministic profiling. Python automatically providekaok (optional callback) for each event. In addition, the
interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to only add
small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet
provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global functiprofile.run() . It is typically used to create any
profile information. The reports are formatted and printed using methods of th@stats Stats . The following

is a description of all of these standard entry points and functions. For a more in-depth view of some of the code,
consider reading the later section on Profiler Extensions, which includes discussion of how to derive “better” profilers
from the classes presented, or reading the source code for these modules.

run (string[, filenam(£,]])
This function takes a single argument that has can be passeddrebestatement, and an optional file name.
In all cases this routine attemptsdgec its first argument, and gather profiling statistics from the execution. If
no file name is present, then this function automatically prints a simple profiling report, sorted by the standard
name string (file/line/function-name) that is presented in each line. The following is a typical output from such
acall:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)

2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)
43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)

The first line indicates that this profile was generated by the call:

profile.run(’'main()’) , and hence the exec’ed string’main()’ . The second line indicates that
2706 calls were monitored. Of those calls, 2004 wmimitive. We defineprimitive to mean that the call was
not induced via recursion. The next lin@rdered by: standard name , indicates that the text string in

the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,
tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),
percall is the quotient ofottime divided byncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till exit). This figure is accurate
evenfor recursive functions.

percall is the quotient otumtime divided by primitive calls
filename:lineno(function) provides the respective data of each function

142 Chapter 10. The Python Profiler

When there are two numbers in the first column (e 43/3), then the latter is the number of primitive calls,
and the former is the actual number of calls. Note that when the function does not recurse, these two values are
the same, and only the single figure is printed.

Analysis of the profiler data is done using this class fromptats module:

Stats (filenam({,])
This class constructor creates an instance of a “statistics object” ffidename(or set of filenames)Stats
objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding versiie of .
To be specific, there ino file compatibility guaranteed with future versions of this profiler, and there is no
compatibility with files produced by other profilers (e.g., the old system profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an overall view of
several processes can be considered in a single report. If additional files need to be combined with data in an
existingStats object, theadd() method can be used.

The Stats Class

strip _dirs ()
This method for theStats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries in a
“random” order, as it was just after object initialization and loadingstiip _dirs() causes two function
names to be indistinguishable (i.e., they are on the same line of the same filename, and have the same function
name), then the statistics for these two entries are accumulated into a single entry.

add (filenamg, ...])
This method of theStats class accumulates additional profiling information into the current profiling object.
Its arguments should refer to filenames created by the corresponding verginofilef.run() . Statistics
for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.

sort _stats (ke)[,])
This method modifies th8tats object by sorting it according to the supplied criteria. The argument is typically
a string identifying the basis of a sort (examgteane’ or’'name’).

When more than one key is provided, then additional keys are used as secondary criteria when the there is
equality in all keys selected before them. For examplert' _stats('name’, ‘file’) " will sort all the
entries according to their function name, and resolve all ties (identical function names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are
the keys currently defined:

Valid Arg Meaning

‘calls’ call count
‘cumulative’ cumulative time
file’ file name
'module’ file name
'pealls’ primitive call count
'line’ line number
‘name’ function name
nfl’ namef/file/line
‘'stdname’ standard name
'time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name,
file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction Inditween

and’stdname’ is that the standard name is a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same)

10.5. Reference Manual 143

appear in the string order 20, 3 and 40. In contraif, = does a numeric compare of the line numbers. In fact,
sort _stats('nfl’) is the same asort _stats('name’, ‘file’, ’line’)

For compatibility with the old profiler, the numeric argumerits 0, 1, and2 are permitted. They are interpreted
as’stdname’ |, 'calls’ ,’time’ |, and’cumulative’ respectively. If this old style format (numeric) is
used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.

reverse _order ()
This method for theStats class reverses the ordering of the basic list within the object. This method is
provided primarily for compatibility with the old profiler. Its utility is questionable now that ascending vs
descending order is properly selected based on the sort key of choice.

print _stats (restrictior{,])
This method for théstats class prints out a report as described inphafile.run() definition.

The order of the printing is based on the lastt _stats() operation done on the object (subject to caveats
inadd() andstrip _dirs()

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is
taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines),
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to
pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression
syntax defined by thee module). If several restrictions are provided, then they are applied sequentially. For
example:

print_stats(.1, 'foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename
“*foo: . In contrast, the command:

print_stats(‘foo:’, .1)

would limit the list to all functions having file namegfoo: ’, and then proceed to only print the first 10% of
them.

print _callers (restrictions{,])
This method for théStats class prints a list of all functions that called each function in the profiled database.
The ordering is identical to that provided pyint _stats() , and the definition of the restricting argument
is also identical. For convenience, a number is shown in parentheses after each caller to show how many times
this specific call was made. A second non-parenthesized number is the cumulative time spent in the function at
the right.

print _callees (restrictions{,])
This method for théStats class prints a list of all function that were called by the indicated function. Aside
from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to
theprint _callers() method.

ignore ()
Deprecated since release 1.5.This is not needed in modern versions of PytRon.

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to dispatch
call, return, andexceptiorevents. Compiled C code does not get interpreted, and hence is “invisible” to the profiler.
All time spent in C code (including built-in functions) will be charged to the Python function that invoked the C code.
If the C code calls out to some native Python code, then those calls will be profiled properly.

2This was once necessary, when Python would print any unused expression result thatMasendthe method is still defined for backward
compatibility.

144 Chapter 10. The Python Profiler

The second limitation has to do with accuracy of timing information. There is a fundamental problem with determin-
istic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate that that underlying clock. If enough
measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a
second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time
actuallygetsthe state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
a result, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (i.e., less than one clock tick), but it
canaccumulate and become very significant. This profiler provides a means of calibrating itself for a given platform
so that this error can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are exceptionally
low, and the gods of probability work against you :-).) NOT be alarmed by negative numbers in the profile. They
shouldonly appear if you have calibrated your profiler, and the results are actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate for the overhead
of calling the time function, and socking away the results. The following procedure can be used to obtain this constant
for a given platform (see discussion in section Limitations above).

import profile

pr = profile.Profile()
print pr.calibrate(100)
print pr.calibrate(100)
print pr.calibrate(100)

The argument tealibrate() is the number of times to try to do the sample calls to get the CPU times. If your
computer isveryfast, you might have to do:

pr.calibrate(1000)

or even:

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you are ready to use
that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the magical number is about .00053.
If you have a choice, you are better off with a smaller constant, and your results will “less often” show up as negative
in profile statistics.

The following shows how the tracgispatch() method in the Profile class should be modified to install the calibration
constant on a Sun Sparcstation 1000:

10.7. Calibration 145

def trace_dispatch(self, frame, event, arg):
t = self.timer()
t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):
t = self.timer()
self.t = t[0] + t[1]

else:

r = self.timer()

self.t = rf[0] + r[1] - t # put back unrecorded delta
return

Note that if there is no calibration constant, then the line containing the callibration constant should simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally fast!!), but the
above method is the simplest to use. | could have made the profiler “self calibrating”, but it would have made the
initialization of the profiler class slower, and would have required seangfancy coding, or else the use of a variable
where the constant00053 ’ was placed in the code shown. This i¥&RY critical performance section, and there

is no reason to use a variable lookup at this point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

TheProfile class of modulgrofile was written so that derived classes could be developed to extend the profiler.
Rather than describing all the details of such an effort, I'll just present the following two examples of derived classes
that can be used to do profiling. If the reader is an avid Python programmer, then it should be possible to use these as
a model and create similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic class has an
option for that in the constructor for the class. Consider passing the name of a function to call into the constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will callyour _time _func() instead ofos.times() . The function should return either a
single number or a list of numbers (like whad.times() returns). If the function returns a single time number, or
the list of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

Be warned that yoshouldcalibrate the profiler class for the timer function that you choose. For most machines, atimer
that returns a lone integer value will provide the best results in terms of low overhead during prafiinigné€s()

is prettybad, 'cause it returns a tuple of floating point values, so all arithmetic is floating point in the profiler!). If you
want to substitute a better timer in the cleanest fashion, you should derive a class, and simply put in the replacement
dispatch method that better handles your timer call, along with the appropriate calibration constant :-).

OldProfile Class

The following derived profiler simulates the old style profiler, providing errant results on recursive functions. The
reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the old profiler. It still creates all
the caller stats, and is quite useful when thenmedsecursion in the user’s code. It is also a lot more accurate than the
old profiler, as it does not charge all its overhead time to the user’s code.

146 Chapter 10. The Python Profiler

class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rct, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:
return self.trace_dispatch_return(rframe, t)
return O

def trace_dispatch_call(self, frame, t):
fn = ‘frame.f_code’

self.cur = (t, 0, 0, fn, frame, self.cur)
if self.timings.has_key(fn):
tt, ct, callers = self.timings[fn]
self.timings[fn] = tt, ct, callers
else:
self.timings[fn] = 0, 0, {}
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, rct, rfn, frame, rcur = self.cur

rt = rtt + t

sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur

self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]
if callers.has_key(pfn):
callers[pfn] = callers[pfn] + 1
else:
callers[pfn] = 1
self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():
tt, ct, callers = self.timings[func]
nor_func = self.func_normalize(func)
nor_callers = {}
nc =0
for func_caller in callers.keys():
nor_callers[self.func_normalize(func_caller)] = \
callers[func_caller]
nc = nc + callers[func_caller]
self.stats[nor_func] = nc, nc, tt, ct, nor_callers

HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and does not
calculate cumulative time under a function. It only calculates time spent in a function, so it runs very quickly (re: very
low overhead). In truth, the basic profiler is so fast, that is probably not worth the savings to give up the data, but this
class still provides a nice example.

10.8. Extensions — Deriving Better Profilers 147

class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:
return self.trace_dispatch_return(rframe, t)
return O

def trace_dispatch_call(self, frame, t):
self.cur = (t, 0, frame, self.cur)
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f_code’

pt, ptt, pframe, pcur = rcur
self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):

nc, tt = self.timings[rfn]

self.timings[rfn] = nc + 1, rt + rtt + tt
else:

self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():
nc, tt = self.timings[func]
nor_func = self.func_normalize(func)
self.stats[nor_func] = nc, nc, tt, 0, {}

148 Chapter 10. The Python Profiler

CHAPTER
ELEVEN

Internet and WWW Services

The modules described in this chapter provide various services to World-Wide Web (WWW) clients and/or services,
and a few modules related to news and email. They are all implemented in Python. Some of these modules require the
presence of the system-dependent modulekets , which is currently only fully supported onNix and Windows

NT. Here is an overview:

cgi — Common Gateway Interface, used to interpret forms in server-side scripts.

urllib — Open an arbitrary object given by URL (requires sockets).

httplib — HTTP protocol client (requires sockets).

ftplib — FTP protocol client (requires sockets).

gopherlib — Gopher protocol client (requires sockets).

imaplib — IMAPA4 protocol client (requires sockets).

nntplib — NNTP protocol client (requires sockets).

urlparse — Parse a URL string into a tuple (addressing scheme identifier, network location, path, parameters, query
string, fragment identifier).

sgmllib — Only as much of an SGML parser as needed to parse HTML.

htmllib — A parser for HTML documents.

xmllib — A parser for XML documents.

formatter — Generic output formatter and device interface.

rfc822 — Parse RFC 822 style mail headers.

mimetools — Tools for parsing MIME style message bodies.

binhex — Encode and decode files in binhex4 format.

uu — Encode and decode files in uuencode format.

binascii — Tools for converting between binary and various ascii-encoded binary representation

xdrlib — The External Data Representation Standard as described in RFC 1014, written by Sun Microsystems, Inc.
June 1987.

mailcap — Mailcap file handling. See RFC 1524.

base64— Encode/decode binary files using the MIME base64 encoding.

149

qguopri — Encode/decode binary files using the MIME quoted-printable encoding.
SocketServer — A framework for network servers.

mailbox — Read various mailbox formats.

mimify — Mimification and unmimification of mail messages.

BaseHTTPServer — Basic HTTP server (base class for SimpleHTTPServer and CGIHTTPServer).

11.1 Standard Module cqi

Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

Introduction

A CGil script is invoked by an HTTP server, usually to process user input submitted through an €H®RM>or
<ISINPUT> element.

Most often, CGlI scripts live in the server’s speciali-bin’ directory. The HTTP server places all sorts of information
about the request (such as the client’s hostname, the requested URL, the query string, and lots of other goodies) in the
script's shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the form
data is passed via the “query string” part of the URL. This module is intended to take care of the different cases and
provide a simpler interface to the Python script. It also provides a number of utilities that help in debugging scripts,
and the latest addition is support for file uploads from a form (if your browser supports it — Grail 0.3 and Netscape
2.0 do).

The output of a CGl script should consist of two sections, separated by a blank line. The first section contains a number
of headers, telling the client what kind of data is following. Python code to generate a minimal header section looks
like this:

print "Content-type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here's Python code that prints a simple piece of HTML.:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGIl script</H1>"
print "Hello, world!"

(It may not be fully legal HTML according to the letter of the standard, but any browser will understand it.)

Using the cgi module
Begin by writing import cgi . Do not use from cgi import * " — the module defines all sorts of names
for its own use or for backward compatibility that you don’t want in your namespace.

It's best to use th€ieldStorage class. The other classes defined in this module are provided mostly for backward
compatibility. Instantiate it exactly once, without arguments. This reads the form contents from standard input or the

150 Chapter 11. Internet and WWW Services

environment (depending on the value of various environment variables set according to the CGlI standard). Since it
may consume standard input, it should be instantiated only once.

The FieldStorage instance can be accessed as if it were a Python dictionary. For instance, the following code
(which assumes that theontent-type header and blank line have already been printed) checks that the fields
name andaddr are both set to a non-empty string:

form = cgi.FieldStorage()
form_ok = 0
if form.has_key("name") and form.has_key("addr"):
if form["name"].value != "™ and form['addr"].value !'= ™
form_ok =1
if not form_ok:
print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return
...further form processing here...

Here the fields, accessed throudbrin[key] ’, are themselves instances BieldStorage (or MiniField-
Storage , depending on the form encoding).

If the submitted form data contains more than one field with the same name, the object retriefg@thbyKey] ' is

not aFieldStorage or MiniFieldStorage instance but a list of such instances. If you expect this possibility

(i.e., when your HTML form comtains multiple fields with the same name), uséypief) function to determine

whether you have a single instance or a list of instances. For example, here’s code that concatenates any number of
username fields, separated by commas:

username = form['username"]
if type(username) is type([]):
Multiple username fields specified
usernames = "™
for item in username:
if usernames:
Next item -- insert comma
usernames = usernames + "," + item.value
else:
First item -- don’t insert comma
usernames = item.value
else:
Single username field specified
usernames = username.value

If a field represents an uploaded file, the value attribute reads the entire file in memory as a string. This may not be
what you want. You can test for an uploaded file by testing either the filename attribute or the file attribute. You can
then read the data at leasure from the file attribute:

fileitem = form["userfile"]
if fileitem.file:
It's an uploaded file; count lines
linecount = 0
while 1:
line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

11.1. Standard Module cgi 151

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-kkeldStorage item. This can be deter-
mined by testing itdype attribute, which should benultipart/form-data (or perhaps another MIME type matching
multipart/*). It this case, it can be iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part ciitylpation/x-www-
form-urlencoded), the items will actually be instances of the cladmiFieldStorage . In this case, the list, file
and filename attributes are alwdysne.

Old classes

These classes, present in earlier versions ofctlie module, are still supported for backward compatibility. New
applications should use th&eldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in the form
only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values). Useful if
your form contains multiple fields with the same name.

Other classesHormContent , InterpFormContentDict) are present for backwards compatibility with really
old applications only. If you still use these and would be inconvenienced when they disappeared from a next version
of this module, drop me a note.

Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

parse (fp)
Parse a query in the environment or from a file (defaydt.stdin).

parse _gs(qs
Parse a query string given as a string argument (data ofaygdieation/x-www-form-urlencoded).

parse _multipart (fp, pdic)
Parse input of typenultipart/form-data (for file uploads). Arguments arfp for the input file andodict for the
dictionary containing other parameterscointent-type header

Returns a dictionary just likparse _gqs() keys are the field names, each value is a list of values for that field.
This is easy to use but not much good if you are expecting megabytes to be uploaded — in that case, use the
FieldStorage class instead which is much more flexible. Note tt@ttent-type is the raw, unparsed
contents of theontent-type header.

Note that this does not parse nested multipart parts —ieddStorage for that.

parse _header (string)
Parse a header likeontent-type into a main content-type and a dictionary of parameters.

test ()
Robust test CGlI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the scriptin HTML form.

print _environ ()
Format the shell environment in HTML.

print _form (form)
Format a form in HTML.

152 Chapter 11. Internet and WWW Services

print _directory ()
Format the current directory in HTML.

print _environ _usage ()
Print a list of useful (used by CGI) environment variables in HTML.

escape (s[, quote])
Convert the character&”, * <’ and >’ in string sto HTML-safe sequences. Use this if you need to display text
that might contain such characters in HTML. If the optional fiamteis true, the double quote character’|’
is also translated; this helps for inclusion in an HTML attribute value, e. gAInNHREF="...">

Caring about security

There’s one important rule: if you invoke an external program (e.g. viast®ystem() oros.popen() func-

tions), make very sure you don't pass arbitrary strings received from the client to the shell. This is a well-known
security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script to invoke arbitrary shell
commands. Even parts of the URL or field names cannot be trusted, since the request doesn’t have to come from your
form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only alphanumeric characters, dashes, underscores, and periods.

Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGI scripts should be installed; usually this is in a directagiyin’ in the server tree.

Make sure that your script is readable and executable by “others”; thg Ble mode should b®755 octal (use
‘chmod 0755 filename). Make sure that the first line of the script contaifis starting in column 1 followed by
the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others” — their
mode should b®644 for readable an®666 for writable. This is because, for security reasons, the HTTP server
executes your script as user “nobody”, without any special privileges. It can only read (write, execute) files that
everybody can read (write, execute). The current directory at execution time is also different (it is usually the server’s
cgi-bin directory) and the set of environment variables is also different from what you get at login. In particular, don’t
count on the shell’'s search path for executables ($PATH) or the Python module search path ($PYTHONPATH) to be
set to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can change the
path in your script, before importing other modules, e.qg.:

import sys
sys.path.insert(0, "/usr/homel/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-Wix systems will vary; check your HTTP server’s documentation (it will usually have a section
on CGl scripts).

11.1. Standard Module cgi 153

Testing your CGI script

Unfortunately, a CGlI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There’s one reason why you should
still test your script from the command line: if it contains a syntax error, the Python interpreter won't execute it at all,
and the HTTP server will most likely send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section.

Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGlI script carefully can
save you a lot of time. If you wonder whether you have understood the installation procedure correctly, try installing a
copy of this module file ¢gi.py’) as a CGlI script. When invoked as a script, the file will dump its environment and the
contents of the form in HTML form. Give it the right mode etc, and send it a request. If it's installed in the standard
‘cgi-bin’ directory, it should be possible to send it a request by entering a URL into your browser of the form:

http://lyourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script — perhaps you need to install it in a different directory.
If it gives another error (e.g. 500), there’s an installation problem that you should fix before trying to go any further.

If you get a nicely formatted listing of the environment and form content (in this example, the fields should be listed

as “addr” with value “At Home” and “name” with value “Joe Blow”), thegi.py’ script has been installed correctly.

If you follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call tlgi module’stest() function from your script: replace its main code with the
single statement

cgi.test()

This should produce the same results as those gotten from installineptipgfile itself.

When an ordinary Python script raises an unhandled exception (e.g. because of a typo in a module name, a file that
can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter will still
do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP server’s
log file, or be discarded altogether.

Fortunately, once you have managed to get your script to exeontecode, it is easy to catch exceptions and cause
a traceback to be printed. Thest() function below in this module is an example. Here are the rules:

1. Import the traceback module before enteringttiie ... except statement
2. Assignsys.stderr to besys.stdout
3. Make sure you finish printing the headers and the blank line early
4. Wrap all remaining code intay ... except statement
5. In the except clause, cathceback.print _exc()
For example:

154 Chapter 11. Internet and WWW Services

import sys
import traceback
print "Content-type: text/html"
print
sys.stderr = sys.stdout
try:
...your code here...
except:
print "\n\n<PRE>"
traceback.print_exc()

Notes: The assignment teys.stderr is needed because the traceback printssys.stderr . The
print "\n\n<PRE>" statement is necessary to disable the word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you can use an even more robust
approach (which only uses built-in modules):

import sys

sys.stderr = sys.stdout

print "Content-type: text/plain”
print

...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text, which
disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it raises an
exception, most likely after the first two lines have been printed, a traceback will be displayed. Because no HTML
interpretation is going on, the traceback will readable.

Common problems and solutions

e Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is not
possible to display a progress report on the client’s display while the script is running.

e Check the installation instructions above.

e Check the HTTP server’s log filest&il -f logfile " in a separate window may be useful!)
e Always check a script for syntax errors first, by doing something lggHon script.py '

e When using any of the debugging techniques, don’t forget to maoiort sys ' to the top of the script.

e When invoking external programs, make sure they can be found. Usually, this means using absolute path names
— $PATH is usually not set to a very useful value in a CGI script.

e When reading or writing external files, make sure they can be read or written by every user on the system.

e Don't try to give a CGl script a set-uid mode. This doesn’t work on most systems, and is a security liability as
well.

11.2 Standard Module urllib

This module provides a high-level interface for fetching data across the World-Wide Web. In particular; the
lopen() function is similar to the built-in functioropen() , but accepts Universal Resource Locators (URLS)

11.2. Standard Module urllib 155

instead of filenames. Some restrictions apply — it can only open URLs for reading, and no seek operations are
available.

It defines the following public functions:

urlopen (url)
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier, or if it has
‘file:’ as its scheme identifier, this opens a local file; otherwise it opens a socket to a server somewhere on the
network. If the connection cannot be made, or if the server returns an error cod®Bher exception is
raised. If all went well, a file-like object is returned. This supports the following methedsl() , read-
line() ,readlines() ,fileno() ,close() andinfo() . Except for the last one, these methods have
the same interface as for file objects — see section 2.1 in this manual. (It is not a built-in file object, however,
so it can’t be used at those few places where a true built-in file object is required.)

Theinfo() method returns an instance of the clagmetools.Message containing the headers received
from the server, if the protocol uses such headers (currently the only supported protocol that uses this is HTTP).
See the description of theimetools module.

urlretrieve (url)
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file, or a valid
cached copy of the object exists, the object is not copied. Return a(tfildeame headery wherefilename
is the local file name under which the object can be found,teatlerss eitherNone (for a local object) or
whatever thanfo() method of the object returned lylopen() returned (for a remote object, possibly
cached). Exceptions are the same asuftopen()

uricleanup ()
Clear the cache that may have been built up by previous calidrigtrieve()

guote (string[, addsafd)
Replace special characterssitning using the %xx escape. Letters, digits, and the characters * * are never
guoted. The optionaddsafeparameter specifies additional characters that should not be quoted — its default
value is'/’

Example:quote(’/"connolly/’) yields'/%7econnolly/’

qguote _plus (string[, addsafd)
Like quote() , but also replaces spaces by plus signs, as required for quoting HTML form values.

unquote (string)
Replace %xx escapes by their single-character equivalent.

Example:unquote('/%7Econnolly/’) yields’/"connolly/’

unquote _plus (string)
Like unquote() , but also replaces plus signs by spaces, as required for unquoting HTML form values.

Restrictions:
e Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but not Gopher-+),
FTP, and local files.

e The caching feature afrlretrieve() has been disabled until | find the time to hack proper processing of
Expiration time headers.

e There should be a function to query whether a particular URL is in the cache.

e For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL is
re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

e Theurlopen() andurlretrieve() functions can cause arbitrarily long delays while waiting for a net-
work connection to be set up. This means that it is difficult to build an interactive web client using these functions
without using threads.

156 Chapter 11. Internet and WWW Services

e The data returned byrlopen() or urlretrieve() is the raw data returned by the server. This may be
binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol provides type information in
the reply header, which can be inspected by looking attment-type header. For the Gopher protocol,
type information is encoded in the URL; there is currently no easy way to extract it. If the returned data is
HTML, you can use the modulgmllib to parse it.

e Although theurllib module contains (undocumented) routines to parse and unparse URL strings, the recom-
mended interface for URL manipulation is in moduldparse

11.3 Standard Module httplib

This module defines a class which implements the client side of the HTTP protocol. It is normally not used directly
— the moduleurllib uses it to handle URLs that use HTTP.

The module defines one classT TP,

HTTR [hosl[, port]])
An HTTPinstance represents one transaction with an HTTP server. It should be instantiated passing it a host

and optional port number. If no port number is passed, the port is extracted from the host string if it has the
form host port, else the default HTTP port (80) is used. If no host is passed, no connection is made, and the
connect() method should be used to connect to a server. For example, the following calls all create instances
that connect to the server at the same host and port:

>>> hl = httplib. HTTP(www.cwi.nl’)
>>> h2 = httplib. HTTP('www.cwi.nl:80")
>>> h3 = httplib.HTTP(www.cwi.nl’, 80)

Once arHTTPinstance has been connected to an HTTP server, it should be used as follows:

1.Make exactly one call to theutrequest() method.

2.Make zero or more calls to thmitheader() method.

3.Call theendheaders() method (this can be omitted if step 4 makes no calls).
4.0Optional calls to theend() method.

5.Call thegetreply() method.

6.Call thegetfile() method and read the data off the file object that it returns.

HTTP Objects

HTTPinstances have the following methods:

set _debuglevel (leve)
Set the debugging level (the amount of debugging output printed). The default debug Ryehtésmning no
debugging output is printed.

connect (hos{, port])
Connect to the server given lwpstandport. See the intro for the default port. This should be called directly
only if the instance was instantiated without passing a host.

send (data)
Send data to the server. This should be used directly only aftearttieeaders() = method has been called
and beforegetreply() has been called.

putrequest (request, selectdr
This should be the first call after the connection to the server has been made. It sends a line to the server
consisting of theequeststring, theselectorstring, and the HTTP versiotdT TP/1.0).

11.3. Standard Module httplib 157

putheader (header, argumevﬁt])
Send an RFC 822 style header to the server. It sends a line to the server consisting of the header, a colon and a
space, and the first argument. If more arguments are given, continuation lines are sent, each consisting of a tab
and an argument.

endheaders ()
Send a blank line to the server, signalling the end of the headers.

getreply ()
Complete the request by shutting down the sending end of the socket, read the reply from the server, and return a

triple (replycode message header}. Here replycodes the integer reply code from the request (2@ if

the request was handled properlyjessagés the message string corresponding to the reply codehaaders

is an instance of the clagsimetools.Message containing the headers received from the server. See the
description of thenimetools module.

getfile ()
Return a file object from which the data returned by the server can be read, usiegdie , readline()
orreadlines() methods.

Example
Here is an example session:

>>> import httplib

>>> h = httplib. HTTP(www.cwi.nl’)

>>> h.putrequest(GET’, ’findex.html’)

>>> h.putheader(’Accept’, 'text/html’)

>>> h.putheader(’Accept’, 'text/plain’)

>>> h.endheaders()

>>> errcode, errmsg, headers = h.getreply()
>>> print errcode # Should be 200

>>> f = h.getfile()

>>> data = fread() # Get the raw HTML
>>> f.close()

11.4 Standard Module ftplib

This module defines the clagd' P and a few related items. THeTP class implements the client side of the FTP
protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as mirroring
other ftp servers. Itis also used by the moduiib to handle URLSs that use FTP. For more information on FTP
(File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using ftyib module:

158 Chapter 11. Internet and WWW Services

>>> from ftplib import FTP
>>> ftp = FTP(ftp.cwi.nl’) # connect to host, default port

>>> ftp.login() # user anonymous, passwd user@hostname
>>> ftp.retrlines('LIST’) # list directory contents

total 24418

drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .

dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..

-rW-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

>>> ftp.quit()

The module defines the following items:

FTP([hos{, user[, passw@, acct]]]])
Return a new instance of thel'P class. Wherhostis given, the method catlonnect(hos) is made. When
useris given, additionally the method cdbbgin(user, passwd acc) is made (whergpasswdandacct
default to the empty string when not given).

all _errors
The set of all exceptions (as a tuple) that methodsT? instances may raise as a result of problems with the
FTP connection (as opposed to programming errors made by the caller). This set includes the four exceptions
listed below as well asocket.error andIOError

error _reply
Exception raised when an unexpected reply is received from the server.

error _temp
Exception raised when an error code in the range 400—499 is received.

error _perm
Exception raised when an error code in the range 500-599 is received.

error _proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1-5.

FTP Objects

FTP instances have the following methods:

set _debuglevel (leve)
Set the instance’s debugging level. This controls the amount of debugging output printed. The @efault,
produces no debugging output. A valueloproduces a moderate amount of debugging output, generally a
single line per request. A value &for higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

connect (hos{, port])
Connect to the given host and port. The default port numkt jas specified by the FTP protocol specification.
It is rarely needed to specify a different port number. This function should be called only once for each instance;
it should not be called at all if a host was given when the instance was created. All other methods can only be
used after a connection has been made.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

login ([user[, paSSWtﬂ, acct]]])

11.4. Standard Module ftplib 159

Log in as the giveruser. The passwdandacct parameters are optional and default to the empty string. If no
useris specified, it defaults tanonymous’ . If useris anonymous, the defaulppasswds ‘realusei@ost
whererealuseris the real user name (glanced from the $LOGNAME or $USER environment variablapanhd

is the hostname as returned dxycket.gethostname() . This function should be called only once for each
instance, after a connection has been established; it should not be called at all if a host and user were given when
the instance was created. Most FTP commands are only allowed after the client has logged in.

abort ()
Abort a file transfer that is in progress. Using this does not always work, but it's worth a try.

sendcmd (commandl
Send a simple command string to the server and return the response string.

voidemd (commandl
Send a simple command string to the server and handle the response. Return nothing if a response code in the
range 200—299 is received. Raise an exception otherwise.

retrbinary (command, caIIbac[k maxblocksiz]})
Retrieve a file in binary transfer mode.commandshould be an appropriateRETR command, i.e.
'RETR filename . The callback function is called for each block of data received, with a single string ar-
gument giving the data block. The optiomabhxblocksizargument specifies the maximum chunk size to read
on the low-level socket object created to do the actual transfer (which will also be the largest size of the data
blocks passed toallback. A reasonable default is chosen.

retrlines (comman@, callback])
Retrieve a file or directory listing inscii transfer modecommandshould be an appropriatRETR command
(seeretrbinary() ora‘LIST ' command (usually just the stringlST’). Thecallbackfunction is called
for each line, with the trailing CRLF stripped. The defazdtlbackprints the line tesys.stdout

storbinary ~ (command, file, blocksiye
Store a file in binary transfer mode. command should be an appropriateSTOR command, i.e.
"STOR filenamé. file is an open file object which is read unibF using itsread() method in blocks
of sizeblocksizeo provide the data to be stored.

storlines (. command, filg
Store a file in Ascil transfer mode. command should be an appropriateSTOR command (see
storbinary()). Lines are read untiEoF from the open file objectile using itsreadline() method
to privide the data to be stored.

nist (argumen[,])
Return a list of files as returned by th8l:ST command. The optionarguments a directory to list (default
is the current server directory). Multiple arguments can be used to pass non-standard optionditsthe *
command.

dir (argumen[,])
Return a directory listing as returned by théST ' command, as a list of lines. The optioreigumentis a
directory to list (default is the current server directory). Multiple arguments can be used to pass non-standard
options to the LIST ' command. If the last argument is a function, it is used askiback function as for
retrlines()

rename (fromname, tonan)e
Rename fildromnameon the server ttoname

cwd(pathnamg
Set the current directory on the server.

mkd(pathnamé
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

160 Chapter 11. Internet and WWW Services

quit ()
Send aQUIT’ command to the server and close the connection. This is the “polite” way to close a connection,
but it may raise an exception of the server reponds with an error t6té€r” command.

close ()
Close the connection unilaterally. This should not be applied to an already closed connection (e.g. after a
successful call tguit()

11.5 Standard Module gopherlib

This module provides a minimal implementation of client side of the the Gopher protocol. It is used by the module
urllib to handle URLSs that use the Gopher protocol.

The module defines the following functions:

send _selector (selector, hos[t, port])
Send aselectorstring to the gopher server adstandport (default70). Returns an open file object from which
the returned document can be read.

send _query (selector, query, hoEt port])
Send aselectorstring and aquerystring to a gopher server hbstandport (default70). Returns an open file
object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character of the selector
string. If the data is text (first character of the selecto®i} lines are terminated by CRLF, and the data is terminated

by a line consisting of a single *, and a leading.'’ should be stripped from lines that begin with . Directory

listings (first character of the selector i8) are transferred using the same protocol.

11.6 Standard Module imaplib

This module defines a clasBylAP4, which encapsulates a connection to an IMAP4 server and implements the
IMAP4revl client protocol as defined in RFC 2060. It is backward compatible with IMAP4 (RFC 1730) servers,
but note that theSTATUS command is not supported in IMAP4.

A single class is provided by thmaplib module:

IMAP4([hos{, port]])
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4 or
IMAP4revl) is determined when the instance is initializedhdbtis not specified; (the local host) is used.
If port is omitted, the standard IMAP4 port (143) is used.

Two exceptions are defined as attributes oflti&P4 class:

IMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

IMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-clédaB#.error . Note that closing
the instance and instantiating a new one will usually allow recovery from this exception.

The following utility functions are defined:

Internaldate2tuple (datest)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returtisia module tuple.
INt2AP (num

Converts an integer into a string representation using characters from tihe set.[

11.5. Standard Module gopherlib 161

ParseFlags (flagstr)
Converts an IMAP4FLAGS response to a tuple of individual flags.

Time2Internaldate (datetime)
Converts &ime module tuple to an IMAP4INTERNALDATE representation. Returns a string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMMihcluding double-quotes).

IMAP4 Objects

All IMAP4revl commands are represented by methods of the same name, either upper-case or lower-case.

Each command returns a tupletype [data, ..]) wheretypeis usually’OK’ or’NQO’ , anddatais either the text
from the command response, or mandated results from the command.

An IMAP4 instance has the following methods:

append (mailbox, flags, dat¢éime, message
Append message to named mailbox.

authenticate (fung
Authenticate command — requires response processing. This is currently unimplemented, and raises an excep-
tion.

check ()
Checkpoint mailbox on server.

close ()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command beforeOGOUT

copy (messagsset, newmailbox
Copymessagesetmessages onto end oéw mailbox

create (mailboy
Create new mailbox namedailbox

delete (mailboX
Delete old mailbox namenahailbox

expunge ()
Permanently remove deleted items from selected mailbox. GenerateXBWNGEesponse for each deleted
message. Returned data contains a lisEPUNGEmessage numbers in order received.

fetch (messageset, messagparts)
Fetch (parts of) messages. Returned data are tuples of message part envelope and data.

list ([directory[, pattern]])
List mailbox names irdirectory matchingpattern directory defaults to the top-level mail folder, anmttern
defaults to match anything. Returned data contains a lidtI&T ’ responses.

login (‘user, password
Identify the client using a plaintext password.

logout ()
Shutdown connection to server. Returns serBafE response.

Isub ([directory{, pattern]])
List subscribed mailbox names in directory matching patteirectory defaults to the top level directory and
patterndefaults to match any mailbox. Returned data are tuples of message part envelope and data.

recent ()
Prompt server for an update. Returned datddse if no new messages, else value BECENTresponse.

162 Chapter 11. Internet and WWW Services

rename (oldmailbox, newmailbgx
Rename mailbox namealdmailboxto newmailbox

response (code
Return data for responsedeif received, omNone. Returns the given code, instead of the usual type.

search (charset, criterig
Search mailbox for matching messages. Returned data contains a space separated list of matching message
numbers.

select ([mailbo>{, readonly]])
Select a mailbox. Returned data is the count of messageailbox(' EXISTS’ response). The defauthailbox
is'INBOX’ . If the readonlyflag is set, modifications to the mailbox are not allowed.

status (mailbox, namés
Request named status conditionsiailbox

store (messageset, command, flafist)
Alters flag dispositions for messages in mailbox.

subscribe (mailboy
Subscribe to new mailbox.

uid (command, args
Execute command args with messages identified by UID, rather than message number. Returns response appro-
priate to command.

unsubscribe (mailbox
Unsubscribe from old mailbox.

xatom (name[, argl[, argz]])
Allow simple extension commands notified by server@QAPABILITY ' response.

The following attributes are defined on instancef\dAP4:

PROTOCQNERSION
The most recent supported protocol in tkAPABILITY ' response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module vdDetiley. Values
greater than three trace each command.

IMAP4 Example
Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib, string
M = imaplib.IMAP4()
M.LOGIN(getpass.getuser(), getpass.getpass())
M.SELECT()
typ, data = M.SEARCH(None, 'ALL’)
for num in string.split(data[0]):
typ, data - M.FETCH(num, '(RFC822)")
print 'Message %s\n%s\n’ % (num, data[0][1])
M.LOGOUT()

Note that IMAP4 message numbers change as the mailbox changes, so it is highly advisable to use UIDs instead, with
the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

11.6. Standard Module imaplib 163

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found at the
University of Washington’sMAP Information Cente(http://www.cac.washington.edu/imap/).

11.7 Standard Module nntplib

This module defines the claddiNTPwhich implements the client side of the NNTP protocol. It can be used to
implement a news reader or poster, or automated news processors. For more information on NNTP (Network News
Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of
the last 10 articles:

>>> s = NNTP(news.cwi.nl’)

>>> resp, count, first, last, name = s.group(’comp.lang.python’)

>>> print 'Group’, name, ’'has’, count, ’articles, range’, first, 'to’, last
Group comp.lang.python has 59 articles, range 3742 to 3803

>>> resp, subs = s.xhdr('subject’, first + -* + last)

>>> for id, sub in subs[-10:]: print id, sub

3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?

3794 Emacs and doc strings

3795 a few questions about the Mac implementation
3796 Re: executable python scripts

3797 Re: executable python scripts

3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules
3802 Re: executable python scripts

3803 Re: \POSIX{} wait and SIGCHLD

>>> s.quit()

'205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(news.cwi.nl’)

>>> f = open(’/tmp/article’)

>>> s.post(f)

'240 Article posted successfully.’

>>> s.quit()

'205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

NNTR hos{, port])
Return a new instance of tiédNTPclass, representing a connection to the NNTP server running orhbsist
listening at porport. The defaulportis 119.

error _reply
Exception raised when an unexpected reply is received from the server.

error _temp
Exception raised when an error code in the range 400-499 is received.

error _perm

164 Chapter 11. Internet and WWW Services

Exception raised when an error code in the range 500-599 is received.

error _proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1-5.

NNTP Objects

NNTP instances have the following methods. Tésponsehat is returned as the first item in the return tuple of almost
all methods is the server's response: a string beginning with a three-digit code. If the server’s response indicates an
error, the method raises one of the above exceptions.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

set _debuglevel (leve)
Set the instance’s debugging level. This controls the amount of debugging output printed. The @efault,
produces no debugging output. A valuelofproduces a moderate amount of debugging output, generally a
single line per request or response. A valu@ afr higher produces the maximum amount of debugging output,
logging each line sent and received on the connection (including message text).

newgroups (date, timé
Send aNEWGROUP&mmand. Thelateargument should be a string of the fofrgymmdd indicating the
date, andimeshould be a string of the forfrhhmms} indicating the time. Return a pdiresponse groupg
wheregroupsis a list of group names that are new since the given date and time.

newnews(group, date, timg
Send aNEWNEWE&ommand. Heregroupis a group name oF , anddateandtime have the same meaning
as fornewgroups() . Return a paif response articles) wherearticlesis a list of article ids.

list ()
Send aLIST ' command. Return a pa{rresponse list) wherelist is a list of tuples. Each tuple has the form
(group last, first, flag) , wheregroupis a group namdast andfirst are the last and first article numbers
(as strings), anflagis’y’ if posting is allowed;n’ if not, and’'m’ if the newsgroup is moderated. (Note the
ordering:last, first.)

group (nam§
Send a GROUPcommand, wherenameis the group name. Return a tugleesponse count first, last,
namg wherecountis the (estimated) number of articles in the grofigst is the first article number in the
group,lastis the last article number in the group, amameis the group name. The numbers are returned as
strings.

help ()
Send aHELP command. Return a pa{rresponse list) wherelist is a list of help strings.

stat (id)
Send aSTAT command, wheréd is the message id (enclosed #i and ‘>’) or an article number (as a string).
Return a triplg response number id) wherenumberis the article number (as a string) aidds the article
id (enclosed in<’ and *>").

next ()
Send aNEXT command. Return as fatat()

last ()
Send aLAST command. Return as fatat()

head (id)
Send a HEAD command, wherdd has the same meaning as &iat() . Return a pail(response list)
wherelist is a list of the article’s headers (an uninterpreted list of lines, without trailing newlines).

11.7. Standard Module nntplib 165

body (id)
Send a BODY command, wherdd has the same meaning as &iat() . Return a pail(responsg list)
wherelist is a list of the article’s body text (an uninterpreted list of lines, without trailing newlines).

article (id)
Send aARTICLE' command, wheréd has the same meaning as ftat() . Return a paif responsg list)
wherelist is a list of the article’s header and body text (an uninterpreted list of lines, without trailing newlines).

slave ()
Send a SLAVE command. Return the serveresponse

xhdr (header, string
Send an XHDRcommand. This command is not defined in the RFC but is a common extensiorhe@der
argument is a header keyword, €gubject’ . Thestringargument should have the forhiirst- last' where
first andlast are the first and last article numbers to search. Return g pesponse list) , wherelist is a list
of pairs(id, tex?, whereid is an article id (as a string) artdxtis the text of the requested header for that
article.

post (file)
Post an article using th&eOST command. Thdile argument is an open file object which is read until EOF
using itsreadline() method. It should be a well-formed news article, including the required headers. The
post() method automatically escapes lines beginning with *

ihave (id, file)
Send anIHAVE’ command. If the response is not an error, tfdatexactly as for thgpost() method.

date ()
Return a triple(response date time), containing the current date and time in a form suitable for the
newnews() andnewgroups() methods. This is an optional NNTP extension, and may not be supported by
all servers.

xgtitle (name¢
Process anXGTITLE’' command, returning a pafrresponse list) , wherelist is a list of tuples containing
(name title) . This is an optional NNTP extension, and may not be supported by all servers.

xover (start, end
Return a paii(resp list) . list is a list of tuples, one for each article in the range delimited bysthet and
endarticle numbers. Each tuple is of the fofrarticle number subject poster date id, references size
lines) . This is an optional NNTP extension, and may not be supported by all servers.

xpath (id)
Return a pair(resp path) , wherepathis the directory path to the article with messageitD This is an
optional NNTP extension, and may not be supported by all servers.

quit ()
Send aQUIT’ command and close the connection. Once this method has been called, no other methods of the
NNTP object should be called.

11.8 Standard Module urlparse

This module defines a standard interface to break URL strings up in components (addessing scheme, network location,
path etc.), to combine the components back into a URL string, and to convert a “relative URL" to an absolute URL
given a “base URL".

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and discovered a
bug in an earlier draft!). Refer to RFC 1808 for details on relative URLs and RFC 1738 for information on basic URL
syntax.

It defines the following functions:

166 Chapter 11. Internet and WWW Services

urlparse (urlstring[, defaultschemE, aIIow_fragmentg])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
schemd/ netlod pathy parameter8quenyfragment Each tuple item is a string, possibly empty. The com-
ponents are not broken up in smaller parts (e.g. the network location is a single string), and % escapes are not
expanded. The delimiters as shown above are not part of the tuple items, except for a leading slgsatin the
component, which is retained if present.

Example:

urlparse(http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

(Chttp’, 'www.cwi.nl:80’, '/%7Eguido/Python.html’, ", ", ™)
If the defaultschemergument is specified, it gives the default addressing scheme, to be used only if the URL
string does not specify one. The default value for this argument is the empty string.

If the allow_fragmentsargument is zero, fragment identifiers are not allowed, even if the URL's addressing
scheme normally does support them. The default value for this argunient is

urlunparse (tuple)
Construct a URL string from a tuple as returnedusiparse() . This may result in a slightly different, but
equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g. a ? with an empty query
(the draft states that these are equivalent).

urlioin (base, ur[, aIIow_fragmentﬁ)
Construct a full (“absolute”) URL by combining a “base URIBasg with a “relative URL" (url). Informally,
this uses components of the base URL, in particular the addressing scheme, the network location and (part of)
the path, to provide missing components in the relative URL.

Example:

urljoin(http://www.cwi.nl/%7Eguido/Python.html’, 'FAQ.html’)

yields the string

"http://mww.cwi.nl/%7Eguido/FAQ.html’

Theallow_fragmentsargument has the same meaning asiftparse()

11.9 Standard Module sgmllib

This module defines a claS&&GMLParser which serves as the basis for parsing text files formatted in SGML (Stan-
dard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it only parses SGML insofar
as itis used by HTML, and the module only exists as a base fdntthéib ~ module.

SGMLParser ()
The SGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the following
constructs:

¢Opening and closing tags of the forritag attr="value' ...> ’and ‘</ tag>’, respectively.
eNumeric character references of the fo#hame ’.
eEntity references of the forn&hame .

¢SGML comments of the fornk!-- text-> ’. Note that spaces, tabs, and newlines are allowed between
the trailing >’ and the immediately preceeding *'.

11.9. Standard Module sgmllib 167

SGMLParser instances have the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the HTML
tag<PLAINTEXT> can be implemented.)

setliteral 0
Enter literal mode (CDATA mode).
feed (data

Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed atose() s called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close()

handle _starttag (tag, method, attributgs
This method is called to handle start tags for which eithataat _tag() or do_tag() method has been
defined. Thetag argument is the name of the tag converted to lower case, anchétieodargument is the
bound method which should be used to support semantic interpretation of the start tagttribhwesar-
gument is a list off name valug pairs containing the attributes found inside the taggsbrackets. The
namehas been translated to lower case and double quotes and backslashes/atugheave been inter-
preted. For instance, for the tag\ HREF="http://www.cwi.nl/"> , this method would be called as
‘unknown _starttag(’a’, [(Chref’, ’http://www.cwi.nl/")]) ". The base implementation
simply callsmethodwith attributesas the only argument.

handle _endtag (tag, methodl
This method is called to handle endtags for whictead _tag() method has been defined. Ttag argument
is the name of the tag converted to lower case, andrtbthodargument is the bound method which should
be used to support semantic interpretation of the end tag. &nabtag() method is defined for the closing
element, this handler is not called. The base implementation simplyneattsod

handle _data (datd)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle _charref (ref)
This method is called to process a character reference of the f&#ref;’. In the base implementa-
tion, ref must be a decimal number in the range 0-255. It translates the charadgtsctoand calls the
methodhandle _data() with the character as argument. rdf is invalid or out of range, the method
unknown _charref(ref) is called to handle the error. A subclass must override this method to provide
support for named character entities.

handle _entityref (ref)
This method is called to process a general entity reference of the &mefy * where ref is an general entity
reference. It looks foref in the instance (or class) varialdatitydefs which should be a mapping from
entity names to corresponding translations. If a translation is found, it calls the mistinolle _data()
with the translation; otherwise, it calls the methatknown _entityref(ref) . The defaultentitydefs
defines translations f&, &apos, > , < , and"

handle _comment(comment
This method is called when a comment is encountered. ciimmentargument is a string containing the

text between the<!-- ’and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<I--text--> " will cause this method to be called with the arguméakt’ . The default method does
nothing.

168 Chapter 11. Internet and WWW Services

report _unbalanced (tag)
This method is called when an end tag is found which does not correspond to any open element.

unknown _starttag (tag, attribute3
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown _endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown _charref (ref)
This method is called to process unresolvable numeric character references. Refedi® _charref()
to determine what is handled by default. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown _entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of the following
form to define processing of specific tags. Tag names in the input stream are case indepentinticthering in
method names must be in lower case:

start _tag(attributeg
This method is called to process an openingttayp It has preference ovelo _tag() . Theattributesargument
has the same meaning as describechtordle _starttag() above.

do _tag(attributeg
This method is called to process an opening tiagthat does not come with a matching closing tag. The
attributesargument has the same meaning as describeubindle _starttag() above.

end _tag()
This method is called to process a closing tizg

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags processed
by start _tag() are pushed on this stack. Definition of and _tag() method is optional for these tags. For tags
processed bylo tag() or by unknown tag() , noend_tag() method must be defined; if defined, it will not be

used. If bothstart _tag() anddo_tag() methods exist for a tag, thetart _tag() method takes precedence.

11.10 Standard Module htmllib

This module defines a class which can serve as a base for parsing text files formatted in the HyperText Mark-up
Language (HTML). The class is not directly concerned with 1/O — it must be provided with input in string form via

a method, and makes calls to methods of a “formatter” object in order to produce outpi.TMidParser class is

designed to be used as a base class for other classes in order to add functionality, and allows most of its methods to
be extended or overridden. In turn, this class is derived from and exten8&tkikParser class defined in module

sgmllib . TheHTMLParser implementation supports the HTML 2.0 language as described in RFC 1866. Two
implementations of formatter objects are provided infibrenatter ~ module; refer to the documentation for that
module for information on the formatter interface.

The following is a summary of the interface defineddgynllib. SGMLParser

e The interface to feed data to an instance is througffietbeé() method, which takes a string argument. This can
be called with as little or as much text at a time as desiggfeed(a); p.feed(b) " has the same effect as
‘p.feed(a+b) . When the data contains complete HTML tags, these are processed immediately; incomplete
elements are saved in a buffer. To force processing of all unprocessed data, clalséfe method.

11.10. Standard Module htmllib 169

For example, to parse the entire contents of a file, use:

parser.feed(open(’'myfile.html’).read())
parser.close()

e The interface to define semantics for HTML tags is very simple: derive a class and define methods called
start _tag() , end_tag() , ordo_tag() . The parser will call these at appropriate momesstsrrt _tag or
do_tag() is called when an opening tag of the fortag ...> is encounteredend _tag() is called when a
closing tag of the formstag> is encountered. If an opening tag requires a corresponding closing tagHike
... </H1> , the class should define tetart _tag() method; if a tag requires no closing tag, likE>, the class
should define theo _tag() method.

The module defines a single class:

HTMLParser (formatten
This is the basic HTML parser class. It supports all entity names required by the HTML 2.0 specification (RFC
1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements.

In addition to tag methods, tHdTMLParser class provides some additional methods and instance variables for use
within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should be. In
general, this should only be true when character data is to be treated as “preformatted” text, asvRRE>a
element. The default value is false. This affects the operatitvanflle _data() andsave _end() .

anchor _bgn (href, name, type
This method is called at the start of an anchor region. The arguments correspond to the attributeAnatdge
with the same names. The default implementation maintains a list of hyperlinks (definedhrgfthettribute)
within the document. The list of hyperlinks is available as the data attréandborlist

anchor _end()
This method is called at the end of an anchor region. The default implementation adds a textual footnote marker
using an index into the list of hyperlinks createddnchor _bgn() .

handle _image (source, al[, isma;{, align[, Width[, height]]]])
This method is called to handle images. The default implementation simply passds\kie to thehan-
dle _data() method.

save _bgn()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the stored data via
save _end() . Use of thesave _bgn() /save _end() pair may not be nested.

save _end()
Ends buffering character data and returns all data saved since the preceedingseat thgn() . If the
nofill flag is false, whitespace is collapsed to single spaces. A call to this method without a preceeding call

tosave _bgn() will raise aTypeError exception.

11.11 Standard Module xmllib

This module defines a claxdMLParser which serves as the basis for parsing text files formatted in XML (eXtended
Markup Language).

170 Chapter 11. Internet and WWW Services

XMLParser ()
TheXMLParser class must be instantiated without arguments.

This class provides the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at the instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA).

setliteral 0
Enter literal mode (CDATA mode).
feed (data)

Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed atose() s called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close()

translate _references (data
Translate all entity and character referenceddtaand returns the translated string.

handle _xml (encoding, standalone
This method is called when th&?xml ...?> ' tag is processed. The arguments are the values of the en-
coding and standalone attributes in the tag. Both encoding and standalone are optional. The values passed to
handle xml() default toNone and the stringno’ respectively.

handle _doctype (tag, datg
This method is called when the!DOCTYPE...> ' tag is processed. The arguments are the name of the

root element and the uninterpreted contents of the tag, starting after the white space after the name of the root
element.

handle _starttag (tag, method, attributgs

This method is called to handle start tags for whictstart _tag() method has been defined. The
tag argument is the name of the tag, and tmeethod argument is the bound method which should
be used to support semantic interpretation of the start tag. diébutes argument is a dictio-
nary of attributes, the key being theame and the value being thealue of the attribute found in-
side the tag's<> brackets. Character and entity references in ttaue have been interpreted.
For instance, for the tagcA HREF="http://www.cwi.nl/"> , this method would be called as
handle _starttag(’A’, self.start _A, {HREF’: ’http://www.cwi.nl/'}) . The base
implementation simply callmethodwith attributesas the only argument.

handle _endtag (tag, method
This method is called to handle endtags for whichead _tag() method has been defined. Ttag argument
is the name of the tag, and theethodargument is the bound method which should be used to support semantic
interpretation of the end tag. If nend _tag() method is defined for the closing element, this handler is not
called. The base implementation simply cafiethod

handle _data (datd

This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle _charref (ref)
This method is called to process a character reference of the &#raf; '. ref can either be a decimal number,
or a hexadecimal number when preceded byxdn In the base implementatiomef must be a number in the
range 0-255. It translates the charactensz il and calls the methodandle _data() with the character as
argument. Ifref is invalid or out of range, the methaohknown _charref(ref) is called to handle the error.

11.11. Standard Module xmllib 171

A subclass must override this method to provide support for character references outsidesafithange.

handle _entityref (ref)
This method is called to process a general entity reference of the &aft * whereref is an general entity
reference. It looks foref in the instance (or class) variabdatitydefs which should be a mapping from
entity names to corresponding translations. If a translation is found, it calls the mieginolle _data()
with the translation; otherwise, it calls the methatknown _entityref(ref) . The defaultentitydefs
defines translations f&, &apos, > , < , and"

handle _comment(comment
This method is called when a comment is encountered. ciimmentargument is a string containing the

text between the<!-- ’and '--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<l--text--> " will cause this method to be called with the argumé&akt’” . The default method does
nothing.

handle _cdata (datg)
This method is called when a CDATA element is encountered.dBi@argument is a string containing the text
between the<![CDATA[' and ‘]> ’ delimiters, but not the delimiters themselves. For example, the entity
‘<I[CDATA[text]]> " will cause this method to be called with the argumiext” . The default method
does nothing, and is intended to be overridden.

handle _proc (name, data
This method is called when a processing instruction (PI) is encounterechahheis the Pl target, and thaata
argument is a string containing the text between the PI target and the closing delimiter, but not the delimiter
itself. For example, the instructior?XML text?> ' will cause this method to be called with the arguments
'XML" and’'text’ . The default method does nothing. Note that if a document starts #2kml ...?> 7,
handle xml() is called to handle it.

handle _special (data)
This method is called when a declaration is encountered. dita argument is a string containing the
text between the<!’ and ‘>’ delimiters, but not the delimiters themselves. For example, the entity
‘<IENTITY text> ’will cause this method to be called with the argum&NTITY text’ . The default
method does nothing. Note that!DOCTYPE ...> ’is handled separately if it is located at the start of the
document.

syntax _error (message
This method is called when a syntax error is encountered. mMégsagés a description of what was wrong.
The default method raisesRuntimeError exception. If this method is overridden, it is permissable for
it to return. This method is only called when the error can be recovered from. Unrecoverable errors raise a
RuntimeError without first callingsyntax _error()

unknown _starttag (tag, attribute$
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown _endtag (tag)
This method is called to process an unknown end tag. Itis intended to be overridden by a derived class; the base
class implementation does nothing.

unknown _charref (ref)
This method is called to process unresolvable numeric character references. It is intended to be overridden by a
derived class; the base class implementation does nothing.

unknown _entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods and variables
of the following form to define processing of specific tags. Tag hames in the input stream are case depertdgnt; the
occurring in method names must be in the correct case:

172 Chapter 11. Internet and WWW Services

start _tag(attributeg
This method is called to process an openingtig The attributesargument has the same meaning as de-
scribed forhandle _starttag() above. In fact, the base implementatiorhaindle _starttag() calls
this method.

end _tag()
This method is called to process a closing tiag

tag attributes
If a class or instance variabtag attributes exists, it should be a list or a dictionary. If a list, the elements
of the list are the valid attributes for the eleméad; if a dictionary, the keys are the valid attributes for the
elementtag, and the values the default values of the attributed\iame if there is no default. In addition to
the attributes that were present in the tag, the attribute dictionary that is passetdite _starttag() and
unknown _starttag() contains values for all attributes that have a default value.

11.12 Standard Module formatter

This module supports two interface definitions, each with mulitple implementationsfofihatterinterface is used
by theHTMLParser class of thentmllib module, and thevriter interface is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects. Format-
ters manage several stack structures to allow various properties of a writer object to be changed and restored; writers
need not be able to handle relative changes nor any sort of “change back” operation. Specific writer properties which
may be controlled via formatter objects are horizontal alignment, font, and left margin indentations. A mechanism
is provided which supports providing arbitrary, non-exclusive style settings to a writer as well. Additional interfaces
facilitate formatting events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as physical
devices. The provided implementations all work with abstract devices. The interface makes available mechanisms for
setting the properties which formatter objects manage and inserting data into the output.

The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces described
below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS.IS
Value which can be used in the font specification passed tptisd font() method described below, or
as the new value to any othpush _property() method. Pushing thAS.IS value allows the corresponding
pop _property() method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end _paragraph (blanklines
Close any open paragraphs and insert at lelastklinesbefore the next paragraph.

add _line _break ()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

add _hor _rule (*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph, but the log-
ical paragraph is not broken. The arguments and keywords are passed on to theserigrne _break()

11.12. Standard Module formatter 173

method.

add flowing _data (datd)
Provide data which should be formatted with collapsed whitespaces. Whitespace from preceeding and succes-
sive calls toadd _flowing _data() is considered as well when the whitespace collapse is performed. The
data which is passed to this method is expected to be word-wrapped by the output device. Note that any word-
wrapping still must be performed by the writer object due to the need to rely on device and font information.

add _literal _data (data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab characters,
are considered legal in the valuedsdta

add _label _data (format, countey
Insert a label which should be placed to the left of the current left margin. This should be used for constructing
bulleted or numbered lists. If tHermatvalue is a string, it is interpreted as a format specificatiorcéamter,
which should be an integer. The result of this formatting becomes the value of the latmitis not a
string it is used as the label value directly. The label value is passed as the only argument to the writer’s
send _label _data() method. Interpretation of non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute label values.
Each character in the format string is copied to the label value, with some characters recognized to indicate a
transform on the counter value. Specifically, the charadtaepresents the counter value formatter as an arabic
number, the character8and ‘a’ represent alphabetic representations of the counter value in upper and lower
case, respectively, andl“and ‘i ' represent the counter value in Roman numerals, in upper and lower case.
Note that the alphabetic and roman transforms require that the counter value be greater than zero.

flush _softspace ()
Send any pending whitespace buffered from a previous catitbflowing _data() to the associated writer
object. This should be called before any direct manipulation of the writer object.

push _alignment (align)
Push a new alignment setting onto the alignment stack. This ma@3d& if no change is desired. If the
alignment value is changed from the previous setting, the writexwg alignment() method is called with
thealign value.

pop _alignment ()
Restore the previous alignment.

push _font ((size, italic, bold, teletypé
Change some or all font properties of the writer object. Properties which are notA8tI® are set to the
values passed in while others are maintained at their current settings. The wiiterfont() method is
called with the fully resolved font specification.

pop _font ()
Restore the previous font.

push _margin (margin)
Increase the number of left margin indentations by one, associating the logicahtginwith the new indenta-
tion. The initial margin level i®. Changed values of the logical tag must be true values; false values other than
AS.IS are not sufficient to change the margin.

pop _margin ()
Restore the previous margin.

push _style (*styleg
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A tuple
representing the entire stack, includid§.IS values, is passed to the writerigsw_styles() method.

pop _style ([n = 1])
Pop the lash style specifications passedpash _style() . A tuple representing the revised stack, including
AS.IS values, is passed to the writerisw_styles() method.

174 Chapter 11. Internet and WWW Services

set _spacing (spacing
Set the spacing style for the writer.

assert _line _data ([flag =1])
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used when the
writer has been manipulated directly. The optioftead argument can be set to false if the writer manipulations
produced a hard line break at the end of the output.

Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these classes
without modification or subclassing.

NullFormatter ([Writer])
A formatter which does nothing. ifriter is omitted, aNullWriter instance is created. No methods of the
writer are called byNullFormatter instances. Implementations should inherit from this class if implement-
ing a writer interface but don’t need to inherit any implementation.

AbstractFormatter ('writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may be
used directly in most circumstances. It has been used to implement a full-featured world-wide web browser.

The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described below
are the required interfaces which all writers must support once initialized. Note that while most applications can use
the AbstractFormatter class as a formatter, the writer must typically be provided by the application.

flush ()
Flush any buffered output or device control events.

new_alignment (align)
Set the alignment style. Thalign value can be any object, but by convention is a strindNone, where
None indicates that the writer's “preferred” alignment should be used. Conventdigalvalues aréleft’ ,
‘center’ , 'right’ , and’justify’

new_font (font)
Set the font style. The value &nt will be None, indicating that the device’s default font should be used, or
a tuple of the forn{ size italic, bold, teletypg . Size will be a string indicating the size of font that should be
used; specific strings and their interpretation must be defined by the applicatioitalithebold, andteletype
values are boolean indicators specifying which of those font attributes should be used.

new_margin (margin, leve)
Set the margin level to the integkveland the logical tag tonargin Interpretation of the logical tag is at the
writer’s discretion; the only restriction on the value of the logical tag is that it not be a false value for non-zero
values oflevel

new_spacing (spacing
Set the spacing style &pacing

new_styles (style3
Set additional styles. Thstylesvalue is a tuple of arbitrary values; the vala&_IS should be ignored. The
stylestuple may be interpreted either as a set or as a stack depending on the requirements of the application and
writer implementation.

send _line _break ()
Break the current line.

11.12. Standard Module formatter 175

send _paragraph (blankling
Produce a paragraph separation of at letmklineblank lines, or the equivelent. Thanklinevalue will be
an integer.

send _hor _rule (*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application- and
writer-specific, and should be interpreted with care. The method implementation may assume that a line break
has already been issued wand _line _break()

send _flowing _data (data
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls to
this method, the writer may assume that spans of multiple whitespace characters have been collapsed to single
space characters.

send _literal _data (data)
Output character data which has already been formatted for display. Generally, this should be interpreted to
mean that line breaks indicated by newline characters should be preserved and no new line breaks should
be introduced. The data may contain embedded newline and tab characters, unlike data provided to the
send _formatted _data() interface.

send _label _data (data)
Setdatato the left of the current left margin, if possible. The valuedafais not restricted; treatment of non-
string values is entirely application- and writer-dependent. This method will only be called at the beginning of
aline.

Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most applications will
need to derive new writer classes from thell\Writer class.

NullWriter ()
A writer which only provides the interface definition; no actions are taken on any methods. This should be the
base class for all writers which do not need to inherit any implementation methods.

AbstractWriter 0
A writer which can be used in debugging formatters, but not much else. Each method simply announces itself
by printing its name and arguments on standard output.

DumbWriter ([ﬁle[, maxcol = 72]])
Simple writer class which writes output on the file object passedfiteas, if file is omitted, on standard output.
The output is simply word-wrapped to the number of columns specifiemidoycol This class is suitable for
reflowing a sequence of paragraphs.

11.13 Standard Module rfc822

This module defines a cladslessage, which represents a collection of “email headers” as defined by the Internet
standard RFC 822. Itis used in various contexts, usually to read such headers from a file.

Note that there’s a separate module to readX) MH, and MMDF style mailbox filesmailbox .

Message (file[, seekablé)
A Message instance is instantiated with an open file object as parameter. The opsiesledbleparameter
indicates if the file object is seekable; the default valukfisr true. Instantiation reads headers from the file up
to a blank line and stores them in the instance; after instantiation, the file is positioned directly after the blank
line that terminates the headers.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating CR-LF

176 Chapter 11. Internet and WWW Services

is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; mi¢From’] , m['from’] and
mM'FROM’] all yield the same result.

parsedate (date
Attempts to parse a date according to the rules in RFC 822. however, some mailers don't follow that format as

specified, sparsedate() tries to guess correctly in such casdateis a string containing an RFC 822 date,
such asMon, 20 Nov 1995 19:12:08 -0500’ . If it succeeds in parsing the datearsedate()
returns a 9-tuple that can be passed directtyne.mktime() ; otherwiseNone will be returned.

parsedate _tz (date
Performs the same function parsedate() , but returns eithelone or a 10-tuple; the first 9 elements make
up a tuple that can be passed directlytitne.mktime() , and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time). (Note that the sign of the timezone offset is
the opposite of the sign of thiene.timezone variable for the same timezone; the latter variable follows the
POSIX standard while this module follows RFC 822.) If the input string has no timezone, the last element of
the tuple returned iblone.

mktime _tz (tuple)
Turn a 10-tuple as returned Iparsedate _tz() into a UTC timestamp. It the timezone item in the tuple
is None, assume local time. Minor deficiency: this first interprets the first 8 elements as a local time and then
compensates for the timezone difference; this may yield a slight error around daylight savings time switch dates.
Not enough to worry about for common use.

Message Objects

A Message instance has the following methods:

rewindbody ()
Seek to the start of the message body. This only works if the file object is seekable.

getallmatchingheaders (namg
Return a list of lines consisting of all headers matchiagne if any. Each physical line, whether it is a contin-
uation line or not, is a separate list item. Return the empty list if no header matahes

getfirstmatchingheader (nam@
Return a list of lines comprising the first header matchiagne and its continuation line(s), if any. Return
None if there is no header matchingame

getrawheader (nameg
Return a single string consisting of the text after the colon in the first header matedning This includes
leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any continuation line(s)
were present. Retumdone if there is no header matchingame

getheader (name¢
Like getrawheader(namg , but strip leading and trailing whitespace. Internal whitespace is not stripped.

getaddr (namé
Return a pair(full name email addresp parsed from the string returned lyetheader(nameg . If no
header matchingameexists, retur(None, None) ; otherwise both the full name and the address are (pos-
sibly empty) strings.

Example: If ms first From header contains the stringack@cwi.nl (Jack Jansen)’ , then
m.getaddr(’From’) will yield the pair ('Jack Jansen’, ’jack@cwi.nl’) . If the header con-
tained’'Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist (namé
This is similar togetaddr(list) , but parses a header containing a list of email addresses (&g haader)
and returns a list of full name email addresk pairs (even if there was only one address in the header). If

11.13. Standard Module rfc822 177

there is no header matchimgme return an empty list.

XXX The current version of this function is not really correct. It yields bogus results if a full name contains a
comma.

getdate (nam@
Retrieve a header usimgetheader() and parse it into a 9-tuple compatible witlhe.mktime() . If there
is no header matchingame or it is unparsable, retufdone.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested
and found correct on a large collection of email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

getdate _tz (name
Retrieve a header usingetheader() and parse it into a 10-tuple; the first 9 elements will make a tuple
compatible withtime.mktime() , and the 10th is a number giving the offset of the date’s timezone from
UTC. Similarly togetdate() , if there is no header matchimgme or it is unparsable, retuidone.

Message instances also support a read-only mapping interface. In particulasfname] is like
m.getheader(name) but raiseKeyError if there is no matching header; atgh(m) , m.has _key(name) |,
m.keys() , m.values() andm.items() act as expected (and consistently).

Finally, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read. Each line contains a trailing
newline. The blank line terminating the headers is not contained in the list.

fp
The file object passed at instantiation time.

11.14 Standard Module mimetools

This module defines a subclass of tfe822.Message class and a number of utility functions that are useful for
the manipulation for MIME multipart or encoded message.

It defines the following items:

Message (fp[, seekablé)
Return a new instance of thdessage class. This is a subclass of tHfe822.Message class, with some
additional methods (see below). Teeekablargument has the same meaning agfit822.Message

choose _boundary ()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
" hostipaddr uid. pid. timestamprandomn .

decode (input, output, encoding
Read data encoded using the allowed MIMiEcodingfrom open file objectnput and write the decoded data
to open file objecoutput Valid values forencodinginclude 'base64’ , 'quoted-printable’ and
‘'uuencode’

encode (input, output, encoding
Read data from open file objdaput and write it encoded using the allowed MIMiacodingo open file object
output Valid values forencodingare the same as folecode()

copyliteral (input, outpu}
Read lines untiEor from open fileinput and write them to open fileutput

copybinary (input, outpu}
Read blocks untiEoFfrom open fileinput and write them to open fileutput The block size is currently fixed
at 8192.

178 Chapter 11. Internet and WWW Services

Additional Methods of Message objects

TheMessage class defines the following methods in addition to fi822.Message methods:

getplist ()
Return the parameter list of theontent-type header. This is a list if strings. For parameters of the
form ‘key=valué, keyis converted to lower case bualueis not. For example, if the message contains the
header Content-type: text/html; spam=1; Spam=2; Spam " then getplist() will return
the Python lis{'spam=1’, 'spam=2’, 'Spam’]

getparam (nameg

Return thevalueof the first parameter (as returned ggtplist() of the form hame=valué for the given
name If valueis surrounded by quotes of the form.:.>’ or ‘" ..."’, these are removed.

getencoding ()
Return the encoding specified in thentent-transfer-encoding message header. If no such header
exists, returri7bit’ . The encoding is converted to lower case.

gettype ()
Return the message type (of the fortypd subtypd as specified in theontent-type header. If no such
header exists, returtext/plain’ . The type is converted to lower case.

getmaintype ()
Return the main type as specified in th@ntent-type header. If no such header exists, retiext’
The main type is converted to lower case.

getsubtype ()
Return the subtype as specified in ttwtent-type header. If no such header exists, retyplain’ . The
subtype is converted to lower case.

11.15 Standard Module binhex

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files in
Ascll. On the Macintosh, both forks of a file and the finder information are encoded (or decoded), on other platforms
only the data fork is handled.

Thebinhex module defines the following functions:

binhex (input, outpu}
Convert a binary file with filenamiaput to binhex fileoutput Theoutputparameter can either be a filename or
a file-like object (any object supportingigite andclosemethod).

hexbin (input[, output])
Decode a binhex filsput. inputmay be a filename or a file-like object supportiegdandclosemethods. The
resulting file is written to a file namealitput unless the argument is empty in which case the output filename is
read from the binhex file.

Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline convention
(carriage-return as end of line).

As of this writing,hexbin() appears to not work in all cases.

11.15. Standard Module binhex 179

11.16 Standard Module uu

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ascii-only connections. Wherever a file argument is expected, the methods accept a file-like object. For backwards
compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened for reading and
writing; the pathnamé&’ is understood to mean the standard input or output. However, this interface is deprecated;
it's better for the caller to open the file itself, and be sure that, when required, the nidade i©or'wb’ on Windows

or DOS.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.
Theuu module defines the following functions:

encode (in_file, ouLfiIe[, nam{, modé])
Uuencode filan_file into file out file. The uuencoded file will have the header specifyirrgneand modeas
the defaults for the results of decoding the file. The default defaults are takenrfrfile or’- and0666
respectively.

decode (infile[, outfile[, modd])
This call decodes uuencoded fitefile placing the result on fileutfile. If outfile is a pathname thmodeis
also set. Defaults foput file andmodeare taken from the uuencode header.

11.17 Built-in Module binascii

Thebinascii module contains a number of methods to convert between binary and vasausencoded binary
representations. Normally, you will not use these modules directly but use wrapper modules lkenexbin
instead, this module solely exists because bit-manipuation of large amounts of data is slow in Python.

Thebinascii module defines the following functions:

a2b _uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain 45
(binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a _uu(datg)
Convert binary data to a line efscii characters, the return value is the converted line, including a newline char.
The length ofdatashould be at most 45.

a2b _base64 (string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed at
atime.

b2a _base64 (data)
Convert binary data to a line afscii characters in base64 coding. The return value is the converted line,
including a newline char. The length datashould be at most 57 to adhere to the base64 standard.

a2b _hgx (string)
Convert binhex4 formattedscii data to binary, without doing RLE-decompression. The string should contain
a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the remaining bits
zero.

rledecode _hgx (datd)
Perform RLE-decompression on the data, as per the binhex4 standard. The algoritlixO@sadter a byte as
a repeat indicator, followed by a count. A count@pecifies a byte value @x90 . The routine returns the
decompressed data, unless data input data ends in an orphaned repeat indicator, in whicihncaseqlete
exception is raised.

rlecode _hqgx (data)

180 Chapter 11. Internet and WWW Services

Perform binhex4 style RLE-compression dataand return the result.

b2a _hgx (data)
Perform hexbin4 binary-tescii translation and return the resulting string. The argument should already be
RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc _hgx (data, crg
Compute the binhex4 crc value déta, starting with an initiakrc and returning the result.

Error
Exception raised on errors. These are usually programming errors.

Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by reading
a little more data and trying again.

11.18 Standard Module xdrlib

Thexdrlib module supports the External Data Representation Standard as described in RFC 1014, written by Sun
Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

Thexdrlib module defines two classes, one for packing variables into XDR representation, and another for unpack-
ing from XDR representation. There are also two exception classes.

Packer ()
Packer is the class for packing data into XDR representation. Pheker class is instantiated with no
arguments.

Unpacker (data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input buffer
is given adata

Packer Objects

Packer instances have the following methods:

get _buffer ()
Returns the current pack buffer as a string.

reset ()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the apprppdkteypg) method.
Each method takes a single argument, the value to pack. The following simple data type packing methods are sup-
ported:pack _uint() , pack _int() ,pack _enum() , pack _bool() ,pack _uhyper() ,andpack _hyper()

pack float (valug
Packs the single-precision floating point numbaiue

pack _double (valug
Packs the double-precision floating point numbaiue

The following methods support packing strings, bytes, and opaque data:

pack fstring (n,9
Packs a fixed length string, n is the length of the string but it isot packed into the data buffer. The string is
padded with null bytes if necessary to guaranteed 4 byte alignment.

pack _fopaque (n, datg

11.18. Standard Module xdrlib 181

Packs a fixed length opaque data stream, similarpattk _fstring()

pack _string (9
Packs a variable length string, The length of the string is first packed as an unsigned integer, then the string
data is packed witpack _fstring()

pack _opaque (data)
Packs a variable length opaque data string, similarlyatck _string()

pack _bytes (byte3
Packs a variable length byte stream, similarlpéxk _string()

The following methods support packing arrays and lists:

pack _list (list, packitem)
Packs dist of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is not
available until the entire list has been walked. For each item in the list, an unsigned ibtisgeacked first,
followed by the data value from the lighbackitemis the function that is called to pack the individual item. At
the end of the list, an unsigned intedeis packed.

pack _farray (n, array, packitem)
Packs a fixed length lisafray) of homogeneous itemsi.is the length of the list; it isiot packed into the buffer,
but aValueError exception is raised ifen(array) is not equal tm. As abovepackitemis the function
used to pack each element.

pack _array (list, packitem)
Packs a variable lengtist of homogeneous items. First, the length of the list is packed as an unsigned integer,
then each element is packed apack _farray() above.

Unpacker Objects

TheUnpacker class offers the following methods:

reset (data
Resets the string buffer with the givelata
get _position ()
Returns the current unpack position in the data buffer.
set _position (position)
Sets the data buffer unpack positiongtosition You should be careful about usimgt _position() and
set _position()

get _buffer ()
Returns the current unpack data buffer as a string.

done ()
Indicates unpack completion. Raiseskamor exception if all of the data has not been unpacked.

In addition, every data type that can be packed withagker , can be unpacked with ddnpacker . Unpacking
methods are of the formnpack _typd) , and take no arguments. They return the unpacked object.

unpack _float ()
Unpacks a single-precision floating point number.

unpack _double ()
Unpacks a double-precision floating point number, similarlyripack _float()

In addition, the following methods unpack strings, bytes, and opaque data:

unpack _fstring (n)
Unpacks and returns a fixed length stringis the number of characters expected. Padding with null bytes to

182 Chapter 11. Internet and WWW Services

guaranteed 4 byte alignment is assumed.

unpack _fopaque (n)
Unpacks and returns a fixed length opaque data stream, similarhyptack _fstring()

unpack _string ()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned integer,
then the string data is unpacked withpack _fstring()

unpack _opaque ()
Unpacks and returns a variable length opaque data string, similastypack _string()

unpack _bytes ()
Unpacks and returns a variable length byte stream, similatypack _string()

The following methods support unpacking arrays and lists:

unpack _list (unpackitem)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first unpacking
an unsigned integer flag. If the flaglisthen the item is unpacked and appended to the list. A fl@gdicates
the end of the listunpackitemis the function that is called to unpack the items.

unpack _farray (n, unpackitem)
Unpacks and returns (as a list) a fixed length array of homogeneous iiésmsumber of list elements to expect
in the buffer. As abovaynpackitemis the function used to unpack each element.

unpack _array (unpackitem)
Unpacks and returns a variable lengjft of homogeneous items. First, the length of the list is unpacked as an
unsigned integer, then each element is unpacked asgack _farray() above.

Exceptions

Exceptions in this module are coded as class instances:

Error
The base exception clagstror has a single public data membasg containing the description of the error.

ConversionError
Class derived fronError . Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError, instance:
print 'packing the double failed:’, instance.msg

11.19 Standard Module mailcap

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react to
files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For example, a
mailcap file might contain a line likevideo/mpeg; xmpeg %s . Then, if the user encounters an email message

or Web document with the MIME typeideo/mpeg, ‘%s will be replaced by a filename (usually one belonging to a
temporary file) and thempegprogram can be automatically started to view the file.

11.19. Standard Module mailcap 183

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mall
Format Information,” but is not an Internet standard. However, mailcap files are supported onnmosyistems.

findmatch (caps, MIMEtypé, ke)[, filenamé, plist]]])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can be passed
toos.system()), and the second element is the mailcap entry for a given MIME type. If no matching MIME
type can be foundNone, None) is returned.

keyis the name of the field desired, which represents the type of activity to be performed; the default value
is 'view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be 'compose’ and 'edit’, if you wanted to create a new body of the given MIME type or
alter the existing body data. See RFC 1524 for a complete list of these fields.

filenameis the filename to be substituted f&o8 in the command line; the default value 'fslev/null’
which is almost certainly not what you want, so usually you'll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the list
must be a string containing the parameter name, an equalsiggng@ the parameter’s value. Mailcap entries

can contain named parameters I#¢foo} , which will be replaced by the value of the parameter named 'foo’.
For example, if the command linsHowpartial %{id} %{number} %f{total} "' was in a mailcap

file, andplist was set td’id=1", 'number=2’, 'total=3’] , the resulting command line would be
"showpartial 1 2 3"

In a mailcap file, the "test” field can optionally be specified to test some external condition (e.g., the machine
architecture, or the window system in use) to determine whether or not the mailcap line dppli@sitch()
will automatically check such conditions and skip the entry if the check fails.

getcaps ()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed to the
findmatch() function. An entry is stored as a list of dictionaries, but it shouldn't be necessary to know the
details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s mailcap
file *$SHOME/.mailcap’ will override settings in the system mailcap filestt/mailcap’, ‘ fusr/etc/mailcap’, and
*/usr/local/etc/mailcap’.

An example usage:

>>> import mailcap

>>> d=mailcap.getcaps()

>>> mailcap.findmatch(d, 'video/mpeg’, filename="/tmp/tmp1223’)
(xmpeg /tmp/tmp1223’, {'view: 'xmpeg %s’})

11.20 Standard Module base64

This module perform base64 encoding and decoding of arbitrary binary strings into text strings that can be safely
emailed or posted. The encoding scheme is defined in RFC 1421 (“Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures”, section 4.3.2.4, “Step 4: Printable Encod-
ing”) and is used for MIME email and various other Internet-related applications; it is not the same as the out-
put produced by th@uencodeprogram. For example, the strifnggww.python.org’ is encoded as the string
'd3d3LnB5dGhvbi5vemc=\n’

decode (input, outpu}
Decode the contents of theput file and write the resulting binary data to tbetputfile. input and output
must either be file objects or objects that mimic the file object interfapeit will be read untilinputread()
returns an empty string.

184 Chapter 11. Internet and WWW Services

decodestring ()
Decode the string, which must contain one or more lines of base64 encoded data, and return a string containing
the resulting binary data.

encode (input, outpu}
Encode the contents of thiaput file and write the resulting base64 encoded data tootltput file. input
andoutputmust either be file objects or objects that mimic the file object interfageut will be read until
inputread() returns an empty string.

encodestring (9
Encode the string, which can contain arbitrary binary data, and return a string containing one or more lines of
base64 encoded data.

11.21 Standard Module quopri

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One”. The quoted-printable encoding is designed for data where there are
relatively few nonprintable characters; the base64 encoding scheme availablebda¢bd module is more compact

if there are many such characters, as when sending a graphics file.

decode (input, outpu}
Decode the contents of thaput file and write the resulting decoded binary data to thwput file. input
andoutputmust either be file objects or objects that mimic the file object interfageut will be read until
inputread() returns an empty string.

encode (input, output, quotetabs
Encode the contents of thaput file and write the resulting quoted-printable data to dugputfile. input
andoutputmust either be file objects or objects that mimic the file object interfageut will be read until
inputread() returns an empty string.

11.22 Standard Module SocketServer

TheSocketServer module simplifies the task of writing network servers.

There are four basic server class@€CPServer uses the Internet TCP protocol, which provides for continuous
streams of data between the client and setv®PServer uses datagrams, which are discrete packets of information
that may arrive out of order or be lost while in transit. The more infrequently ukedStreamServer and
UnixDatagramServer classes are similar, but useNtx domain sockets; they’re not available on noml
platforms. For more details on network programming, consult a book such as W. Richard StédéX’sletwork
Programmingor Ralph Davis'sWin32 Network Programming

These four classes process requsgtichronouslyeach request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process or
thread to handle each request; fFarkingMixIin andThreadingMixIn mix-in classes can be used to support
asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding itsandle() = method; this method will process incoming requests.
Second, you must instantiate one of the server classes, passing it the server's address and the request handler class.
Finally, call thehandle _request() orserve _forever() method of the server object to process one or many
requests.

Server classes have the same external methods and attributes, no matter what network protocol they use:

fileno ()

11.21. Standard Module quopri 185

Return an integer file descriptor for the socket on which the server is listening. This function is most commonly
passed taelect.select() , to allow monitoring multiple servers in the same process.

handle _request ()
Process a single request. This function calls the following methods in ogir_request() , ver-
ify _request() ,andprocess _request() . Ifthe user-providediandle() method of the handler class
raises an exception, the serverandle _error() method will be called.

serve _forever ()
Handle an infinite number of requests. This simply chlladle _request() inside an infinite loop.

address _family
The family of protocols to which the server’s socket belorsggket. AF _INET andsocket. AF _UNIX are
two possible values.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server _address
The address on which the server is listening. The format of addresses varies depending on the protocol family;
see the documentation for the socket module for details. For Internet protocols, this is a tuple containing a string
giving the address, and an integer port numi§@27.0.0.1’, 80) , for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

request _queue _size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive while
the server is busy are placed into a queue, uptpuest _queue _size requests. Once the queue is full,
further requests from clients will get a “Connection denied” error. The default value is usually 5, but this can be
overridden by subclasses.

socket _type
The type of socket used by the sengrcket.SOCK _STREAMandsocket. SOCK _DGRAMre two possible
values.

There are various server methods that can be overridden by subclasses of base server clagfeSdiker ; these
methods aren’t useful to external users of the server object.

finish _request ()
Actually processes the request by instantiaiRegjuestHandlerClass and calling itshandle() method.

get request ()
Must accept a request from the socket, and return a 2-tuple containintetiheocket object to be used to
communicate with the client, and the client’s address.

handle _error (request, clieniaddres$
This function is called if th&kequestHandlerClass ’'shandle() method raises an exception. The default
action is to print the traceback to standard output and continue handling further requests.

process _request (request, clientiddres$

Callsfinish _request() to create an instance of tiRequestHandlerClass . If desired, this function
can create a new process or thread to handle the requeBgitkiagMixIin ~ andThreadingMixin classes
do this.

server _activate ()
Called by the server’s constructor to activate the server. May be overridden.

server _bind ()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

186 Chapter 11. Internet and WWW Services

verify _request (request, clienaddres$
Must return a Boolean value; if the value is true, the request will be processed, and if it's false, the request will be
denied. This function can be overridden to implement access controls for a server. The default implementation
always return true.

The request handler class must define a hewdle() method, and can override any of the following methods. A
new instance is created for each request.

finish ()
Called after thédnandle() method to perform any clean-up actions required. The default implementation does
nothing. Ifsetup() orhandle() raise an exception, this function will not be called.

handle ()
This function must do all the work required to service a request. Several instance attributes are available to it;
the request is available aelf.request ; the client address aelf.client _request ; and the server
instance aself.server , In case it needs access to per-server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services|f.request is a string. However, this
can be hidden by using the mix-in request handler claSsesamRequestHandler or DatagramRe-
questHandler , which override thesetup() andfinish() methods, and provideself.rfile and
self.wfile attributes. self.rfile and self.wfile can be read or written, respectively, to get the
request data or return data to the client.

setup ()
Called before thbandle() method to perform any initialization actions required. The default implementation
does nothing.

11.23 Standard Module mailbox

This module defines a number of classes that allow easy and uniform access to mail messagasdihagilbox.

UnixMailbox (fp)
Access a classic Mix-style mailbox, where all messages are contained in a single file and separated by “From
name time” lines. The file objep points to the mailbox file.

MmdfMailbox (fp)
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines con-
sisting of 4 control-A characters. The file objégipoints to the mailbox file.

MHMailbox (dirnamé

Access an MH mailbox, a directory with each message in a separate file with a numeric name. The name of the
mailbox directory is passed tglirname

Mailbox Objects

All implementations of Mailbox objects have one externally visible method:

next ()
Return the next message in the mailbox, a&822.Message object. Depending on the mailbox implemen-
tation thefp attribute of this object may be a true file object or a class instance simulating a file object, taking
care of things like message boundaries if multiple mail messages are contained in a single file, etc.

11.24 Standard Module mimify

11.23. Standard Module mailbox 187

The mimify module defines two functions to convert mail messages to and from MIME format. The mail message
can be either a simple message or a so-called multipart message. Each part is treated separately. Mimifying (a part
of) a message entails encoding the message as quoted-printable if it contains any characters that cannot be represented
using 7-bit ASCII. Unmimifying (a part of) a message entails undoing the quoted-printable encoding. Mimify and
unmimify are especially useful when a message has to be edited before being sent. Typical use would be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

mimify (infile, outfile
Copy the message infile to outfile, converting parts to quoted-printable and adding MIME mail headers when
necessanyinfile andoutfile can be file objects (actually, any object that hasadline method (forinfile) or
awrite method (foroutfile)) or strings naming the files. Ififile andoutfileare both strings, they may have the
same value.

unmimify (infile, outfile, decoddase64 =
Copy the message infile to outfile, decoding all quoted-printable partifile and outfile can be file objects
(actually, any object that hageadline method (foiinfile) or awrite method (foroutfile)) or strings naming
the files. Ifinfile andoutfileare both strings, they may have the same value. Iflfedebase64argument is
provided and tests true, any parts that are coded in the base64 encoding are decoded as well.

mime_decode _header (line)
Return a decoded version of the encoded header liiean

mime_encode _header (line)
Return a MIME-encoded version of the header linéne.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCII characters (i.e., characters
with the 8th bit set), or if there are any lines longer thadXLEN:haracters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is STGtARBET
and the default value is ISO-8859-1 (also known as Latinl (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-| length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectivehfile defaults to standard inpuputfile defaults to standard
output. The same file can be specified for input and output.

If the-l option is given when encoding, if there are any lines longer than the spdetfigtth the containing part will
be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

11.25 Standard Module BaseHTTPServer

This module defines two classes for implementing HTTP servers (web servers). Usually, this module isn't used
directly, but is used as a basis for building functioning web servers. SeSithgleHTTPServer and CGl-

188 Chapter 11. Internet and WWW Services

HTTPServer modules.

The first classHTTPServer , is aSocketServer.TCPServer subclass. It creates and listens at the web socket,
dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,
handler_class=BaseHTTPServer.BaseHTTPRequestHandler):
server_address = (”, 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

HTTPServer (serveraddress, RequestHandlerClass
This class builds on th&CPServer class by storing the server address as instance variables named
server _name andserver _port . The server is accessible by the handler, typically through the handler’s
server instance variable.

BaseHTTPRequestHandler (request, clienaddress, server
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to any actual
HTTP requests; it must be subclassed to handle each request method (e.g. GET orB¥38H). TPRe-
questHandler provides a number of class and instance variables, and methods for use by subclasses.

The handler will parse the request and the headers, then call a method specific to the request type. The method
name is constructed from the request. For example, for the request m&thAd] the do_SPAM() method

will be called with no arguments. All of the relevant information is stored in instance variables of the handler.
Subclasses should not need to override or extend thé _() method.

BaseHTTPRequestHandler has the following instance variables:

client _address
Contains a tuple of the forhhost port) referring to the client’s address.

command
Contains the command (request type). For exam@ET" .

path
Contains the request path.

request _version
Contains the version string from the request. For examidiETP/1.0’

headers
Holds an instance of the class specified byMessageClass class variable. This instance parses and man-
ages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherance to the HTTP protocol
must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server _version
Specifies the server software version. You may want to override this. The format is multiple whitespace-
separated strings, where each string is of the form name[/version]. For exédaaseHTTP/0.2’

Sys _version
Contains the Python system version, in a form usable by whesion _string method and the
server _version class variable. For exampl®ython/1.4’

11.25. Standard Module BaseHTTPServer 189

error _message _format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed format spec-
ifiers, so the format operand must be a dictionary. Tbéekey should be an integer, specifing the numeric
HTTP error code valuanessagshould be a string containing a (detailed) error message of what occurred, and
explainshould be an explanation of the error code number. Defiagttsagandexplainvalues can found in the
responseslass variable.

protocol _version
This specifies the HTTP protocol version used in responses. Typically, this should not be overridden. Defaults
to'HTTP/1.0’

MessageClass
Specifies afc822.Message -like class to parse HTTP headers. Typically, this is not overridden, and it
defaults tomimetools.Message

responses
This variable contains a mapping of error code integers to two-element tuples containing a short and long
message. For examplecode (shortmessage longmessagé . Theshortmessages usually used as the
messagekey in an error response, atmhgmessagas theexplainkey (see theerror _message _format
class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle ()
Overrides the superclassandle() method to provide the specific handler behavior. This method will parse
and dispatch the request to the approprifte*() method.

send _error (code[, messag]a)
Sends and logs a complete error reply to the client. The nursede specifies the HTTP error code, with
messageas optional, more specific text. A complete set of headers is sent, followed by text composed using the
error _message _format class variable.

send _response (code[, messag]z)
Sends a response header and logs the accepted request. The HTTP response line is sent, foBewed by
and Date headers. The values for these two headers are picked up fromete®mn _string() and
date _time _string() methods, respectively.

send _header (keyword, valug
Writes a specific MIME header to the output streataywordshould specify the header keyword, witalue
specifying its value.

end _headers ()
Sends a blank line, indicating the end of the MIME headers in the response.

log _request ([code{, size]])
Logs an accepted (successful) requeside should specify the numeric HTTP code associated with the re-
sponse. If a size of the response is available, then it should be passediagpaeameter.

log _error (..)
Logs an error when a request cannot be fulfilled. By default, it passes the messagentessage() , so it
takes the same argumentsr(natand additional values).

log _.message (format, ..)
Logs an arbitrary message fys.stderr . This is typically overridden to create custom error logging
mechanisms. Thérmat argument is a standard printf-style format string, where the additional arguments
tolog _message() are applied as inputs to the formatting. The client address and current date and time are
prefixed to every message logged.

version _string ()
Returns the server software’s version string. This is a combination ofsémeer _version and
sys _version class variables.

190 Chapter 11. Internet and WWW Services

date _time _string ()
Returns the current date and time, formatted for a message header.

log _data _time _string ()
Returns the current date and time, formatted for logging.

address _string ()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP address.

11.25. Standard Module BaseHTTPServer 191

192

CHAPTER
TWELV

Restricted Execution

In general, Python programs have complete access to the underlying operating system throug the various functions
and classes, For example, a Python program can open any file for reading and writing by usipgrf)e built-in
function (provided the underlying OS gives you permission!). This is exactly what you want for most applications.

There exists a class of applications for which this “openness” is inappropriate. Take Grail: a web browser that accepts
“applets”, snippets of Python code, from anywhere on the Internet for execution on the local system. This can be used
to improve the user interface of forms, for instance. Since the originator of the code is unknown, it is obvious that it
cannot be trusted with the full resources of the local machine.

Restricted executiois the basic framework in Python that allows for the segregation of trusted and untrusted code. It

is based on the notion that trusted Python codrufgervisoy can create a “padded cell’ (or environment) with limited
permissions, and run the untrusted code within this cell. The untrusted code cannot break out of its cell, and can
only interact with sensitive system resources through interfaces defined and managed by the trusted code. The term
“restricted execution” is favored over “safe-Python” since true safety is hard to define, and is determined by the way
the restricted environment is created. Note that the restricted environments can be nested, with inner cells creating
subcells of lesser, but never greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted code usually
have the same names as those presented to trusted code. Therefore no special interfaces need to be learned to write
code designed to run in a restricted environment. And because the exact nature of the padded cell is determined by
the supervisor, different restrictions can be imposed, depending on the application. For example, it might be deemed
“safe” for untrusted code to read any file within a specified directory, but never to write a file. In this case, the
supervisor may redefine the built-apen() function so that it raises an exception wheneverrttogleparameter is

'w' . It might also perform a&hroot() -like operation on thdilenameparameter, such that root is always relative

to some safe “sandbox” area of the filesystem. In this case, the untrusted code would still see aropaifiin

function in its environment, with the same calling interface. The semantics would be identical totQ®itlor s

being raised when the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution mode based on
the identity of the _builtins __objectin its global variables: if this is (the dictionary of) the standabdiltin ~ __
module, the code is deemed to be unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it from escaping
from the padded cell. For instance, the function object attribute _globals and the class and instance object
attribute__dict __are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec — Basic restricted execution framework.

Bastion — Providing restricted access to objects.

See Also:

193

Andrew Kuchling, “Restricted Execution HOWTO.” Available onlinehab://www.python.org/doc/howto/rexec!.

12.1 Standard Module rexec

This module contains tHeExec class, which supports_exec() ,r _eval() ,r _execfile() ,andr _import()

methods, which are restricted versions of the standard Python funetie@c$) , eval() , execfile() , and the

import statement. Code executed in this restricted environment will only have access to modules and functions that
are deemed safe; you can subclB&xec to add or remove capabilities as desired.

Note: TheRExec class can prevent code from performing unsafe operations like reading or writing disk files, or using
TCP/IP sockets. However, it does not protect against code using extremely large amounts of memory or CPU time.

RExec([hooks[, verbosd])
Returns an instance of tfiRExec class.

hooksis an instance of thRHooks class or a subclass of it. If it is omitted Nione, the defaulRHooks class

is instantiated. Whenever tlRExec module searches for a module (even a built-in one) or reads a module’s
code, it doesn’t actually go out to the file system itself. Rather, it calls methodsRiflanks instance that was
passed to or created by its constructor. (Actually,Riexec object doesn’t make these calls — they are made
by a module loader object that's part of tR&Exec object. This allows another level of flexibility, e.g. using
packages.)

By providing an alternat®Hooks object, we can control the file system accesses made to import a module,
without changing the actual algorithm that controls the order in which those accesses are made. For instance, we
could substitute aRHooks object that passes all filesystem requests to a file server elsewhere, via some RPC
mechanism such as ILU. Grail's applet loader uses this to support importing applets from a URL for a directory.

If verboseis true, additional debugging output may be sent to standard output.

TheREXxec class has the following class attributes, which are used by ihié _() method. Changing them on an
existing instance won't have any effect; instead, create a subcld&Sxac and assign them new values in the class
definition. Instances of the new class will then use those new values. All these attributes are tuples of strings.

nok _builtin _names
Contains the names of built-in functions which wilbt be available to programs running in the restricted en-
vironment. The value foRExec is ('open’, 'reload’, ’ _import _) . (This gives the exceptions,
because by far the majority of built-in functions are harmless. A subclass that wants to override this variable
should probably start with the value from the base class and concatenate additional forbidden functions — when
new dangerous built-in functions are added to Python, they will also be added to this module.)

ok _builtin _modules
Contains the names of built-in modules which can be safely imported. The valR&kar is ("audioop’,
‘array’, ’binascii’, ‘cmath’, 'errno’, 'imageop’, 'marshal’, 'math’, ‘'md5’,
‘operator’, 'parser’, 'regex’, 'rotor’, 'select’, 'strop’, 'struct’, 'time’) A
similar remark about overriding this variable applies — use the value from the base class as a starting point.

ok _path
Contains the directories which will be searched whemngport is performed in the restricted environment.
The value folRExec is the same asys.path (at the time the module is loaded) for unrestricted code.

ok _posix _names
Contains the names of the functions in tbe module which will be available to programs running in
the restricted environment. The value fRExec is (‘error’, 'fstat’, 'listdir’, 'Istat’,
‘readlink’, 'stat’, 'times’, 'uname’, 'getpid’, 'getppid’, 'getcwd’, 'getuid’,
‘getgid’, 'geteuid’, 'getegid’)

ok _sys _names
Contains the names of the functions and variables insy® module which will be available to pro-
grams running in the restricted environment. The valueRBxec is ('psl’, 'ps2’, 'copyright’,

194 Chapter 12. Restricted Execution

‘version’, 'platform’, 'exit’, 'maxint’)
RExec instances support the following methods:

r _,eval (code
codemust either be a string containing a Python expression, or a compiled code object, which will be evaluated
in the restricted environment’smain __ module. The value of the expression or code object will be returned.

r _exec (code
codemust either be a string containing one or more lines of Python code, or a compiled code object, which will
be executed in the restricted environmentimain __ module.

r _execfile (filename¢
Execute the Python code contained in thefflenamein the restricted environment'smain __ module.

Methods whose names begin with_* are similar to the functions beginning with *’, but the code will be granted
access to restricted versions of the standard 1/O stregmstdin ~ , sys.stderr , andsys.stdout

s_eval (codg
codemust be a string containing a Python expression, which will be evaluated in the restricted environment.

s_exec (codg
codemust be a string containing one or more lines of Python code, which will be executed in the restricted
environment.

s_execfile (codg
Execute the Python code contained in thefflenamein the restricted environment.

REXxec objects must also support various methods which will be implicitly called by code executing in the restricted
environment. Overriding these methods in a subclass is used to change the policies enforced by a restricted environ-
ment.

r _import (modulenam[a globals[, Iocals[, fromIist]]])
Import the modulanodulenameraising anmportError ~ exception if the module is considered unsafe.

r _open (filename[, mode[, bufsizd])
Method called whempen() is called in the restricted environment. The arguments are identical to those of
open() , and afile object (or a class instance compatible with file objects) should be retRrec’s default
behaviour is allow opening any file for reading, but forbidding any attempt to write a file. See the example below
for an implementation of a less restrictiveopen() .

r reload (modulg
Reload the module objeatodule re-parsing and re-initializing it.

r _unload (modulg
Unload the module objeahodule(i.e., remove it from the restricted environmerstys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

s_import (modulenam[e. globals[, Iocals[, fromlist]]])
Import the modulenodulenamgraising anmportError ~ exception if the module is considered unsafe.

s_reload (modulg
Reload the module objeatodule re-parsing and re-initializing it.

s_unload (modulg
Unload the module objechodule

An example

Let us say that we want a slightly more relaxed policy than the starRlargc class. For example, if we're willing
to allow files in ftmp’ to be written, we can subclass tRExec class:

12.1. Standard Module rexec 195

class TmpWriterRExec(rexec.RExec):
def r_open(self, file, mode="r’, buf=-1):
if mode in (r, 'rb):
pass
elif mode in (w', 'wb’, 'a’, 'ab’):
check filename : must begin with /tmp/
if file[:5]'="/tmp/":
raise IOError, "can't write outside /tmp"
elif (string.find(file, '/../’) >= 0 or
file[:3] == ../ or file[-3:] == 'I..):
raise |OError, "™.." in filename forbidden"
else: raise |OError, "lllegal open() mode"
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the restricted
environment won't be able to open a file callegnp/foo/../bar’. To fix this, ther _open() method would have to
simplify the filename to/tmp/bar’, which would require splitting apart the flename and performing various operations
onit. In cases where security is at stake, it may be preferable to write simple code which is sometimes overly restrictive,
instead of more general code that is also more complex and may harbor a subtle security hole.

12.2 Standard Module Bastion

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered a stronghold.”
It's a suitable name for this module, which provides a way to forbid access to certain attributes of an object. It must
always be used with theexec module, in order to allow restricted-mode programs access to certain safe attributes
of an object, while denying access to other, unsafe attributes.

Bastion (objec{, filter[, name[, class]]])
Protect the objeatbject returning a bastion for the object. Any attempt to access one of the object’s attributes
will have to be approved by tHéter function; if the access is denied attributeError exception will be
raised.

If present,filter must be a function that accepts a string containing an attribute name, and returns true if
access to that attribute will be permitted;filter returns false, the access is denied. The default filter de-
nies access to any function beginning with an underscate (The bastion’s string representation will be
‘<Bastion for name>’ if a value for nameis provided; otherwiseyepr(objec) ’ will be used.

class if present, should be a subclassB#stionClass ; see the code irbastion.py’ for the details. Overrid-
ing the defaulBastionClass will rarely be required.

BastionClass (getfunc, nampe
Class which actually implements bastion objects. This is the default class ugabstign() . Thegetfunc
parameter is a function which returns the value of an attribute which should be exposed to the restricted execution
environment when called with the name of the attribute as the only paranmeteieis used to construct the
repr() of theBastionClass instance.

196 Chapter 12. Restricted Execution

CHAPTER
THIRTEEN

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for multimedia
applications. They are available at the discretion of the installation. Here’s an overview:

audioop — Manipulate raw audio data.

imageop — Manipulate raw image data.

aifc — Read and write audio files in AIFF or AIFC format.

jpeg — Read and write image files in compressed JPEG format.

rgbimg — Read and write image files in “SGI RGB” format (the modulad SGI specific though)!

imghdr — Determine the type of image contained in a file or byte stream.

13.1 Built-in Module audioop

Theaudioop module contains some useful operations on sound fragments. It operates on sound fragments consisting
of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same format as usedl by the
andsunaudiodev modules. All scalar items are integers, unless specified otherwise.

This module provides support for u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always a
parameter of the operation.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add (fragmentl, fragment2, width
Return a fragment which is the addition of the two samples passed as paraméldrss the sample width in
bytes, eithedl, 2 or 4. Both fragments should have the same length.

adpcm2lin (adpcmfragment, width, stgte
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the descriptioRadpcm() for
details on ADPCM coding. Return a tuplesample newstatg where the sample has the width specified in
width.

adpcm32lin (adpcmfragment, width, stgte
Decode an alternative 3-bit ADPCM code. Sie@adpcm3() for details.

avg (fragment, width
Return the average over all samples in the fragment.

197

avgpp (fragment, width
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the usefulness of
this routine is questionable.

bias (fragment, width, bias
Return a fragment that is the original fragment with a bias added to each sample.

cross (fragment, width
Return the number of zero crossings in the fragment passed as an argument.

findfactor (fragment, referenge
Return a factoF such thatrms(add(fragment mul(reference - F))) is minimal, i.e., return the factor
with which you should multiplyreferenceto make it match as well as possibleftagment The fragments
should both contain 2-byte samples.

The time taken by this routine is proportionallém(fragmenj .

findfit (fragment, referenge
Try to matchreferenceas well as possible to a portion fsthgment(which should be the longer fragment). This
is (conceptually) done by taking slices outfeigment using findfactor() to compute the best match,
and minimizing the result. The fragments should both contain 2-byte samples. Return (ecffigdd factor)
whereoffsetis the (integer) offset interagmentwhere the optimal match started dadtor is the (floating-point)
factor as pefindfactor()

findmax (fragment, length
Searchragmentfor a slice of lengtHengthsamples (not bytes!) with maximum energy, i.e., retuior which
rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte samples.

The routine takes time proportionallen(fragmenj .

getsample (fragment, width, indéx
Return the value of sampiadexfrom the fragment.

lin2lin (fragment, width, newwidjh
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm (fragment, width, staje
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme, whereby
each 4 bit number is the difference between one sample and the next, divided by a (varying) step. The Intel/DVI
ADPCM algorithm has been selected for use by the IMA, so it may well become a standard.

stateis a tuple containing the state of the coder. The coder returns a(tapiecmfrag newstatg, and the
newstateshould be passed to the next calllim2adpcm() . In the initial call, None can be passed as the
state.adpcmfrags the ADPCM coded fragment packed 2 4-bit values per byte.

linadpcm3 (fragment, width, stade
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the Intel/DVI
ADPCM coder and its output is not packed (due to laziness on the side of the author). Its use is discouraged.

linulaw (fragment, width
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string. u-LAW is an
audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is used by
the Sun audio hardware, among others.

minmax (fragment, width
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width
Return the maximum of thabsolute valuef all samples in a fragment.

maxpp(fragment, width
Return the maximum peak-peak value in the sound fragment.

198 Chapter 13. Multimedia Services

mul (fragment, width, factor
Return a fragment that has all samples in the original framgent multiplied by the floating-pointfaeiae
Overflow is silently ignored.

ratecv (fragment, width, nchannels, inrate, outrate, s[ameightﬁ[, weightB]])
Convert the frame rate of the input fragment.

stateis a tuple containing the state of the converter. The converter returns artepfragment newstatg,
andnewstateshould be passed to the next calrafecv()

TheweightAandweightBarguments are parameters for a simple digital filter and defalilatedO respectively.

reverse (fragment, width
Reverse the samples in a fragment and returns the modified fragment.

rms (fragment, width
Return the root-mean-square of the fragment, i.e.

> S°

n

This is a measure of the power in an audio signal.

tomono (fragment, width, Ifactor, rfactgr
Convert a stereo fragment to a mono fragment. The left channel is multipli€fddigr and the right channel
by rfactor before adding the two channels to give a mono signal.

tostereo (fragment, width, Ifactor, rfactgr
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are computed

from the mono sample, whereby left channel samples are multiplidtabipr and right channel samples by
rfactor.

ulaw2lin (fragment, width

Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding always
uses 8 bits samples, sadth refers only to the sample width of the output fragment here.

Note that operations such asul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments first and
recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, Ifactor, rfactor):
Isample = audioop.tomono(sample, width, 1, 0)

rsample = audioop.tomono(sample, width, 0, 1)
Isample = audioop.mul(sample, width, Ifactor)
rsample = audioop.mul(sample, width, rfactor)
Isample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)

return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to
tolerate packet loss) you should not only transmit the data but also the state. Note that you shouldiséiad ate

(the one you passed im2adpcm()) along to the decoder, not the final state (as returned by the coder). If you want
to usestruct.struct() to store the state in binary you can code the first element (the predicted value) in 16 bits
and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well be
that | misinterpreted the standards in which case they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation. A
reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the input sample
and subtract the whole output sample from the input sample:

13.1. Built-in Module audioop 199

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = "\0™*(pos+ipos)*2
postfill = "\O*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

13.2 Built-in Module imageop

Theimageop module contains some useful operations on images. It operates on images consisting of 8 or 32 bit
pixels stored in Python strings. This is the same format as usegtlitsctwrite() and themgfile module.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop (image, psize, width, height, x0, y0, x1) y1
Return the selected part whage which should bywidth by heightin size and consist of pixels @isizebytes.
X0, y0, x1 andy1 are like thegl.Irectread() parameters, i.e. the boundary is included in the new image.
The new boundaries need not be inside the picture. Pixels that fall outside the old image will have their value
set to zero. 10 is bigger tharx1the new image is mirrored. The same holds for the y coordinates.

scale (image, psize, width, height, newwidth, newheight
Returnimagescaled to sizeaewwidthby newheight No interpolation is done, scaling is done by simple-minded
pixel duplication or removal. Therefore, computer-generated images or dithered images will not look nice after
scaling.

tovideo (image, psize, width, height
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the average of
two vertically-aligned source pixels. The main use of this routine is to forestall excessive flicker if the image is
displayed on a video device that uses interlacing, hence the name.

grey2mono (image, width, height, threshold
Convert a 8-bit deep greyscale image to a 1-bit deep image by tresholding all the pixels. The resulting image is
tightly packed and is probably only useful as an argumentaao2grey()

dither2mono (image, width, height
Convert an 8-hit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering algorithm.

mono2grey (image, width, height, p0, p1
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-valued on
input get valugpO on output and all one-value input pixels get vapfeon output. To convert a monochrome
black-and-white image to greyscale pass the valuasd255 respectively.

grey2grey4 (image, width, height

Convert an 8-hit greyscale image to a 4-bit greyscale image without dithering.
grey2grey2 (image, width, height

Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

200 Chapter 13. Multimedia Services

dither2grey2 (image, width, height
Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. Aditf@r2mono() , the
dithering algorithm is currently very simple.

grey42grey (image, width, height
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey (image, width, height
Convert a 2-hit greyscale image to an 8-bit greyscale image.

13.3 Standard Module aifc

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File Format,
a format for storing digital audio samples in a file. AIFF-C is a newer version of the format that includes the ability to
compress the audio data.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the number of

times per second the sound is sampled. The number of channels indicate if the audio is mono, stereo, or quadro. Each

frame consists of one sample per channel. The sample size is the size in bytes of each sample. Thus a frame consists
of nchannelssamplesizéytes, and a second’s worth of audio consistaaifannelssamplesize&frameratebytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame rate
of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100 bytes,
i.e. 176,400 bytes.

Moduleaifc defines the following function:

open (file, modé
Open an AlIFF or AIFF-C file and return an object instance with methods that are described below. The argument
file is either a string naming a file or a file object. The mode is either the stfingwhen the file must be
opened for reading, dw’ when the file must be opened for writing. When used for writing, the file object
should be seekable, unless you know ahead of time how many samples you are going to write in total and use
writeframesraw() andsetnframes()

Objects returned bgpen() when afile is opened for reading have the following methods:

getnchannels ()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth ()
Return the size in bytes of individual samples.

getframerate ()
Return the sampling rate (number of audio frames per second).

getnframes ()
Return the number of audio frames in the file.

getcomptype ()
Return a four-character string describing the type of compression used in the audio file. For AIFF files, the
returned value iISNONE’ .

getcompname ()
Return a human-readable description of the type of compression used in the audio file. For AIFF files, the
returned value iot compressed’

getparams ()
Return a tuple consisting of all of the above values in the above order.

getmarkers ()

13.3. Standard Module aifc 201

Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is the mark
ID (an integer), the second is the mark position in frames from the beginning of the data (an integer), the third
is the name of the mark (a string).

getmark (id)
Return the tuple as describedgetmarkers() for the mark with the giverd.

readframes (nframe3
Read and return the nerframesframes from the audio file. The returned data is a string containing for each
frame the uncompressed samples of all channels.

rewind ()
Rewind the read pointer. The negadframes() will start from the beginning.

setpos (po9
Seek to the specified frame number.

tell ()
Return the current frame number.

close ()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned bypen() when afile is opened for writing have all the above methods, excepddframes()

andsetpos() . In addition the following methods exist. Tlyet*() methods can only be called after the corre-
spondingset*() methods have been called. Before the fusiteframes() or writeframesraw() , all
parameters except for the number of frames must be filled in.

aiff ()

Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file &éad8 in
in which case the default is an AIFF file.

aifc ()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file eaid in
in which case the default is an AIFF file.

setnchannels (nchannel¥
Specify the number of channels in the audio file.

setsampwidth (width)
Specify the size in bytes of audio samples.

setframerate (rate)
Specify the sampling frequency in frames per second.

setnframes (nframe$
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set
correctly, the file needs to support seeking.

setcomptype (type, namg
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files, compression
is not possible. The name parameter should be a human-readable description of the compression type, the type
parameter should be a four-character string. Currently the following compression types are supported: NONE,
ULAW, ALAW, G722.

setparams (nchannels, sampwidth, framerate, comptype, comphame
Set all the above parameters at once. The argument is a tuple consisting of the various parameters. This means
that it is possible to use the result ofatparams() call as argument teetparams()

setmark (id, pos, namg
Add a mark with the given id (larger than 0), and the given name at the given position. This method can be
called at any time beforelose()

202 Chapter 13. Multimedia Services

tell ()
Return the current write position in the output file. Useful in combination séttmark()

writeframes (data
Write data to the output file. This method can only be called after the audio file parameters have been set.

writeframesraw (data)
Like writeframes() , except that the header of the audio file is not updated.

close ()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After calling
this method, the object can no longer be used.

13.4 Built-in Module jpeg

The modulgpeg provides access to the jpeg compressor and decompressor written by the Independent JPEG Group.
JPEG is a (draft?) standard for compressing pictures. For details on JPEG or the Independent JPEG Group software
refer to the JPEG standard or the documentation provided with the software.

Thejpeg module defines an exception and some functions.

error
Exception raised bgompress() anddecompress() in case of errors.

compress (data, w, h, b
Treat data as a pixmap of widithhand height, with b bytes per pixel. The data is in SGI GL order, so the first
pixel is in the lower-left corner. This means thydrectread() return data can immediately be passed to
compress() . Currently only 1 byte and 4 byte pixels are allowed, the former being treated as greyscale and
the latter as RGB colocompress() returns a string that contains the compressed picture, in JFIF format.

decompress (data)
Data is a string containing a picture in JFIF format. It returns a tgpgkta, width, height bytesperpixél.
Again, the data is suitable to passgidrectwrite()

setoption (name, valug
Set various options. Subsequenmpress() anddecompress() calls will use these options. The follow-
ing options are available:

Option Effect
'forcegray’ Force output to be grayscale, even if input is RGB.
‘quality’ Set the quality of the compressed image to a value be-

tween0 and 100 (default is75). This only affects
compression.

‘optimize’ Perform Huffman table optimization. Takes longer,
but results in smaller compressed image. This only
affects compression.

'smooth’ Perform inter-block smoothing on uncompressed im-
age. Only useful for low-quality images. This only
affects decompression.

13.5 Built-in Module rgbimg

Thergbimg module allows Python programs to access SGI imglib image files (also knowrylisfiles). The
module is far from complete, but is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

13.4. Built-in Module jpeg 203

error
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage (file)
This function returns a tupléx, y) wherex andy are the size of the image in pixels. Only 4 byte RGBA
pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string
has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is suitable to pass to
gl.Irectwrite() , for instance.

longstoimage (data, x, Y, z, file
This function writes the RGBA data idatato image filefile. x andy give the size of the imagezis 1 if the
saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB data, or 4 if the saved images
should be 4 byte RGBA data. The input data always contains 4 bytes per pixel. These are the formats returned
by gl.Irectread()

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

13.6 Standard Module imghdr

Theimghdr module determines the type of image contained in a file or byte stream.
Theimghdr module defines the following function:

what (filenamdg, h])
Tests the image data contained in the file nameéilbgame and returns a string describing the image type. If
optionalhis provided, thdilenameis ignored and is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return valuesfhai()

Value Image format

rgb’ SGI ImgLib Files

‘gif’ GIF 87a and 89a Files
‘pbny’ Portable Bitmap Files
‘pgm’ Portable Graymap Files
‘Ppm’ Portable Pixmap Files
"tiff’ TIFF Files

rast’ Sun Raster Files

'xbm’ X Bitmap Files

'ipeg’ JPEG data in JIFF format

You can extend the list of file typesighdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and an
open file-like object. Whewhat() is called with a byte-stream, the file-like object will bione.

The test function should return a string describing the image type if the test succeededgedf it failed.

Example:

204 Chapter 13. Multimedia Services

>>> import imghdr
>>> imghdr.what('/tmp/bass.qgif’)
lgifv

13.6. Standard Module imghdr 205

206

CHAPTER
FOURTEEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available at
the discretion of the installation. Here’s an overview:

md5 — RSA's MD5 message digest algorithm.
mpz — Interface to the GNU MP library for arbitrary precision arithmetic.

rotor — Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew Kuchling of further interest;
the package adds built-in modules for DES and IDEA encryption, provides a Python module for reading and decrypting
PGP files, and then some. These modules are not distributed with Python but available separately. See the URL
http://starship.skyport.net/crew/amk/maintained/crypto.html or send email t@kuchlin@acm.org for more information.

14.1 Built-in Module md5

This module implements the interface to RSA's MD5 message digest algorithm (see also Internet RFC 1321). Its use
is quite straightforward: use theew() to create an md5 object. You can now feed this object with arbitrary strings
using theupdate() method, and at any point you can ask it for thgest(a strong kind of 128-bit checksum, a.k.a.
“fingerprint”) of the contatenation of the strings fed to it so far usingdigest() = method.

For example, to obtain the digest of the striNgpbody inspects the spammish repetition’

>>> jmport md5

>>> m = md5.new()

>>> m.update("Nobody inspects")

>>> m.update(" the spammish repetition")

>>> m.digest()
\273d\234\203\335\0361245\311\331\336\3111241\215\360\377\351’

More condensed:
>>> md5.new("Nobody inspects the spammish repetition™).digest()

\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351"’

new([arg])
Return a new md5 object. #rg is present, the method calpdate(arg) is made.

207

md5([arg])

For backward compatibility reasons, this is an alternative name farah€) function.
An md5 object has the following methods:

update (arg)
Update the md5 object with the strilagg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments, i.en.update(a); m.update(b) is equivalent tan.update(a+b)

digest ()
Return the digest of the strings passed toupdate() method so far. This is an 16-byte string which may
contain nonAscli characters, including null bytes.

copy ()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings that

share a common initial substring.

14.2 Built-in Module mpz

This is an optional module. It is only available when Python is configured to include it, which requires that the GNU
MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision integer and
rational number arithmetic routines. Only the interfaces tdrteger(mpz_*()) routines are provided. If not stated
otherwise, the description in the GNU MP documentation can be applied.

In generalmpznumbers can be used just like other standard Python numbers, e.g. you can use the built-in operators
like +, *, etc., as well as the standard built-in functions l#es() ,int() ,...,divmod() , pow() . Please note:

the bitwise-xoroperation has been implemented as a bunchmak, inverts andors, because the library lacks an
mpzxor() function, and | didn’t need one.

You create an mpz-number by calling the functiopz() (see below for an exact description). An mpz-number is
printed like this:mpz(valug .

mpz(valué
Create a new mpz-numbefaluecan be an integer, a long, another mpz-number, or even a string. Ifitis a string,
it is interpreted as an array of radix-256 digits, least significant digit first, resulting in a positive number. See
also thebinary() method, described below.

MPZType
The type of the objects returned byz() and most other functions in this module.

A number ofextrafunctions are defined in this module. Non mpz-arguments are converted to mpz-values first, and
the functions return mpz-numbers.

pown(base, exponent, modujus
Returnpow(base exponent % modulus If exponent== 0, returnmpz(1) . In contrast to the C library
function, this version can handle negative exponents.

ged (opl, op?
Return the greatest common divisoragfl andop2

gcdext (a, b)
Returnatuplé g, s, t),suchthab*s + b*t == g == gcd(a, b).

sart (op)
Return the square root op. The result is rounded towards zero.

sqrtrem (op)
Return a tupld€ root, remaindej , such thatoot* root + remainder == op.

208 Chapter 14. Cryptographic Services

divm (numerator, denominator, modulus
Returns a numbey such thalg * denominator % modulus == numerator One could also implement this
function in Python, usingcdext()

An mpz-number has one method:

binary ()
Convert this mpz-number to a binary string, where the number has been stored as an array of radix-256 digits,
least significant digit first.

The mpz-number must have a value greater than or equal to zero, oth¥alisError will be raised.

14.3 Built-in Module rotor

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The design is derived
from the Enigma device, a machine used during World War Il to encipher messages. A rotor is simply a permutation.
For example, if the character ‘A’ is the origin of the rotor, then a given rotor might map ‘A'to ‘L', ‘B’to ‘Z’, ‘C’ to ‘G,

and so on. To encrypt, we choose several different rotors, and set the origins of the rotors to known positions; their
initial position is the ciphering key. To encipher a character, we permute the original character by the first rotor, and
then apply the second rotor's permutation to the result. We continue until we've applied all the rotors; the resulting
character is our ciphertext. We then change the origin of the final rotor by one position, from ‘A’ to ‘B’; if the final rotor

has made a complete revolution, then we rotate the next-to-last rotor by one position, and apply the same procedure
recursively. In other words, after enciphering one character, we advance the rotors in the same fashion as a car’s
odometer. Decoding works in the same way, except we reverse the permutations and apply them in the opposite order.

The available functions in this module are:

newrotor (key[, numrotors])
Return a rotor objeckeyis a string containing the encryption key for the object; it can contain arbitrary binary
data. The key will be used to randomly generate the rotor permutations and their initial positiomstorsis
the number of rotor permutations in the returned object; if it is omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey (key)
Sets the rotor’s key tkey

encrypt (plaintex)
Reset the rotor object to its initial state and enciyfaintext returning a string containing the ciphertext. The
ciphertext is always the same length as the original plaintext.

encryptmore (plaintex)
Encryptplaintextwithout resetting the rotor object, and return a string containing the ciphertext.

decrypt (ciphertexj
Reset the rotor object to its initial state and decigiphertext returning a string containing the ciphertext. The
plaintext string will always be the same length as the ciphertext.

decryptmore (ciphertexj
Decryptciphertextwithout resetting the rotor object, and return a string containing the ciphertext.

An example usage:

14.3. Built-in Module rotor 209

>>> import rotor

>>> rt = rotor.newrotor(’key’, 12)
>>> rt.encrypt(’bar’)
\2534\363’

>>> rt.encryptmore(’bar’)
"\357\375%’

>>> rt.encrypt(’bar’)
"\2534\363'

>>> rt.decrypt(\2534\363’)
‘bar’

>>> rt.decryptmore(\357\375%’)
‘bar’

>>> rt.decrypt(\357\375%")
1315’

>>> del rt

The module’s code is not an exact simulation of the original Enigma device; it implements the rotor encryption
scheme differently from the original. The most important difference is that in the original Enigma, there were only 5
or 6 different rotors in existence, and they were applied twice to each character; the cipher key was the order in which
they were placed in the machine. The Pythiotor module uses the supplied key to initialize a random number
generator; the rotor permutations and their initial positions are then randomly generated. The original device only
enciphered the letters of the alphabet, while this module can handle any 8-bit binary data; it also produces binary
output. This module can also operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal more difficult
to crack (especially if you use many rotors), but it won't be impossible for a truly skilful and determined attacker
to break the cipher. So if you want to keep the NSA out of your files, this rotor cipher may well be unsafe, but for
discouraging casual snooping through your files, it will probably be just fine, and may be somewhat safer than using
the UNIX crypt command.

210 Chapter 14. Cryptographic Services

CHAPTER
FIFTEEN

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI's IRIX operating system
(versions 4 and 5).

15.1 Built-in Module al

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section 3A of the
IRIX man pages for details. You'll need to read those man pages to understand what these functions do! Some of the
functions are not available in IRIX releases before 4.0.5. Again, see the manual to check whether a specific function
is available on your platform.

All functions and methods defined in this module are equivalent to the C functionsAditiprefixed to their name.
Symbolic constants from the C header fi@udio.h> are defined in the standard modiéie, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed rather than
returning an error status. Unfortunately, since the precise circumstances under which this may happen are undocu-
mented and hard to check, the Python interface can provide no protection against this kind of problems. (One example
is specifying an excessive queue size — there is no documented upper limit.)

The module defines the following functions:

openport (name, directioﬁ, config])
The name and direction arguments are strings. The optimmdigargument is a configuration object as returned
by newconfig() . The return value is aaudio port objectmethods of audio port objects are described below.

newconfig ()
The return value is a newudio configuration objectmethods of audio configuration objects are described
below.

gueryparams (devicg
The device argument is an integer. The return value is a list of integers containing the data retufthed by
queryparams()

getparams (device, lis}
The deviceargument is an integer. The list argument is a list such as returnegidryparams() ; itis
modified in place (!).

setparams (device, lis}
Thedeviceargument is an integer. Thist argument is a list such as returneddueryparams()

Configuration Objects

211

Configuration objects (returned Imgwconfig() have the following methods:

getqueuesize ()
Return the queue size.

setqueuesize (siz
Set the queue size.

getwidth ()
Get the sample width.

setwidth (‘width)
Set the sample width.

getchannels ()
Get the channel count.

setchannels (nchannely
Set the channel count.

getsampfmt ()
Get the sample format.

setsampfmt (sampfmy
Set the sample format.

getfloatmax ()
Get the maximum value for floating sample formats.

setfloatmax (floatmay
Set the maximum value for floating sample formats.

Port Objects

Port objects, as returned lapenport() , have the following methods:

closeport ()
Close the port.

getfd ()
Return the file descriptor as an int.

getffilled 0
Return the number of filled samples.

getfillable 0
Return the number of fillable samples.

readsamps (nsamplep
Read a number of samples from the queue, blocking if necessary. Return the data as a string containing the raw
data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if you have set the sample width to
2 bytes).

writesamps (sample¥
Write samples into the queue, blocking if necessary. The samples are encoded as describerkéal- the
samps() return value.

getfillpoint 0
Return the fill point’.

setfillpoint (fillpoint)
Set the ‘fill point’.

212 Chapter 15. SGI IRIX Specific Services

getconfig ()
Return a configuration object containing the current configuration of the port.

setconfig (config
Set the configuration from the argument, a configuration object.

getstatus (list)
Get status information on last error.

15.2 Standard Module AL

This module defines symbolic constants needed to use the built-in mald($=e above); they are equivalent to those
defined in the C header filkkaudio.h> except that the name prefiAL_’ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

import al
from AL import *

15.3 Built-in Module cd

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM deviceapiém() and creates a parser to

parse the data from the CD witheateparser() . The object returned bypen() can be used to read data from

the CD, but also to get status information for the CD-ROM device, and to get information about the CD, such as the
table of contents. Data from the CD is passed to the parser, which parses the frames, and calls any callback functions
that have previously been added.

An audio CD is divided intdracksor programs(the terms are used interchangeably). Tracks can be subdivided into
indices An audio CD contains table of contentsvhich gives the starts of the tracks on the CD. Index 0 is usually the
pause before the start of a track. The start of the track as given by the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values, minutes, seconds
and frames. Most functions use the latter representation. Positions can be both relative to the beginning of the CD,
and to the beginning of the track.

Modulecd defines the following functions and constants:

createparser ()
Create and return an opaque parser object. The methods of the parser object are described below.

msftoframe (minutes, seconds, franes
Converts d minutes seconds frameg triple representing time in absolute time code into the corresponding
CD frame number.

open ([device[, mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of the player object are
described below. The device is the name of the SCSI device file,/day/scsi/sc0d4l0’ , or None.
If omitted orNone, the hardware inventory is consulted to locate a CD-ROM drive. mbde if not omited,
should be the string’

The module defines the following variables:

error
Exception raised on various errors.

15.2. Standard Module AL 213

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the callback of type
audio .

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returnedbistatus()

READY

The drive is ready for operation loaded with an audio CD.
NODISC

The drive does not have a CD loaded.
CDROM

The drive is loaded with a CD-ROM. Subsequent play or read operations will return 1/O errors.
ERROR

An error aoocurred while trying to read the disc or its table of contents.
PLAYING

The drive is in CD player mode playing an audio CD through its audio jacks.
PAUSED

The drive is in CD layer mode with play paused.
STILL

The equivalent oPAUSEDoN older (non 3301) model Toshiba CD-ROM drives. Such drives have never been
shipped by SGl.

audio

pnum

index

ptime

atime

catalog

ident

control
Integer constants describing the various types of parser callbacks that can be setatigdakback()
method of CD parser objects (see below).

Player Objects

Player objects (returned lmpen()) have the following methods:

allowremoval ()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize ()
Returns the best value to use for t@m framesparameter of theeadda() method. Best is defined as the
value that permits a continuous flow of data from the CD-ROM drive.

close ()
Frees the resources associated with the player object. After calbeg() , the methods of the object should
no longer be used.

eject ()
Ejects the caddy from the CD-ROM drive.

getstatus ()

214 Chapter 15. SGI IRIX Specific Services

Returns information pertaining to the current state of the CD-ROM drive. The returned information is a tuple
with the following values:state track, rtime, atime ttime, first, last, scsiaudio, cur_block rtime is the time
relative to the start of the current trackimeis the time relative to the beginning of the distimeis the total

time on the disc. For more information on the meaning of the values, see the ma@pggestatu§3dm). The

value ofstateis one of the followingERRORNODISC READYPLAYING, PAUSEDSTILL , or CDROM

gettrackinfo (track)
Returns information about the specified track. The returned information is a tuple consisting of two elements,
the start time of the track and the duration of the track.

msftoblock (min, sec, frame
Converts a minutes, seconds, frames triple representing a time in absolute time code into the corresponding logi-
cal block number for the given CD-ROM drive. You should ussftoframe() rather tharmsftoblock()
for comparing times. The logical block number differs from the frame number by an offset required by certain
CD-ROM drives.

play (start, play
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output appears on the

CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of thestdistds the number of
the track at which to start playing the CD;gfay s 0, the CD will be set to an initial paused state. The method
togglepause() can then be used to commence play.

playabs (minutes, seconds, frames, play
Like play() , except that the start is given in minutes, seconds, and frames instead of a track number.

playtrack (' start, play)
Like play() , except that playing stops at the end of the track.

playtrackabs (track, minutes, seconds, frames, play
Like play() , exceptthat playing begins at the spcified absolute time and ends at the end of the specified track.

preventremoval ()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting the caddy.

readda (numframey
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return value is a
string representing the audio frames. This string can be passed unalteregaosttieame() method of the
parser object.

seek (minutes, seconds, franjes
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to an absolute time code location specifi@diinutes secondsandframes The return value is the
logical block number to which the pointer has been set.

seekblock (blocK)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified logical block number. The return value is the logical block number to which the
pointer has been set.

seektrack (track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified track. The return value is the logical block number to which the pointer has been
set.

stop ()
Stops the current playing operation.

togglepause ()
Pauses the CD if it is playing, and makes it play if it is paused.

15.3. Built-in Module cd 215

Parser Objects

Parser objects (returned byeateparser()) have the following methods:

addcallback (type, func, ary
Adds a callback for the parser. The parser has callbacks for eight different types of data in the digital audio
data stream. Constants for these types are defined attimeodule level (see above). The callback is called
as follows:fund arg, type, data) , Wherearg is the user supplied argumenypeis the particular type of
callback, anddatais the data returned for thiype of callback. The type of the data depends on tipee of
callback as follows:

Type Value

audio String which can be passed unmodifiecatavritesamps()

pnum Integer giving the program (track) number.

index Integer giving the index number.

ptime Tuple consisting of the program time in minutes, seconds, and frames.

atime Tuple consisting of the absolute time in minutes, seconds, and frames.

catalog String of 13 characters, giving the catalog number of the CD.

ident String of 12 characters, giving the ISRC identification number of the
recording. The string consists of two characters country code, three char-
acters owner code, two characters giving the year, and five characters
giving a serial number.

control Integer giving the control bits from the CD subcode data

deleteparser ()
Deletes the parser and frees the memory it was using. The object should not be used after this call. This call is
done automatically when the last reference to the object is removed.

parseframe (frame
Parses one or more frames of digital audio data from a CD such as returnesdola() . It determines which
subcodes are present in the data. If these subcodes have changed since the last frgrasseframe()
executes a callback of the appropriate type passing to it the subcode data found in the frame. Unlike the C
function, more than one frame of digital audio data can be passed to this method.

removecallback (typd
Removes the callback for the giveype

resetparser ()
Resets the fields of the parser used for tracking subcodes to an initiaretetparser() should be called
after the disc has been changed.

15.4 Built-in Module fl

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library can be
retrieved by anonymous ftp from hostg.cs.ruu.nl ’, directory ‘SGI/FORMS’. It was last tested with version
2.0b.

Most functions are literal translations of their C equivalents, dropping the initial’ from their name. Constants
used by the library are defined in modik described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained by the library
to which new FORMS objects are added, all functions that add a FORMS object to a form are methods of the Python
object representing the form. Consequently, there are no Python equivalents for the C fuhctemidto _form()

andfl _end_form() , and the equivalent df _bgn _form() is calledfl.make _form()

Watch out for the somewhat confusing terminology: FORMS uses the algjettfor the buttons, sliders etc. that
you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS introduces two new

216 Chapter 15. SGI IRIX Specific Services

Python object types: form objects (representing an entire form) and FORMS objects (representing one button, slider
etc.). Hopefully this isn't too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object classes written
in Python. The FORMS interface to GL event handling is available, though, so you can mix FORMS with pure GL
windows.

Please note: importing fl implies a call to the GL functiorforeground() and to the FORMS routine
fl _init()

Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description of the
equivalent C function in the FORMS documentation:

make_form (type, width, height
Create a form with given type, width and height. This returfera object, whose methods are described below.

do_forms ()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing interaction,
or the special valuEL.EVENT.

check _forms ()
Check for FORMS events. Returns widat_forms() above returns, olone if there is no event that imme-
diately needs interaction.

set _event _call _back (function
Set the event callback function.

set _graphics _mode(rgbmode, doublebuffering
Set the graphics modes.

get _rgbmode ()
Return the current rgb mode. This is the value of the C global varfablegbmode .

show_message (strl, str2, str3
Show a dialog box with a three-line message and an OK button.

show_question (strl, str2, str3
Show a dialog box with a three-line message and YES and NO buttons. It rétifrtiee user pressed YES,
if NO.

show_choice (strl, str2, str3, butﬁ., but2[, but3]])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the button clicked
by the userZ, 2 or 3).

show_input (prompt, default
Show a dialog box with a one-line prompt message and text field in which the user can enter a string. The second
argument is the default input string. It returns the string value as edited by the user.

show file _selector (message, directory, pattern, defgult
Show a dialog box in which the user can select a file. It returns the absolute filename selected by the user, or
None if the user presses Cancel.

get _directory ()

get _pattern ()

get filename ()
These functions return the directory, pattern and filename (the tail part only) selected by the user in the last
show file _selector() call.

gdevice (devy

15.4. Built-in Module fl 217

unqgdevice (dey

isqueued (dey

gtest ()

gread ()

greset ()

genter (dev, va)

get _mouse()

tie (' button, valuatorl, valuator2
These functions are the FORMS interfaces to the corresponding GL functions. Use these if you want to handle
some GL events yourself when usifiglo _events() . When a GL event is detected that FORMS cannot
handlefl.do _forms() returns the special valdeL.EVENT and you should cafl.qread() to read the
event from the queue. Don't use the equivalent GL functions!

color ()

mapcolor ()

getmcolor ()
See the description in the FORMS documentation #f _color() , fl _mapcolor() and
fl _getmcolor()

Form Objects

Form objects (returned bgnake form() above) have the following methods. Each method corresponds to a C
function whose name is prefixed witfi *_’; and whose first argument is a form pointer; please refer to the official
FORMS documentation for descriptions.

All the add *() methods return a Python object representing the FORMS object. Methods of FORMS objects are
described below. Most kinds of FORMS object also have some methods specific to that kind; these methods are listed
here.

show _form (placement, bordertype, najne
Show the form.

hide _form ()
Hide the form.

redraw _form ()
Redraw the form.

set _form _position (x,y)
Set the form’s position.

freeze _form ()
Freeze the form.

unfreeze _form ()
Unfreeze the form.

activate _form ()
Activate the form.

deactivate _form ()
Deactivate the form.

bgn _group ()
Begin a new group of objects; return a group object.

end _group ()
End the current group of objects.

218 Chapter 15. SGI IRIX Specific Services

find first ()
Find the first object in the form.

find _last ()
Find the last object in the form.

add _box (type, X, y, w, h, name
Add a box object to the form. No extra methods.

add text (type, x, Yy, w, h, name
Add a text object to the form. No extra methods.

add _clock (type, X,y, w, h, nan)e
Add a clock object to the form.
Method:get _clock()

add _button (type, X, y, w, h, name
Add a button object to the form.
Methods:get _button() , set _button()

add _lightbutton (type, X, y, w, h, nan)e
Add a lightbutton object to the form.
Methods:get _button() , set _button()

add _roundbutton (type, X, y, w, h, name
Add a roundbutton object to the form.
Methods:get _button() , set _button()

add _slider (type, x, Y, w, h, name
Add a slider object to the form.
Methods:set _slider _value() ,get slider _value() ,set _slider _bounds() |,
get _slider _bounds() ,set _slider _return() ,set _slider _size()
set _slider _precision() ,set slider _step()

add _valslider (type, x, Yy, w, h, name
Add a valslider object to the form.
Methods:set slider _value() ,get slider _value() ,set _slider _bounds()
get slider _bounds() ,set slider _return() ,set _slider _size()
set _slider _precision() , set _slider _step()

add dial (type, x,y, w, h, name
Add a dial object to the form.
Methods:set _dial _value() ,get _dial _value() ,set _dial _bounds() ,get _dial _bounds()

add _positioner (type, X, y, w, h, name
Add a positioner object to the form.
Methods:set _positioner ~ xvalue() ,set _positioner _yvalue()
set _positioner xbounds() ,set _positioner _ybounds() ,get _positioner _xvalue()
get _positioner _yvalue() ,get _positioner xbounds() ,get _positioner _ybounds()

add _counter (type, X, Yy, w, h, name
Add a counter object to the form.
Methods:set _counter _value() ,get _counter _value() ,set _counter _bounds() |,
set _counter _step() ,set _counter _precision() , set _counter _return()

add _input (type, X, y, w, h, nane
Add a input object to the form.
Methods:set _input() ,get _input() ,set _input _color() ,set _input _return()

add _menu(type, X, y, w, h, name
Add a menu object to the form.

15.4. Built-in Module fl 219

Methods:set _menu() , get _menu() , addto _menu() .

add choice (type, X, Yy, w, h, name
Add a choice object to the form.
Methods:set _choice() ,get _choice() ,clear _choice() ,addto _choice() ,
replace _choice() ,delete _choice() ,get _choice _text() ,set _choice _fontsize() ,
set _choice _fontstyle()

add _browser (type, X, Yy, w, h, name
Add a browser object to the form.
Methods:set _browser _topline() ,clear _browser() ,add_browser _line()
addto _browser() ,insert _browser _line() ,delete _browser _line() ,
replace _browser _line() ,get _browser _line() ,load _browser()
get _browser _maxline() ,select _browser _line() ,deselect _browser _ine() ,
deselect _browser() ,isselected _browser _line() ,get _browser()
set _browser _fontsize() , set _browser _fontstyle() , set _browser _specialkey()

add _timer (type, X, y, w, h, nan)e
Add a timer object to the form.
Methods:set _timer() , get _timer()

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning

window int (read-only) | GL window id

w float form width

h float form height

X float form x origin

y float form y origin

deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

FORMS Obijects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the following methods:

set _call _back (function, argument
Set the object’s callback function and argument. When the object needs interaction, the callback function will be
called with two arguments: the object, and the callback argument. (FORMS objects without a callback function
are returned byl.do _forms() orfl.check _forms() when they need interaction.) Call this method
without arguments to remove the callback function.

delete _object ()
Delete the object.

show_object ()
Show the object.

hide _object ()
Hide the object.

redraw _object ()
Redraw the object.

freeze _object ()
Freeze the object.

220 Chapter 15. SGI IRIX Specific Services

unfreeze _object ()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

Name C Type Meaning

objclass int (read-only) | object class

type int (read-only) | object type
boxtype int box type

X float X origin

y float y origin

w float width

h float height

coll int primary color

col2 int secondary color
align int alignment

Icol int label color

Isize float label font size

label string label string

Istyle int label style

pushed int (read-only) | (see FORMS docs)
focus int (read-only) | (see FORMS docs)
belowmouse | int (read-only)| (see FORMS docs)
frozen int (read-only) | (see FORMS docs)
active int (read-only) | (see FORMS docs)
input int (read-only) | (see FORMS docs)
visible int (read-only) | (see FORMS docs)
radio int (read-only) | (see FORMS docs)
automatic int (read-only) | (see FORMS docs)

15.5 Standard Module FL

This module defines symbolic constants needed to use the built-in mbdg=e above); they are equivalent to those

defined in the C header fikforms.h> except that the name prefikL_" is omitted. Read the module source for a

complete list of the defined names. Suggested use:

import fl
from FL import *

15.6 Standard Module flp

This module defines functions that can read form definitions created by the ‘form desigiesig() program that

comes with the FORMS library (see modftile above).

For now, see the fileflp.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted here!

15.7 Built-in Module fm

15.5. Standard Module FL

This module provides access to the IFH@t Managerlibrary. It is available only on Silicon Graphics machines.
See also4Sight User’s GuideSection 1, Chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix operations; cache
operations; character operations (use string operations instead); some details of font info; individual glyph metrics;
and printer matching.

It supports the following operations:

init ()
Initialization function. Call§minit() . It is normally not necessary to call this function, since it is called
automatically the first time thien module is imported.

findfont (fontnamé
Return a font handle object. Caftmfindfont(fonthamé .

enumerate ()
Returns a list of available font names. This is an interfadenenumerate()

prstr (string)
Render a string using the current font (see thetfont() font handle method below). Calls
fmprstr(string) .

setpath (string)
Sets the font search path. Cdissetpath(string) . (XXX Does not work!?!)

fontpath ()
Returns the current font search path.

Font handle objects support the following operations:

scalefont (factor)
Returns a handle for a scaled version of this font. Caliscalefont(th, factor) .

setfont ()
Makes this font the current font. Note: the effect is undone silently when the font handle object is deleted. Calls
fmsetfont(fh).

getfontname ()
Returns this font’s name. Callsmgetfontname(fh) .

getcomment ()
Returns the comment string associated with this font. Raises an exception if there is none. Calls
fmgetcomment(fh) .

getfontinfo 0

Returns a tuple giving some pertinent data about this font. This is an interfécgétfontinfo() . The
returned tuple contains the following numbeggrintermatchedfixed width, xorig, yorig, xsize ysize height
nglyphg .

getstrwidth (string)
Returns the width, in pixels, aftring when drawn in this font. CallBngetstrwidth(fh, string) .

15.8 Built-in Module gl

This module provides access to the Silicon Grapl@eaphics Library It is available only on Silicon Graphics
machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular, the use of most
GL calls is unsafe before the first window is opened.

222 Chapter 15. SGI IRIX Specific Services

The module is too large to document here in its entirety, but the following should help you to get started. The parameter
conventions for the C functions are translated to Python as follows:

¢ All (short, long, unsigned) int values are represented by Python integers.

¢ All float and double values are represented by Python floating point numbers. In most cases, Python integers
are also allowed.

¢ All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

e All string and character arguments are represented by Python strings, for instarapen('Hi There!’)
androtate(900, 'z’)

¢ All (short, long, unsigned) integer arguments or return values that are only used to specify the length of an array
argument are omitted. For example, the C call

Imdef(deftype, index, np, props)

is translated to Python as

Imdef(deftype, index, props)

e Output arguments are omitted from the argument list; they are transmitted as function return values instead. If
more than one value must be returned, the return value is a tuple. If the C function has both a regular return
value (that is not omitted because of the previous rule) and an output argument, the return value comes first in
the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray (.argumeny
Equivalent to but faster than a numben@d() calls. Theargumentis a list (or tuple) of points. Each point
must be a tuple of coordinatés, y, 2) or(Xx, V). The points may be 2- or 3-dimensional but must all have
the same dimension. Float and int values may be mixed however. The points are always converted to 3D double
precision points by assumirg= 0.0 if necessary (as indicated in the man page), and for each @t}
is called.

nvarray ()
Equivalent to but faster than a numberrdff andv3f calls. The argument is an array (list or tuple) of pairs
of normals and points. Each pair is a tuple of a point and a normal for that point. Each point or normal must be
a tuple of coordinateéx, y, 2 . Three coordinates must be given. Float and int values may be mixed. For
each pairn3f() is called for the normal, and thes3f() is called for the point.

vnarray ()
Similar tonvarray() but the pairs have the point first and the normal second.

nurbssurface (sk, tk, ctl, sord, tord, typg
Defines a nurbs surface. The dimensionsctif]]] are computed as follows{len(sk) - sord],
[len(tk) - tord].

15.8. Built-in Module gl 223

nurbscurve (knots, ctlpoints, order, type
Defines a nurbs curve. The length of ctlpointteis(knot§ - order.

pwlcurve (points, typég
Defines a piecewise-linear curvaointsis a list of pointstypemust beN_ST.

pick (n)
select (n)
The only argument to these functions specifies the desired size of the pick or select buffer.

endpick ()

endselect ()
These functions have no arguments. They return a list of integers representing the used part of the pick/select
buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:
import gl, GL, time

def main():
gl.foreground()
gl.prefposition(500, 900, 500, 900)
w = gl.winopen('CrissCross’)
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color(GL.WHITE)
gl.clear()
gl.color(GL.RED)
gl.bgnline()
gl.v2f(0.0, 0.0)
gl.v2f(400.0, 400.0)
gl.endline()
gl.bgnline()
gl.v2f(400.0, 0.0)
gl.v2f(0.0, 400.0)
gl.endline()
time.sleep(5)

main()

15.9 Standard Modules GL and DEVICE

These modules define the constants used by the Silicon Graphaghics Librarythat C programmers find in the
header filesigl/gl.h¢’ and ‘igl/device.h¢’. Read the module source files for detalils.

15.10 Built-in Module imdfile

Theimgfile module allows Python programs to access SGI imglib image files (also knowrgkisfiles). The
module is far from complete, but is provided anyway since the functionality that there is is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

224 Chapter 15. SGI IRIX Specific Services

getsizes (file)

This function returns a tuplex, y, 2 wherex andy are the size of the image in pixels an@ the number
of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently supported.

read (file)

This function reads and decodes the image on the specified file, and returns it as a Python string. The string has
either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format
is suitable to pass tgl.Irectwrite() , for instance.

readscaled (file, X, y, filtel[, blur])

This function is identical to read but it returns an image that is scaled to the yaedy sizes. If thefilter and
blur parameters are omitted scaling is done by simply dropping or duplicating pixels, so the result will be less
than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms supported are
'impulse’ , ’box’ , 'triangle’ , 'quadratic’ and’gaussian’ . If a filter is specifiedblur is an
optional parameter specifying the blurriness of the filter. It defaulisQo.

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob (flag)

write

This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

(file, data, x, y, 2
This function writes the RGB or greyscale datalatato image filefile. x andy give the size of the image,is
1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values of which only the lower
three bytes are used). These are the formats returngtltactread()

15.10. Built-in Module imgfile 225

226

CHAPTER
SIXTEEN

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS operating system
(versions 4 and 5; the latter is also known as Solaris version 2).

16.1 Built-in Module sunaudiodev

This module allows you to access the sun audio interface. The sun audio hardware is capable of recording and playing
back audio data in u-LAW format with a sample rate of 8K per second. A full description can be foundirdib@'l)
manual page.

The module defines the following variables and functions:

error
This exception is raised on all errors. The argument is a string describing what went wrong.

open (modg
This function opens the audio device and returns a sun audio device object. This object can then be used to do
I/0 on. Themodeparameter is one of for record-only accessy’ for play-only accessyw’ for both and
‘control’ for access to the control device. Since only one process is allowed to have the recorder or player
open at the same time it is a good idea to open the device only for the activity neededid®€¢#) for details.

Audio Device Objects

The audio device objects are returneddpen() define the following methods (excegintrol objects which only
providegetinfo() , setinfo() anddrain()):

close ()
This method explicitly closes the device. Itis useful in situations where deleting the object does not immediately
close it since there are other references to it. A closed device should not be used again.

drain ()
This method waits until all pending output is processed and then returns. Calling this method is often not
necessary: destroying the object will automatically close the audio device and this will do an implicit drain.

flush ()
This method discards all pending output. It can be used avoid the slow response to a user’s stop request (due to
buffering of up to one second of sound).

getinfo ()
This method retrieves status information like input and output volume, etc. and returns it in the form of an
audio status object. This object has no methods but it contains a number of attributes describing the current
device status. The names and meanings of the attributes are descrildest/imcfude/sun/audioio.h’ and in

227

the audig(7l) manual page. Member names are slightly different from their C counterparts: a status object is
only a single structure. Members of thity substructure haven'’ prepended to their name and members of
therecord structure havei‘'_’. So, the C membeplay.sample _rate is accessed as sample rate |,
record.gain asi _gain andmonitor _gain plainly asmonitor _gain .

ibufcount ()
This method returns the number of samples that are buffered on the recording side, i.e. the program will not
block on aread() call of so many samples.

obufcount ()
This method returns the number of samples buffered on the playback side. Unfortunately, this number cannot
be used to determine a humber of samples that can be written without blocking since the kernel output queue
length seems to be variable.

read (size
This method readsizesamples from the audio input and returns them as a Python string. The function blocks
until enough data is available.

setinfo (statug
This method sets the audio device status parametersst@hesparameter is an device status object as returned
by getinfo() and possibly modified by the program.

write (sample¥
Write is passed a Python string containing audio samples to be played. If there is enough buffer space free it
will immediately return, otherwise it will block.

There is a companion modul8lUNAUDIODEMvhich defines useful symbolic constants IMEN_GAIN, MAXGAIN,
SPEAKERetc. The names of the constants are the same names as used in the C inckgiasfdedioio.h>
with the leading stringAUDIQ_’ stripped.

Useability of the control device is limited at the moment, since there is no way to use the “wait for something to
happen” feature the device provides.

228 Chapter 16. SunOS Specific Services

CHAPTER
SEVENTEEN

Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel free to
contribute documentation for them! (The idea and most contents for this chapter were taken from a posting by Fredrik
Lundh; | have revised some modules’ status.)

17.1 Frameworks; somewhat harder to document, but well worth the ef-
fort

Tkinter.py — Interface to Tcl/Tk for graphical user interfaces; Fredrik Lundh is working on this one!
Tkdnd.py — Drag-and-drop support farkinter
CGIHTTPServer.py — CGl-savvy HTTP Server

SimpleHTTPServer.py — Simple HTTP Server

17.2 Stuff useful to a lot of people, including the CGI crowd

MimeWriter.py — Generic MIME writer

multifile.py — make each part of a multipart message “feel” like
poplib.py — Post Office Protocol client by Dave Ascher.
smtplib.py — Simple Mail Transfer Protocol (SMTP) client code.

17.3 Miscellaneous useful utilities
Some of these are very old and/or not very robust; marked with “hmm”.

calendar.py — Calendar printing functions

ConfigParser.py — Parse a file of sectioned configuration parameters
cmp.py — Efficiently compare files

cmpcache.py — Efficiently compare files (uses statcache)

dircache.py — like os.listdir, but caches results

229

dircmp.py — class to build directory diff tools on

getpass.py— Utilities to get a password and/or the current user name.
linecache.py — Cache lines from files (used by pdb)

pipes.py — Conversion pipeline templates (hmm)

popen2.py — improved popen, can read AND write simultaneously
statcache.py— Maintain a cache of file stats

colorsys.py — Conversion between RGB and other color systems
dbhash.py — (g)dbm-like wrapper for bsdhash.hashopen

mhlib.py — MH interface

pty.py — Pseudo terminal utilities

tty.py — Terminal utilities

cmd.py — build line-oriented command interpreters (used by pdb)
bdb.py — A generic Python debugger base class (used by pdb)
wdb.py — A primitive windowing debugger based on STDWIN.
ihooks.py — Import hook support (for rexec)

bisect.py — Bisection algorithms (this is actually useful at times, especially as reference material)

17.4 Parsing Python

(One could argue that these should all be documented together with the parser module.)

tokenize.py — regular expression that recognizes Python tokens; also contains helper code for colorizing Python
source code.

pyclbr.py — Parse a Python file and retrieve classes and methods

17.5 Platform specific modules

ntpath.py — equivalent of posixpath on 32-bit Windows

dospath.py — equivalent of posixpath on MS-DOS

17.6 Code objects and files, debugger etc.

compileall.py — force "compilation” of all .py files in a directory
py_compile.py — "compile” a .py file to a .pyc file

repr.py — Redo the ‘... (representation) but with limits on most sizes (used by pdb)

230 Chapter 17. Undocumented Modules

17.7 Multimedia

audiodev.py — Plays audio files

sunau.py — parse Sun and NeXT audio files
sunaudio.py — interpret sun audio headers

toaiff.py — Convert "arbitrary” sound files to AIFF files
sndhdr.py — recognizing sound files

wave.py — parse WAVE files

whatsound.py — recognizing sound files

17.8 Oddities

These modules are probably also obsolete, or just not very useful.

dump.py — Print python code that reconstructs a variable
find.py — find files matching pattern in directory tree

fpformat.py — General floating point formatting functions — interesting demonstration of how to do this without
using the C library

grep.py —grep

mutex.py — Mutual exclusion — for use with module sched
packmail.py — create a self-unpackingNux shell archive
poly.py — Polynomials

sched.py — event scheduler class

shutil.py — utility functions usable in a shell-like program
util.py — useful functions that don't fit elsewhere

zmod.py — Compute properties of mathematical "fields”

tzparse.py — Parse a timezone specification (unfinished)

17.9 Obsolete

These modules are not on the standard module search path; but are available in the diiteotdfyinstalled under
‘$prefixlib/pythonl.5/’. To use any of these modules, add that directorgyts.path , possibly using $PYTHON-
PATH.

newdir.py — New dir() function (the standard dir() is now just as good)

addpack.py — standard support for "packages”

fmt.py — text formatting abstractions (too slow)

17.7. Multimedia 231

Para.py — helper for fmt.py

lockfile.py — wrapper around FCNTL file locking (use fcntl.lockf/flock intead)

tb.py — Print tracebacks, with a dump of local variables (use pdb.pm() or traceback.py instead)

codehack.py — extract function name or line number from a function code object (these are now accessible as
attributes: co.comame, func.funmame, co.cdirstlineno)

The following modules were documented in previous versions of this manual, but are now considered obsolete:

ni — Import modules in “packages.”
rand — Old interface to the random number generator.

soundex — Algorithm for collapsing names which sound similar to a shared key. (This is an extension module.)

17.10 Extension modules

bsddbmodule.c — Interface to the Berkeley DB interface (yet another dbm clone).
cursesmodule.c— Curses interface.

dimodule.c — A highly experimental and dangerous device for calling arbitrary C functions in arbitrary shared li-
braries.

newmodule.c — Tommy Burnette’s ‘new’ module (creates new empty objects of certain kinds) — dangerous.
nismodule.c — NIS (a.k.a. Sun’s Yellow Pages) interface.
timingmodule.c — Measure time intervals to high resolution (obsolete — use time.clock() instead).

stdwinmodule.c — Interface to STDWIN (an old, unsupported platform-independent GUI package). Obsolete; use
Tkinter for a platform-independent GUI instead.

The following are SGI specific:
clmodule.c — Interface to the SGI compression library.

svmodule.c — Interface to the “simple video” board on SGI Indigo (obsolete hardware).
The following is Windows specific:

msvcrtmodule.c (in directory PC/’) — define a number of Windows specific goodies Ik®it() , getch() and
setmode() . (Windows 95 and NT only.)

232 Chapter 17. Undocumented Modules

Symbols

__builtin __, 59
__main __, 59

A

aifc , 201
AL, 213

al ,211
anydbm, 111
array , 83
audioop , 197

B

base64 , 184
BaseHTTPServer , 188
Bastion , 196

binascii , 180

binhex , 179

C

cd, 213

cgi , 150
cmath , 80
code, 49
commands, 132
copy , 34

copy reg, 33
cPickle ,33
crypt ,122
cStringloO |, 77

D

dbm, 123
DEVICE, 224
dis , 52
dumbdbm 112

E

errno , 92
exceptions ,12

F

MODULE INDEX

fentl |, 125
fileinput , 85
FL, 221

fl ,216

flp ,221

fm, 222
fnmatch , 98
formatter , 173
ftplib , 158

G

gdbm, 123
getopt ,91

GL 224

gl , 222

glob , 98
gopherlib , 161
grp , 122

gzip , 113

H

htmllib , 169
httplib ~ , 157

imageop , 200
imaplib , 161
imgfile , 224
imghdr , 204
imp, 36

J
jpeg , 203

K
keyword , 49

L

locale , 99

M

233

mailbox , 187 struct , 75

mailcap , 183 sunaudiodev , 227

marshal , 35 symbol , 48

math, 79 sys , 24

md5, 207 syslog , 130

mimetools , 178

mimify , 187 T

mpz, 208 tempfile , 92
TERMIOS 125

N termios , 124

nntplib , 164 thread , 110
time , 88

O token , 48

operator , 28 traceback , 30

os, 87 types , 26

P U

parser , 39 urllib 155

pdb, 135 urlparse , 166

pickle , 30 user , 58

posix , 115 UserDict , 28

posixfile , 126 UserList , 28

posixpath , 120 uu, 180

pprint , 49

profile , 142 W

pstats , 143 whichdb , 112

pwd, 122 whrandom, 82

Q X

Queue, 111 xdrlib , 181

quopri , 185 xmllib , 170

R Z

random , 82 zlib , 112

re, 64

regex , 70

regsub , 74

resource ,128

rexec , 194

rfc822 , 176

rgbimg , 203

rotor , 209

S

select , 109

sgmllib , 167

shelve , 34

signal , 103

site , 57

socket , 105

SocketServer , 185

stat , 131

string , 61

StringlO |, 77

234 Module Index

Symbols

.pythonrc.py
file, 58

operator, 4
abs() (in module operator), 29
_add__() (in module operator), 28
and() (in module operator), 29
_builtin __ (built-in module),59
_concat _() (in module operator), 29
_delitem _() (in module operator), 29
_delslice _() (in module operator), 30
_dict __(pickle protocol), 32
_div _() (in module operator), 28
__getinitargs __(copy protocol), 35
__getinitargs _() (pickle protocol), 31
_getitem _() (in module operator), 29
_getslice _() (in module operator), 29
__getstate __ (copy protocol), 35
_getstate _() (pickle protocol), 32
_import _() (built-in function), 15
_init _() (pickle protocol), 31
_iinv __() (in module operator), 29
_lIshift ~ __() (in module operator), 29
__main __ (built-in module),59
_mod () (in module operator), 29
__mul _() (in module operator), 28
neg() (in module operator), 29
_or _() (in module operator), 29
_pos _() (in module operator), 29
_repeat _() (in module operator), 29
_rshift ~ __() (in module operator), 29
_setitem _() (in module operator), 29
_setslice _() (in module operator), 29
__setstate __(copy protocol), 35
_setstate _ () (pickle protocol), 32
sub() (in module operator), 28
_exit() (in module posix), 117
_locale (built-in module), 99

A

INDEX

A-LAW, 202
a2b _base64() (in module binascii), 180
a2b _hgx() (in module binascii), 180
a2b _uu() (in module binascii), 180
ABC language, 4
abort() (FTP method), 160
abs()

built-in function, 15

in module operator, 29
AbstractFormatter (class in formatter), 175
AbstractWriter (class in formatter), 176
accept() (socket method), 107
acos()

in module cmath, 81

in module math, 79
acosh() (in module cmath), 81
acquire() (lock method), 110
activate _form() (form method), 218
add()

in module audioop, 197

in module operator, 28

Stats method, 143
add _box() (form method), 219
add _browser() (form method), 220
add _button() (form method), 219
add choice() (form method), 220
add clock() (form method), 219
add _counter() (form method), 219
add _dial() (form method), 219
add flowing _data() (formatter method), 174
add _hor _rule() (formatter method), 173
add _input() (form method), 219
add _label _data() (formatter method), 174
add _lightbutton() (form method), 219
add _line _break() (formatter method), 173
add _literal _data() (formatter method), 174
add _menu() (form method), 219
add _positioner() (form method), 219
add _roundbutton() (form method), 219
add _slider() (form method), 219
add text() (form method), 219
add _timer() (form method), 220

235

add _valslider()

addcallback()

address _family

address _string()
method), 191

adler32() (in module zlib), 112

ADPCM, Intel/DVI, 197

adpcm2lin() (in module audioop), 197

adpcm32lin() (in module audioop), 197

AF_INET (in module socket), 105

AF_UNIX (in module socket), 105

aifc (standard moduleR01

aifc() (aifc method), 202

AIFF, 201

aiff() (aifc method), 202

AIFF-C, 201

AL (standard module), 212,13

al (built-in module),211

alarm() (in module signal), 104

all _errors (in module ftplib), 159

allocate _lock() (in module thread), 110

allowremoval() (CD player method), 214

altsep (in module os), 88

altzone (in module time), 89

anchor _bgn() (HTMLParser method), 170

anchor _end() (HTMLParser method), 170

and

(form method), 219
(CD parser method), 216
(SocketServer protocol), 186
(BaseHTTPRequestHandler

operator, 3, 4
and () (in module operator), 29
anydbm (standard module},11
append (list method), 8
append()

array method, 84

IMAP4 method, 162
apply() (built-in function), 15
arbitrary precision integers, 208
argv (in module sys), 24
arithmetic, 5
ArithmeticError

13

array (built-in module),83
array() (in module array), 84
arrays, 83
ArrayType (in module array), 84
article() (NNTP method), 166
AS.IS (in module formatter), 173
asctime() (in module time), 89
asin()

in module cmath, 81

in module math, 79
asinh() (in module cmath), 81
assert

statement, 13
assert _line _data()

(built-in exception base class),

(formatter method), 175

AssertionError (built-in exception), 13
assignment

slice, 8

subscript, 8
ast2list() (in module parser), 41

ast2tuple() (in module parser), 41
ASTType (in module parser), 42
atan()

in module cmath, 81

in module math, 79
atan2() (in module math), 79
atanh() (in module cmath), 81
atime (in module cd), 214
atof()

in module locale, 100

in module string, 62
atoi()

in module locale, 100

in module string, 62
atol() (in module string), 62
AttributeError (built-in exception), 13
audio (in module cd), 214
Audio Interchange File Format, 201
audioop (built-in module),197
authenticate() (IMAP4 method), 162
avg() (in module audioop), 197
avgpp() (in module audioop), 198

B

b2a _base64() (in module binascii), 180
b2a_hgx() (in module binascii), 181
b2a_uu() (in module binascii), 180
base64
encoding, 184
base64 (standard module),84
BaseHTTPRequestHandler
HTTPServer), 189
BaseHTTPServer (standard module)88
basename() (in module posixpath), 120
Bastion (standard module),96
Bastion() (in module Bastion), 196
BastionClass (class in Bastion), 196
bdb (standard module), 135
benchmarking, 89
bestreadsize()

(class in Base-

(CD player method), 214
betavariate() (in module random), 82
bgn _group() (form method), 218

bias() (in module audioop), 198

binary semaphores, 110

binary() (mpz method), 209
binascii (built-in module),180
bind() (socket method), 107

binhex (standard module),79
binhex() (in module binhex), 179

236

Index

bit-string
operations, 6
BLOCKSIZE(in module cd), 214
body() (NNTP method), 166
Boolean
operations, 3, 4
type, 3
buffer _info() (array method), 84
built-in
exceptions, 3
functions, 3
types, 3
builtin ~ _module _names (in module sys), 24
BuiltinFunctionType (in module types), 27
BuiltinMethodType (in module types), 27
byteswap() (array method), 84

C

C

language, 4, 5

structures, 75
C_BUILTIN (in module imp), 37
C_EXTENSION(in module imp), 37
calcsize() (in module struct), 75
callable() (built-in function), 15
capitalize() (in module string), 62
capwords()

in module regsub, 75

in module string, 62
casefold (in module regex), 73
catalog (in module cd), 214
cd (built-in module),213
CDRONIin module cd), 214
ceil()

built-in function, 5

in module math, 79
center() (in module string), 63
CGl

protocol, 150
cgi (standard module},50
CGIHTTPServer (standard module), 189
chaining

comparisons, 4
CHARMAX(in module locale), 101
CHARSETin module mimify), 188
chdir() (in module posix), 116
check() (IMAP4 method), 162
check _forms() (in module fl), 217
checksum

Cyclic Redundancy Check, 113

MD5, 207
chmod() (in module posix), 116
choice() (in module whrandom), 82

choose _boundary() (in module mimetools), 178

chown() (in module posix), 116
chr() (built-in function), 15
cipher

DES, 122, 207

Enigma, 209

IDEA, 207
ClassType (in module types), 27
clear _cache() (in module regsub), 75
client _address (BaseHTTPRequestHandler at-

tribute), 189

clock() (in module time), 89
close()

aifc method, 202, 203

audio device method, 227

CD player method, 214

file method, 10

FTP method, 161

IMAP4 method, 162

in module fileinput, 86

in module posix, 116

SGMLParser method, 168

socket method, 107

StringlO method, 77

XMLParser method, 171
closed (file attribute), 11
closelog() (in module syslog), 131
closeport() (audio port method), 212
cmath (built-in module),80
cmd (standard module), 135
cmp() (built-in function), 15, 100
cmp.op (in module dis), 53
code

object, 9, 10, 35
code (standard module}9
CodeType (in module types), 27
coerce() (built-in function), 16
color() (in module fl), 218
command(BaseHTTPRequestHandler attribute), 189
commands (standard module},32
Common Gateway Interface, 150
commonprefix() (in module posixpath), 120
comparing

objects, 4
comparison

operator, 4
comparisons

chaining, 4
compile()

AST method, 42

built-in function, 10, 16, 27, 41, 42

in module re, 67

in module regex, 73
compile _command() (in module code), 49
compileast() (in module parser), 41

Index

237

complex number

literals, 5

type, 5
complex() (built-in function), 5, 16
compress()

Compress method, 113

in module jpeg, 203

in module zlib, 113
compressobj() (in module zlib), 113
concat() (in module operator), 29
concatenation

operation, 6
configuration

file, path, 57

file, user, 58
connect()

FTP method, 159

HTTP method, 157

socket method, 107
connect _ex() (socketmethod), 107
constructor() (in module copyreg), 34
control (in module cd), 214
ConversionError (in module xdrlib), 183
conversions

numeric, 5
Coordinated Universal Time, 89
copy

copy function, 34

standard module, 32, 334
copy()

IMAP4 method, 162

md5 method, 208
copy _reg (standard moduleB3
copybinary() (in module mimetools), 178
copyliteral() (in module mimetools), 178
cos()

in module cmath, 81

in module math, 79
cosh()

in module cmath, 81

in module math, 79
count (list method), 8
count() (in module string), 62
cPickle (built-in module), 31, 3333
CPU time, 89
crc32() (in module zlib), 113
crc _hgx() (in module binascii), 181
create() (IMAP4 method), 162
createparser() (in module cd), 213
crop() (in module imageop), 200
cross() (in module audioop), 198
crypt (built-in module),122
crypt() (in module crypt), 122
crypt(3), 122

cryptography, 207

cStringlO (built-in module),77

ctime() (in module time), 89
cunifvariate() (in module random), 82
curdir (in module os), 88

cwd() (FTP method), 160

Cyclic Redundancy Check, 113

D

data

UserDict attribute, 28

UserList attribute, 28
DATASIZE (in module cd), 214
date() (NNTP method), 166
date _time _string() (BaseHTTPRequestHandler

method), 191

daylight (in module time), 89
Daylight Saving Time, 89
dbhash (built-in module), 111
dbm (built-in module), 34, 111, 123,23
deactivate _form() (form method), 218
debug (IMAP4 attribute), 163
debugger, 26
debugging, 135
decode()

in module base64, 184

in module mimetools, 178

in module quopri, 185

in module uu, 180
decodestring() (in module base64), 185
decompress()

Decompress method, 113

in module jpeg, 203

in module zlib, 113
decompressobj() (in module zlib), 113
decrypt() (rotor method), 209
decryptmore() (rotor method), 209
deepcopy (copy function), 34
defpath (in module os), 88
del

statement, 8
delattr() (built-in function), 16
delete() (IMAP4 method), 162
delete _object() (FORMS object method), 220
deleteparser() (CD parser method), 216
delitem() (in module operator), 29
delslice() (in module operator), 30
DES

cipher, 122, 207
deterministic profiling, 139
DEVICE (standard moduleR24
device

Enigma, 209
dictionary

238

Index

type, 8
type, operations on, 8

DictionaryType (in module types), 27

DictType (in module types), 27
digest() (md5 method), 208
digits (in module string), 61
dir()

built-in function, 16

FTP method, 160
directory

site-packages, 57

site-python, 57
dis (standard moduleh2
dis() (in module dis), 52
disassemble() (in module dis), 52
disco() (in module dis), 52
distb() (in module dis), 52

dither2grey?2() (in module imageop), 201
dither2mono() (in module imageop), 200

div() (in module operator), 28
division

integer, 5

long integer, 5
divm() (in module mpz), 209
divmod() (built-in function), 16
do_forms() (in module fl), 217
done() (Unpacker method), 182
DOTALL(in module re), 67
drain() (audio device method), 227
Drake, Fred L., Jr., 39
dumbdbm(standard module), 11112
DumbWriter (class in formatter), 176
dump()

in module marshal, 36

in module pickle, 33
dumps()

in module marshal, 36

in module pickle, 33
dup()

in module posix, 116

posixfile method, 127
dup2()

in module posix, 116

posixfile method, 127

in module cmath, 81

in module math, 80
E2BIG (in module errno), 93
EACCESin module errno), 93
EADDRINUSKin module errno), 97
EADDRNOTAVAII(in module errno), 97
EADV(in module errno), 95

EAFNOSUPPOR(In module errno), 97
EAGAIN (in module errno), 93
EALREADYin module errno), 97
EBADEKE(in module errno), 95
EBADFK(in module errno), 93
EBADFD(in module errno), 96
EBADMSG@n module errno), 96
EBADR(in module errno), 95
EBADRQ@n module errno), 95
EBADSLT(in module errno), 95
EBFONT(in module errno), 95
EBUSY(in module errno), 93
ECHILD (in module errno), 93
ECHRNGN module errno), 94
ECOMNIn module errno), 95
ECONNABORTHD module errno), 97
ECONNREFUSHi» module errno), 97
ECONNRESE({in module errno), 97
EDEADLKin module errno), 94
EDEADLOCKNn module errno), 95
EDESTADDRRE@ module errno), 96
EDOMin module errno), 94
EDOTDOTin module errno), 96
EDQUOTin module errno), 98
EEXIST (in module errno), 93
EFAULT(in module errno), 93
EFBIG (in module errno), 93
EHOSTDOW(#M module errno), 97
EHOSTUNREAQfh module errno), 97
EIDRM(in module errno), 94
EILSEQ (in module errno), 96
EINPROGRES®nN module errno), 97
EINTR (in module errno), 92
EINVAL (in module errno), 93

EIO (in module errno), 92
EISCONN(in module errno), 97
EISDIR (in module errno), 93
EISNAM(in module errno), 98
eject() (CD player method), 214
EL2HLT (in module errno), 95
EL2NSYNQin module errno), 94
EL3HLT (in module errno), 94
EL3RST(in module errno), 94
ELIBACC (in module errno), 96
ELIBBAD (in module errno), 96
ELIBEXEC (in module errno), 96
ELIBMAX (in module errno), 96
ELIBSCN (in module errno), 96
Ellinghouse, Lance, 180, 209
ELNRNGQGin module errno), 94
ELOOR(in module errno), 94
EMFILE (in module errno), 93
EMLINK (in module errno), 94
Empty (in module Queue), 111

Index

239

empty() (Queue method), 111
EMSGSIZE(in module errno), 96
EMULTIHOR(in module errno), 95
ENAMETOOLONf@ module errno), 94
ENAVAIL (in module errno), 98
encode()

in module base64, 185

in module mimetools, 178

in module quopri, 185

in module uu, 180
encodestring() (in module base64), 185
encoding

base64, 184

guoted-printable, 185
encrypt() (rotor method), 209
encryptmore() (rotor method), 209
end() (in module re), 70
end _group() (form method), 219
end _headers()

method), 190

end _paragraph() (formatter method), 173
endheaders() (HTTP method), 158
endpick() (in module gl), 224
endpos (MatchObiject attribute), 70
endselect() (in module gl), 224
ENETDOW(ih module errno), 97
ENETRESETin module errno), 97
ENETUNREAC{h module errno), 97
ENFILE (in module errno), 93
Enigma

cipher, 209

device, 209
ENOANG@n module errno), 95
ENOBUFSin module errno), 97
ENOCSI(in module errno), 94
ENODATAin module errno), 95
ENODEV\(in module errno), 93
ENOENTin module errno), 92
ENOEXEQin module errno), 93
ENOLCKin module errno), 94
ENOLINK (in module errno), 95
ENOMEMN module errno), 93
ENOMS@n module errno), 94
ENONETin module errno), 95
ENOPKG®Gin module errno), 95
ENOPROTOORih module errno), 96
ENOSPGin module errno), 93
ENOSRin module errno), 95
ENOSTRin module errno), 95
ENOSYSin module errno), 94
ENOTBLKin module errno), 93
ENOTCONRN module errno), 97
ENOTDIR(in module errno), 93
ENOTEMPT{in module errno), 94

(BaseHTTPRequestHandler

ENOTNANIn module errno), 98
ENOTSOCKn module errno), 96
ENOTTY(in module errno), 93
ENOTUNIQin module errno), 96
enumerate() (in module fm), 222
environ (in module posix), 116
environment variables

$HOME, 58

$LOGNAME, 160

$PATH, 153, 155

$PYTHONPATH, 153, 231

$PYTHONSTARTUP, 58

$USER, 160

setting, 118
ENXIO (in module errno), 93
EOFError (built-in exception), 13
EOPNOTSUP#n module errno), 97
EOVERFLO\th module errno), 96
EPERMin module errno), 92
EPFNOSUPPOR(In module errno), 97
EPIPE (in module errno), 94
epoch, 88
EPROT@in module errno), 95
EPROTONOSUPPORT module errno), 96
EPROTOTYPEN module errno), 96
ERANGKin module errno), 94
EREMCHG@n module errno), 96
EREMOTHEN module errno), 95
EREMOTEIdin module errno), 98
ERESTARTin module errno), 96
EROFHin module errno), 94
errno

built-in module, 105, 116

standard modul&2
ERRORin module cd), 214
Error

in module binascii, 181

in module locale, 99

in module xdrlib, 183
error

in module anydbm, 112

in module audioop, 197

in module cd, 214

in module dbm, 123

in module dumbdbm, 112

in module gdbm, 123

in module getopt, 91

in module imageop, 200

in module imdfile, 225

in module jpeg, 203

in module posix, 116

in module re, 68

in module regex, 73

in module resource, 128

240

Index

in module rgbimg, 204
in module select, 109
in module socket, 105
in module struct, 75
in module sunaudiodev, 227
in module thread, 110
in module zlib, 112
error _message _format
Handler attribute), 189
error _perm
in module ftplib, 159
in module nntplib, 164
error _proto
in module ftplib, 159
in module nntplib, 165
error _reply
in module ftplib, 159
in module nntplib, 164
error _temp
in module ftplib, 159
in module nntplib, 164
errorcode (in module errno), 92
escape()
in module cgi, 153
in module re, 67
ESHUTDOWM module errno), 97
ESOCKTNOSUPPORM module errno), 96
ESPIPE (in module errno), 94
ESRCHin module errno), 92
ESRMNTin module errno), 95
ESTALE(in module errno), 97
ESTRPIPE (in module errno), 96
ETIME (in module errno), 95
ETIMEDOUT(in module errno), 97
ETOOMANYRER® module errno), 97
ETXTBSY(in module errno), 93
EUCLEANin module errno), 98
EUNATCHin module errno), 94
EUSERSin module errno), 96
eval() (built-in function), 10, 16, 41, 51, 62
EWOULDBLOQJ module errno), 94
exc _info() (in module sys), 24
exc _traceback (in module sys), 24
exc _type (in module sys), 24
exc _value (in module sys), 24
except
statement, 12
Exception (built-in exception base class), 13
exceptions
built-in, 3
exceptions (standard module),2
EXDEV(in module errno), 93
exec
statement, 10

(BaseHTTPRequest-

exec _prefix (in module sys), 24
execfile() (built-in function), 17, 58
execl() (in module os), 88
execle() (in module os), 88
execlp() (in module os), 88
execv() (in module posix), 116
execve() (in module posix), 116
execvp() (in module os), 88
execvpe() (in module os), 88
EXFULL (in module errno), 95
exists() (in module posixpath), 120
exit()

in module sys, 24

in module thread, 110
exit _thread() (in module thread), 110
exitfunc (in module sys), 24
exp()

in module cmath, 81

in module math, 79

expandtabs() (in module string), 62
expanduser() (in module posixpath), 121
expandvars() (in module posixpath), 121
expovariate() (in module random), 82

expr() (in module parser), 40

expunge() (IMAP4 method), 162
External Data Representation, 31, 181
extract _tb() (in module traceback), 30

F

fabs() (in module math), 79
false, 3
FCNTL(standard module), 125, 126
fentl (built-in module), 10,125
fentl() (in module fentl), 125, 126
fdopen() (in module posix), 117
feed()

SGMLParser method, 168

XMLParser method, 171
fetch() (IMAP4 method), 162
file

.pythonrc.py, 58

path configuration, 57

temporary, 92

user configuration, 58
file control

UNIX, 125
file name

temporary, 92
file object

POSIX, 126
file() (posixfile method), 127

Filelnput (class in fileinput), 86
fileinput (standard moduleB5
filelineno() (in module fileinput), 86

Index

241

filename()
fileno()
file method, 10
in module stdwin, 109
socket method, 107
SocketServer protocol, 185
fileopen() (in module posixfile), 127
FileType (in module types), 27
filter() (built-in function), 17
find() (in module string), 62
find first() (form method), 219
find _last() (form method), 219
find _module() (in module imp), 36
findfactor() (in module audioop), 198
findfit() (in module audioop), 198

(in module fileinput), 85

findfont() (in module fm), 222
findmatch() (in module mailcap), 184
findmax() (in module audioop), 198

finish() (SocketServer protocol), 187
finish _request() (SocketServer protocol), 186
firstkey() (in module gdbm), 124
FL (standard moduleR21
fl (built-in module),216
flags (RegexObject attribute), 69
flags() (posixfile method), 127
flattening

objects, 30
float() (built-in function), 5, 17, 62
floating point

literals, 5

type, 5
FloatingPointError (built-in exception), 13
FloatType (in module types), 27
flock() (in module fcntl), 126
floor()

built-in function, 5

in module math, 80
flo (standard moduleR21
flush()

audio device method, 227

Compress method, 113

Decompress method, 113

file method, 10

writer method, 175
flush _softspace() (formatter method), 174
fm (built-in module),222
fmod() (in module math), 80
fnmatch (standard moduleR8
fnmatch() (in module fnmatch), 99
fnmatchcase() (in module fnmatch), 99
Font Manager, IRIS, 222
fontpath() (in module fm), 222
fork() (in module posix), 117
format() (in module locale), 100

formatter, 169
formatter
HTMLParser attribute, 170
standard module, 169,73
FORMS Library, 216
fp (Message attribute), 178
frame
object, 105
FrameType (in module types), 27
freeze _form() (form method), 218
freeze _object() (FORMS object method), 221
frexp() (in module math), 80

fromfd() (in module socket), 106
fromfile() (array method), 84
fromlist() (array method), 84

fromstring() (array method), 84
fstat() (in module posix), 117
FTP

protocol, 156, 158
FTP (class in ftplib), 159
ftplib (standard module),58
ftruncate() (in module posix), 117
full() (Queue method), 111
func _code (dictionary method), 10
functions

built-in, 3
FunctionType (in module types), 27

G

G.722, 202
gammay() (in module random), 83
gauss() (in module random), 83
ged() (in module mpz), 208
gcdext() (in module mpz), 208
gdbm (built-in module), 34, 111, 123,23
get() (Queue method), 111
get _buffer()

Packer method, 181

Unpacker method, 182
get _directory() (in module fl), 217
get _filename() (in module fl), 217
get _ident() (in module thread), 110
get _magic() (in module imp), 36
get _mouse() (in module fl), 218
get _nowait() (Queue method), 111
get _pattern() (in module fl), 217
get _position() (Unpacker method), 182
get _request() (SocketServer protocol), 186
get _rgbmode() (in module fl), 217
get _suffixes() (in module imp), 36
get _syntax() (in module regex), 73
getaddr() (Message method), 177
getaddrlist() (Message method), 177

242

Index

getallmatchingheaders()
177

getattr() (built-in function), 17

getcaps() (in module mailcap), 184

getchannels() (audio configuration method), 212

getcomment() (font handle method), 222

getcompname() (aifc method), 201

getcomptype() (aifc method), 201

getconfig() (audio port method), 213

getcwd() (in module posix), 117

getdate() (Message method), 178

getdate _tz() (Message method), 178

getegid() (in module posix), 117

getencoding() (Message method), 179

geteuid() (in module posix), 117

getfd() (audio port method), 212

(Message method),

getfile() (HTTP method), 158
getfillable() (audio port method), 212
getfilled() (audio port method), 212

getfillpoint() (audio port method), 212
getfirstmatchingheader() (Message
method), 177

getfloatmax() (audio configuration method), 212
getfontinfo() (font handle method), 222
getfontname() (font handle method), 222
getframerate() (aifc method), 201
getgid() (in module posix), 117
getgrall() (in module grp), 122
getgrgid() (in module grp), 122
getgrnam() (in module grp), 122
getheader() (Message method), 177
gethostbyaddr() (in module socket), 106, 120
gethostbyname() (in module socket), 106
gethostname() (in module socket), 106, 120
getinfo() (audio device method), 227
getitem() (in module operator), 29
getmaintype() (Message method), 179
getmark() (aifc method), 202
getmarkers() (aifc method), 201
getmcolor() (in module fl), 218
getnchannels() (aifc method), 201
getnframes() (aifc method), 201
getopt (standard modulef1
getopt() (in module getopt), 91
getoutput() (in module commands), 133
getpagesize() (in module resource), 130
getparam() (Message method), 179
getparams()

aifc method, 201

in module al, 211
getpeername() (socket method), 107
getpgrp() (in module posix), 117
getpid() (in module posix), 117
getplist() (Message method), 179

getppid() (in module posix), 117
getprotobyname() (in module socket), 106
getpwall() (in module pwd), 122

getpwnam() (in module pwd), 122
getpwuid() (in module pwd), 122
getqueuesize() (audio configuration method),
212
getrawheader()
getrefcount()
getreply()
getrlimit()
getrusage()
getsampfmt()
getsample()

(Message method), 177
(in module sys), 25
(HTTP method), 158

(in module resource), 128

(in module resource), 129

(audio configuration method), 212

(in module audioop), 198
getsampwidth() (aifc method), 201
getservbyname() (in module socket), 106
getsignal() (in module signal), 104
getsizes() (in module imgfile), 225
getslice() (in module operator), 29
getsockname() (socket method), 107
getsockopt() (socket method), 107
getstatus()

audio port method, 213

CD player method, 215

in module commands, 133
getstatusoutput() (in module commands), 132
getstrwidth() (font handle method), 222
getsubtype() (Message method), 179
gettrackinfo() (CD player method), 215
gettype() (Message method), 179
getuid() (in module posix), 117
getvalue() (StringlO method), 77
getwelcome()

FTP method, 159

NNTP method, 165
getwidth() (audio configuration method), 212
givenpat (regex attribute), 74
GL (standard module®24
gl (built-in module),222
glob (standard modulep8, 99

glob() (in module glob), 98
globals() (built-in function), 17
gmtime() (in module time), 89
Gopher

protocol, 156, 157, 161
gopherlib (standard module},61
Greenwich Mean Time, 89

grey22grey() (in module imageop), 201
grey2grey2() (in module imageop), 200
grey2grey4() (in module imageop), 200
grey2mono() (in module imageop), 200
grey42grey() (in module imageop), 201
group()

MatchObject method, 69

Index

243

NNTP method, 165

regex method, 74
groupindex

regex attribute, 74

RegexObiject attribute, 69
groups() (MatchObject method), 70
grp (built-in module),122
gsub() (in module regsub), 74
gzip (standard module},13
GzipFile (classin gzip), 114

H

handle()
BaseHTTPRequestHandler method, 190
SocketServer protocol, 187
handle _cdata() (XMLParser method), 172
handle _charref()
SGMLParser method, 168
XMLParser method, 171
handle _comment()
SGMLParser method, 168
XMLParser method, 172
handle _data()
SGMLParser method, 168
XMLParser method, 171
handle _doctype() (XMLParser method), 171
handle _endtag()
SGMLParser method, 168
XMLParser method, 171
handle _entityref()
SGMLParser method, 168
XMLParser method, 172
handle _error() (SocketServer protocol), 186
handle _image() (HTMLParser method), 170
handle _proc() (XMLParser method), 172
handle _request() (SocketServer protocol), 186
handle _special() (XMLParser method), 172
handle _starttag()
SGMLParser method, 168
XMLParser method, 171
handle xml() (XMLParser method), 171
has _key (dictionary method), 8
hasattr() (built-in function), 17
hascompare (in module dis), 53
hasconst (in module dis), 53
hash() (built-in function), 17
hasjabs (in module dis), 53
hasjrel (in module dis), 53
haslocal (in module dis), 53
hasname (in module dis), 53
head() (NNTP method), 165

BaseHTTPRequestHandler attribute, 189
Message attribute, 178
help() (NNTP method), 165
hex() (built-in function), 17
hexadecimal
literals, 5
hexbin (standard module), 180
hexbin() (in module binhex), 179
hexdigits (in module string), 61
hide _form() (form method), 218
hide _object() @ (FORMS object method), 220
$HOME, 58
HTML, 157, 169
htmllib (standard module), 157, 1669
HTMLParser (class in htmllib), 170, 173
htonl() (in module socket), 106
htons() (in module socket), 107
HTTP
protocol, 150, 156, 157, 188
HTTP(class in httplib), 157
httpd, 188
httplib (standard module),57
HTTPServer (classin BaseHTTPServer), 189
hypertext, 169
hypot() (in module math), 80

I (in module re), 67
I/O control

POSIX, 124, 125

tty, 124, 125

UNIX, 125
ibufcount() (audio device method), 228
id() (built-in function), 17
IDEA

cipher, 207
ident (in module cd), 214
if

statement, 3
ignore() (Stats method), 144
IGNORECASHKin module re), 67
ihave() (NNTP method), 166
ihooks (standard module), 15
imageop (built-in module),200
IMAP4

protocol, 161
IMAPA4 (class in imaplib), 161
IMAP4.abort (in module imaplib), 161
IMAP4.error (in module imaplib), 161
imaplib (standard module)l61
imgfile (built-in module),224

headers imghdr (standard moduleR04
MIME, 150 imp (built-in module), 1536
headers import, 36
244 Index

import

statement, 15
ImportError (built-in exception), 13
in

operator, 4, 6
INADDR* (in module socket), 106
Incomplete (in module binascii), 181
Independent JPEG Group, 203
index

in module cd, 214

list method, 8
index() (in module string), 62
IndexError (built-in exception), 13
InfoSeek Corporation, 139
init() (in module fm), 222

init _builtin() (in module imp), 37
init _frozen() (in module imp), 38
input()

built-in function, 17, 26

in module fileinput, 85
insert (list method), 8
insert() (array method), 84
InstanceType (in module types), 27
int) (built-in function), 5, 18
Int2AP() (in module imaplib), 161
integer

arbitrary precision, 208

division, 5

division, long, 5

literals, 5

literals, long, 5

type, 5

type, long, 5

types, 5

types, operations on, 6
Intel/DVI ADPCM, 197
intern() (built-in function), 18
Internaldate2tuple() (in module imaplib),

161

Internet, 149
interpreter prompts, 25
IntType (in module types), 26
inv() (in module operator), 29
IOCTL (standard module), 126
ioctl() (in module fentl), 125
IOError (built-in exception), 13
IP * (in module socket), 106
IPPORT_* (in module socket), 106
IPPROTQ* (in module socket), 106
IRIS Font Manager, 222
IRIX

threads, 111
is

operator, 4

is not

operator, 4
is _builtin() (in module imp), 38
is _frozen() (in module imp), 38

isabs() (in module posixpath), 121
isatty() (file method), 10
isdir() (in module posixpath), 121
ISEOF() (in module token), 49
isexpr()

AST method, 42

in module parser, 41
isfile() (in module posixpath), 121

isfirstline() (in module fileinput), 86
isinstance() (built-in function), 18
iskeyword() (in module keyword), 49

islink() (in module posixpath), 121
ismount() (in module posixpath), 121
ISNONTERMINAL() (in module token), 49
isqueued() (in module fl), 218
isreadable()

in module pprint, 51

PrettyPrinter method, 51
isrecursive()

in module pprint, 51

PrettyPrinter method, 51

isstdin() (in module fileinput), 86
issubclass() (built-in function), 18
issuite()

AST method, 42

in module parser, 41
ISTERMINAL() (in module token), 49
itemsize (array attribute), 84

J
Jansen, Jack, 180
JFIF, 203
join()
in module posixpath, 121
in module string, 63
joinfields() (in module string), 63
jpeg (built-in module),203
K

KeyboardInterrupt (built-in exception), 13
KeyError (built-in exception), 13

keys (dictionary method), 8

keyword (standard module}}9

kill() (in module posix), 117

knee (standard module), 39

Kuchling, Andrew, 70, 74, 207

L

L (in module re), 67
LambdaType (in module types), 27

Index

245

language

ABC, 4

C,4,5
last (regex attribute), 74
last() (NNTP method), 165
last _traceback (in module sys), 25
last _type (in module sys), 25
last _value (in module sys), 25
LCALL (in module locale), 101
LC_COLLATE(in module locale), 100
LC_CTYPE(in module locale), 100
LC_MESSAGES®#n module locale), 101
LC_MONETARYn module locale), 101
LC_NUMERIQin module locale), 101
LC_TIME (in module locale), 101
Idexp() (in module math), 80
len() (built-in function), 6, 8, 18
letters (in module string), 61
light-weight processes, 110
lin2adpcm() (in module audioop), 198
linadpcm3() (in module audioop), 198
lin2lin() (in module audioop), 198
lin2ulaw() (in module audioop), 198
lineno() (in module fileinput), 85
link() (in module posix), 117
list

type, 6, 7

type, operations on, 8
list()

built-in function, 18

IMAP4 method, 162

NNTP method, 165
listdir() (in module posix), 117
listen() (socket method), 107
ListType (in module types), 27
literals

complex number, 5

floating point, 5

hexadecimal, 5

integer, 5

long integer, 5

numeric, 5

octal, 5
ljust() (in module string), 63
load()

in module marshal, 36

in module pickle, 33
load _compiled() (in module imp), 38
load _dynamic() (in module imp), 38
load _module() (in module imp), 37
load _source() (in module imp), 38
loads()

in module marshal, 36

in module pickle, 33

LOCALE(in module re), 67
locale (standard moduleR9
localeconv() (in module locale), 99
locals() (built-in function), 18
localtime() (in module time), 89
lock() (posixfile method), 127
locked() (lock method), 110
lockf() (in module fentl), 126
log()

in module cmath, 81

in module math, 80
log10()

in module cmath, 81

in module math, 80
log _data _time _string() (BaseHTTPRequest-

Handler method), 191

log _error() (BaseHTTPRequestHandler method),

190

log _-message() (BaseHTTPRequestHandler

method), 190

log _request() (BaseHTTPRequestHandler

method), 190
login()
FTP method, 159
IMAP4 method, 162
$LOGNAME, 160

lognormvariate() (in module random), 83
logout() (IMAP4 method), 162
long

integer division, 5

integer literals, 5

integer type, 5
long() (built-in function), 5, 18, 62
longimagedata() (in module rghimg), 204
longstoimage() (in module rghimg), 204
LongType (in module types), 26
LookupError (built-in exception base class), 13
lower() (in module string), 62
lowercase (in module string), 61
Iseek() (in module posix), 117
Ishift() (in module operator), 29
Istat() (in module posix), 117
Istrip() (in module string), 63
Isub() (IMAP4 method), 162

M

M(in module re), 67

mailbox (standard module), 17687
mailcap (standard module),83
Majewski, Steve, 123

make_form() (in module fl), 217
makefile() (socket method), 107
maketrans() (in module string), 62
map() (built-in function), 18

246

Index

mapcolor() (in module fl), 218
mapping

types, 8

types, operations on, 8
marshal (built-in module), 3135
marshalling

objects, 30
masking

operations, 6
match()

in module re, 67

in module regex, 72

regex method, 73

RegexObject method, 69
math (built-in module), 5,79, 81
max()

built-in function, 6, 18

in module audioop, 198
MAXLENin module mimify), 188
maxpp() (in module audioop), 198
md5 (built-in module),207
md5() (in module md5), 208
MemoryError (built-in exception), 14
Message

class in mimetools, 178

class in rfc822, 176

in module mimetools, 190
message digest, MD5, 207
MessageClass

tribute), 190

method

object, 9
MethodType (in module types), 27
MHMailbox (class in mailbox), 187
MIME

base64 encoding, 184

headers, 150

guoted-printable encoding, 185
mime_decode _header() (in module mimify), 188
mime_encode _header() (in module mimify), 188
mimetools (standard module), 156, 15878
mimify (standard module}.87
mimify() (in module mimify), 188
min() (built-in function), 6, 19
minmax() (in module audioop), 198
mkd() (FTP method), 160
mkdir() (in module posix), 118
mkfifo() (in module posix), 117
mktemp() (in module tempfile), 92
mktime() (in module time), 89
mktime _tz() (in module rfc822), 177
MmdfMailbox (class in mailbox), 187
mod() (in module operator), 28
mode (file attribute), 11

(BaseHTTPRequestHandler at-

modf() (in module math), 80
module

search path, 25, 57, 231
modules (in module sys), 25
ModuleType (in module types), 27
mono2grey() (in module imageop), 200
MP, GNU library, 208
mpz (built-in module),208
mpz() (in module mpz), 208
MPZType (in module mpz), 208
msftoblock() (CD player method), 215
msftoframe() (in module cd), 213
MSG* (in module socket), 106
mul()

in module audioop, 199

in module operator, 28
MULTILINE (in module re), 67
mutable

sequence types, 7

sequence types, operations on, 8

N

name

file attribute, 11

in module os, 87
NameError (built-in exception), 14
National Security Agency, 210
neg() (in module operator), 29
new() (in module md5), 207
new_alignment() (writer method), 175
new_font() (writer method), 175
new_margin() (writer method), 175
new_module() (in module imp), 37
new_spacing() (writer method), 175
new_styles() (writer method), 175
newconfig() (in module al), 211
newgroups() (NNTP method), 165
newnews() (NNTP method), 165
newrotor() (in module rotor), 209
next()

mailbox method, 187

NNTP method, 165
nextfile() (in module fileinput), 86
nextkey() (in module gdbm), 124
nice() (in module posix), 118
nist) (FTP method), 160
NNTP

protocol, 164
NNTP(class in nntplib), 164
nntplib (standard module)L64
NODISC(in module cd), 214
nofill (HTMLParser attribute), 170
nok _builtin _names (RExec attribute), 194
None (Built-in object), 3

Index

247

NoneType (in module types), 26
normalvariate()
normcase() (in module posixpath), 121
normpath() (in module posixpath), 121
not

operator, 4
not in

operator, 4, 6
NSA, 210
NSIG (in module signal), 104
ntohl() (in module socket), 106
ntohs() (in module socket), 106
NullFormatter (class in formatter), 175
NullWriter (class in formatter), 176
numeric

conversions, 5

literals, 5

types, 4,5

types, operations on, 5
Numerical Python, 21
nurbscurve() (in module gl), 224

nurbssurface() (in module gl), 224
nvarray() (in module gl), 223
O

O APPENDin module posix), 120
O.CREAT(in module posix), 120
ODSYNQin module posix), 120
O.EXCL(in module posix), 120
O.NDELAY(in module posix), 120
ONOCTTYin module posix), 120
O.NONBLOCKnN module posix), 120
ORDONLYin module posix), 120
O RDWRin module posix), 120
O.RSYNQ(in module posix), 120
O.SYNC(in module posix), 120
O.TRUNQin module posix), 120
OWRONLYin module posix), 120
object

code, 9, 10, 35

frame, 105

method, 9

traceback, 24, 30

type, 21
objects

comparing, 4

flattening, 30

marshalling, 30

persistent, 30

pickling, 30

serializing, 30
obufcount() (audio device method), 228
oct() (built-in function), 19
octal

(in module random), 83

literals, 5
octdigits (in module string), 61

ok _builtin _modules (RExec attribute), 194

ok _path (RExec attribute), 194

ok _posix _names (RExec attribute), 194

ok _sys _names (RExec attribute), 194
open()

built-in function, 10, 19

in module aifc, 201

in module anydbm, 111

in module cd, 213

in module dom, 123

in module dumbdbm, 112

in module gdbm, 123

in module gzip, 114

in module posix, 118

in module posixfile, 126

in module sunaudiodev, 227
openlog() (in module syslog), 130
openport() (in module al), 211
operation

concatenation, 6

repetition, 6

slice, 6

subscript, 6
operations

bit-string, 6

Boolean, 3, 4

masking, 6

shifting, 6
operations on

dictionary type, 8

integer types, 6

list type, 8

mapping types, 8

mutable sequence types, 8

numeric types, 5

sequence types, 6, 8
operator

and, 3,4

comparison, 4

in,4,6

is , 4

is not ,4

not , 4

not in ,4,6

or,3,4
operator (built-in module),28
opname (in module dis), 52
or

operator, 3, 4
or () (in module operator), 29
ord() (built-in function), 19

248

Index

os (standard module), 287, 115, 120
OverflowError (built-in exception), 14
Overmars, Mark, 216

P

pack() (in module struct), 75
pack _array() (Packer method), 182
pack _bytes() (Packer method), 182
pack _double() (Packer method), 181
pack _farray() (Packer method), 182
pack _float() (Packer method), 181
pack fopaque() (Packer method), 181
pack _fstring() (Packer method), 181
pack _list() (Packer method), 182
pack _opaque() (Packer method), 182
pack _string() (Packer method), 182
package, 57
Packer (class in xdrlib), 181
pardir (in module os), 88
paretovariate() (in module random), 83
parse() (in module cgi), 152
parse _header() (in module cgi), 152
parse _multipart() (in module cgi), 152
parse _gs() (in module cgi), 152
parsedate() (in module rfc822), 177
parsedate _tz() (in module rfc822), 177
ParseFlags() (in module imaplib), 162
parseframe() (CD parser method), 216
parser (built-in module),39
ParserError (in module parser), 42
parsing

Python source code, 39

URL, 166
$PATH, 153, 155
path

configuration file, 57

module search, 25, 57, 231
path

BaseHTTPRequestHandler attribute, 189

in module os, 88

in module sys, 25
pathsep (in module os), 88
pattern (RegexObject attribute), 69
pause() (in module signal), 104
PAUSEDQin module cd), 214
Pdb (class in pdb), 135
pdb (standard module), 2935
persistency, 30
persistent

objects, 30
pformat()

in module pprint, 50

PrettyPrinter method, 51
PGP, 207

pi

in module cmath, 81

in module math, 80
pick() (in module gl), 224
pickle (standard moduleRB0, 33
pickle() (in module copyreg), 34
Pickler (in module pickle), 32
pickling

objects, 30
PicklingError (in module pickle), 33
pipe() (in module posix), 118
PKGDIRECTORMin module imp), 37
platform (in module sys), 25
play() (CD player method), 215
playabs() (CD player method), 215
PLAYING (in module cd), 214
playtrack() (CD player method), 215
playtrackabs() (CD player method), 215
plock() (in module posix), 118
pm() (in module pdb), 136
pnum (in module cd), 214
pop _alignment() (formatter method), 174
pop _font() (formatter method), 174
pop_margin() (formatter method), 174
pop _style() (formatter method), 174
popen()

in module os, 109

in module posix, 109, 118
pos (MatchObiject attribute), 70
pos() (in module operator), 29
posix (built-in module), 10,115
posixfile (built-in module),126
posixpath (standard module},20
POSIX

file object, 126

I/0O control, 124, 125

threads, 110
post() (NNTP method), 166
post _mortem() (in module pdb), 136
pow()

built-in function, 19

in module math, 80
powm() (in module mpz), 208
pprint (standard module}9
pprint()

in module pprint, 50

PrettyPrinter method, 51
prefix (in module sys), 25
Pretty Good Privacy, 207
PrettyPrinter (class in pprint), 50

preventremoval() (CD player method), 215

print
statement, 3
print _callees() (Stats method), 144

Index

print _callers()
print _directory()
print _environ() (in module cgi), 152

print _environ _usage() (in module cgi), 153
print _exc() (in module traceback), 30

print _exception() (in module traceback), 30
print _form() (in module cgi), 152

(Stats method), 144
(in module cgi), 153

print _last() (in module traceback), 30
print _stats() (Stats method), 144
print _tb() (in module traceback), 30

process _request() (SocketServer protocol), 186
processes, light-weight, 110
profile (standard module},42
profile function, 26
profiler, 26
profiling, deterministic, 139
prompts, interpreter, 25
protocol
CGil, 150
FTP, 156, 158
Gopher, 156, 157, 161
HTTP, 150, 156, 157, 188
IMAP4, 161
NNTP, 164
PROTOCQIERSION(IMAPA4 attribute), 163

protocol _version (BaseHTTPRequestHandler
attribute), 190
prstr() (in module fm), 222

psl (in module sys), 25

ps2 (in module sys), 25

pstats (standard module}43

pthreads, 110

ptime (in module cd), 214

push _alignment() (formatter method), 174
push font() (formatter method), 174

push _margin() (formatter method), 174
push _style() (formatter method), 174

put) (Queue method), 111

putenv() (in module posix), 118
putheader() (HTTP method), 158
putrequest() (HTTP method), 157

pwd (built-in module), 121122
pwd() (FTP method), 160
pwicurve() (in module gl), 224
PY_COMPILED(in module imp), 37
PY_FROZENin module imp), 37
PY_RESOURCEN module imp), 37
PY_SOURCHin module imp), 37
$PYTHONPATH, 153, 231
$PYTHONSTARTUP, 58

gdevice() (in module fl), 218
genter() (in module fl), 218

gread()
greset()
gsize()
gtest()
queryparams()
Queue

class in Queue, 111

standard module], 11
quit()

FTP method, 161

NNTP method, 166
quopri (standard module)},85
quote() (in module urllib), 156
quote _plus() (in module urllib), 156
quoted-printable

encoding, 185

(in module fl), 218
(in module fl), 218
(Queue method), 111
(in module fl), 218
(in module al), 211

R

r _eval()
r _exec()

(RExec method), 195
(RExec method), 195

r _execfile() (RExec method), 195
r import() (RExec method), 195

r open() (RExec method), 195

r reload() (RExec method), 195
r _unload() (RExec method), 195
raise

statement, 12
randint() (in module whrandom), 82
random (standard moduleg2
random() (in module whrandom), 82
range() (built-in function), 19
ratecv() (in module audioop), 199
raw _input() (built-in function), 20, 26
re

built-in module, 764

MatchObject attribute, 70

standard module, 61, 70, 98
read()

array method, 84

audio device method, 228

file method, 10

in module imdfile, 225

in module posix, 118

readda() (CD player method), 215
readframes() (aifc method), 202
readline() (file method), 11
readlines() (file method), 11
readlink() (in module posix), 118
readsamps() (audio port method), 212
readscaled() (in module imdfile), 225

READY(in module cd), 214

realpat (regex attribute), 74
recent() (IMAP4 method), 162
reconvert (standard module), 70

250

Index

recv()
recvfrom()

(socket method), 108
(socket method), 108
redraw _form() (form method), 218
redraw _object() = (FORMS object method), 220
reduce() (built-in function), 20
regex (built-in module),70
regex _syntax (standard module), 73
regs (regex attribute), 74
regsub (standard module)4
relative
URL, 166
release() (lock method), 110
reload() (built-in function), 20, 25, 37, 39
remove (list method), 8
remove() (in module posix), 118
removecallback() (CD parser method), 216
rename()
FTP method, 160
IMAP4 method, 163
in module posix, 119
reorganize() (in module gdbm), 124
repeat() (in module operator), 29
repetition
operation, 6
replace() (in module string), 63
report _unbalanced() (SGMLParser method),
169
repr() (built-in function), 20
request _queue size (SocketServer protocol),
186
request _version (BaseHTTPRequestHandler at-
tribute), 189
RequestHandlerClass
186
reset()
Packer method, 181
SGMLParser method, 168
Unpacker method, 182
XMLParser method, 171
resetparser() (CD parser method), 216
resource (built-in module),128

(SocketServer protocol),

response() (IMAP4 method), 163

responses (BaseHTTPRequestHandler attribute),
190

retrbinary() (FTP method), 160

retrlines() (FTP method), 160

reverse (list method), 8

reverse()

array method, 84

in module audioop, 199
reverse _order() (Stats method), 144
rewind() (aifc method), 202
rewindbody() (Message method), 177
RExec (class in rexec), 194

rexec (standard module), 1394
RFC

RFC 1014, 149, 181

RFC 1321, 207

RFC 1421, 184

RFC 1521, 185

RFC 1524, 149, 184

RFC 1730, 161

RFC 1738, 166

RFC 1808, 166

RFC 1866, 169, 170

RFC 2060, 161

RFC 822, 149, 158, 176, 177

RFC 959, 158

RFC 977, 164
rfc822 (standard module),76
rfile (BaseHTTPRequestHandler attribute), 189
rfind() (in module string), 62
rgbimg (built-in module),203
rindex() (in module string), 62
rjust() (in module string), 63
rlecode _hgx() (in module binascii), 180
rledecode _hgx() (in module binascii), 180
RLIMIT _AS (in module resource), 129
RLIMIT _CORKin module resource), 129
RLIMIT _CPU(in module resource), 129
RLIMIT _DATA(in module resource), 129
RLIMIT _FSIZE (in module resource), 129
RLIMIT _"MEMLO@n module resource), 129
RLIMIT _NOFILE (in module resource), 129
RLIMIT _NPROGin module resource), 129
RLIMIT _OFILE (in module resource), 129
RLIMIT _RSS(in module resource), 129
RLIMIT _STACK(in module resource), 129
RLIMIT _-VMEMin module resource), 129
rmdir() (in module posix), 119
rms() (in module audioop), 199
Roskind, James, 139
rotor (built-in module),209

round() (built-in function), 20
rshift() (in module operator), 29
rstrip() (in module string), 63
run()

in module pdb, 136

in module profile, 142
runcall() (in module pdb), 136
runeval() (in module pdb), 136
RuntimeError (built-in exception), 14
RUSAGEBOTH(in module resource), 130
RUSAGECHILDREN(in module resource), 130
RUSAGESELF (in module resource), 130

S

S (in module re), 67

Index

251

s_eval() (RExec method), 195
s_exec() (RExec method), 195
s_execfile() (RExec method), 195
s_import() (RExec method), 195
S_ISBLK() (in module stat), 131
S_ISCHR() (in module stat), 131
S_ISDIR() (in module stat), 131
SISFIFO() (in module stat), 131
S_ISLNK() (in module stat), 131
S_ISREG() (in module stat), 131
S_ISSOCK() (in module stat), 131

s_reload() (RExec method), 195
s_unload() (RExec method), 195
saferepr() (in module pprint), 51
samefile() (in module posixpath), 121

save _bgn() (HTMLParser method), 170
save _end() (HTMLParser method), 170
scale() (in module imageop), 200
scalefont() (font handle method), 222
search

path, module, 25, 57, 231
search()

IMAP4 method, 163

in module re, 68

in module regex, 73

regex method, 73

RegexObject method, 69
SEARCHERRORIin module imp), 37
seed() (in module whrandom), 82
seek()

CD player method, 215

file method, 11
SEEKCUR(in module posixfile), 126
SEEKEND(in module posixfile), 126
SEEKSET (in module posixfile), 126

seekblock() (CD player method), 215
seektrack() (CD player method), 215
select (built-in module),109

select()
IMAP4 method, 163
in module gl, 224
in module select, 109
semaphores, binary, 110
send()
HTTP method, 157
socket method, 108
send _error() (BaseHTTPRequestHandler
method), 190
send _flowing _data()
send _header()
method), 190
send _hor _rule() (writer method), 176
send _label _data() (writer method), 176
send _line _break() (writer method), 175

(writer method), 176
(BaseHTTPRequestHandler

send _literal _data() (writer method), 176
send _paragraph() (writer method), 176
send _query() (in module gopherlib), 161
send _response() (BaseHTTPRequestHandler
method), 190
send _selector() (in module gopherlib), 161
sendcmd() (FTP method), 160
sendto() (socket method), 108
sep (in module os), 88
sequence
types, 6
types, mutable, 7
types, operations on, 6, 8
types, operations on mutable, 8
sequence?ast() (in module parser), 40
serializing
objects, 30
serve _forever()
server
WWW, 150, 188
server _activate() (SocketServer protocol), 186
server _address (SocketServer protocol), 186
server _bind() (SocketServer protocol), 186
server _version (BaseHTTPRequestHandler at-
tribute), 189
set _call _back() (FORMS object method), 220
set _debuglevel()
FTP method, 159
HTTP method, 157
NNTP method, 165
set _event _call _back() (in module fl), 217
set _form _position() (form method), 218
set _graphics _mode() (in module fl), 217
set _position() (Unpacker method), 182
set _spacing() (formatter method), 175
set syntax() (in module regex), 73
set _trace() (in module pdb), 136
setattr() (built-in function), 21
setblocking() (socket method), 108
setchannels() (audio configuration method), 212
setcheckinterval() (in module sys), 25

(SocketServer protocol), 186

setcomptype() (aifc method), 202

setconfig() (audio port method), 213
seffillpoint() (audio port method), 213
setfloatmax() (audio configuration method), 212
setfont() (font handle method), 222
setframerate() (aifc method), 202

setgid() (in module posix), 119

setinfo() (audio device method), 228
setitem() (in module operator), 29
setkey() (rotor method), 209
setliteral()

SGMLParser method, 168
XMLParser method, 171

252

Index

setlocale()
setlogmask()
setmark()
setnchannels()
setnframes()
setnomoretags()

SGMLParser method, 168

XMLParser method, 171
setoption() (in module jpeg), 203
setparams()

aifc method, 202

in module al, 211

(in module locale), 99
(in module syslog), 131
(aifc method), 202
(aifc method), 202
(aifc method), 202

setpath() (in module fm), 222
setpgid() (in module posix), 119
setpgrp() (in module posix), 119
setpos() (aifc method), 202

setprofile()

setqueuesize()
212

setrlimit()

(in module sys), 26
(audio configuration method),

(in module resource), 128
setsampfmt() (audio configuration method), 212
setsampwidth() (aifc method), 202
setsid() (in module posix), 119
setslice() (in module operator), 29
setsockopt() (socket method), 108
settrace() (in module sys), 26
setuid() (in module posix), 119
setup() (SocketServer protocol), 187
setwidth() (audio configuration method), 212
SGML, 167, 169
sgmllib (standard module},67, 169
SGMLParser

class in sgmllib, 167

in module sgmllib, 169
shelve (standard module), 3B4, 35
shifting

operations, 6
show_choice() (in module fl), 217
show file _selector() (in module fl), 217
show_form() (form method), 218
show_input() (in module fl), 217
show_message() (in module fl), 217
show _object() (FORMS object method), 220
show _question() (in module fl), 217
shutdown() (socket method), 108
SIG* (in module signal), 104
SIG _DFL (in module signal), 104
SIG_IGN (in module signal), 104
signal (built-in module),103 110
signal() (in module signal), 104
SimpleHTTPServer (standard module), 189
sin()

in module cmath, 81

in module math, 80

sinh()

in module cmath, 81

in module math, 80
site (standard moduleh7, 59
site-packages

directory, 57
site-python

directory, 57
sitecustomize (module), 58
sizeofimage() (in module rgbimg), 204
slave() (NNTP method), 166
sleep() (in module time), 90
slice

assignment, 8

operation, 6
slice() (built-in function), 21, 57
SQ* (in module socket), 105
SOCKDGRANMin module socket), 105
SOCKRAW(in module socket), 105
SOCKRDMin module socket), 105
SOCKSEQPACKETin module socket), 105
SOCKSTREAMin module socket), 105
socket

built-in module, 10,105 149

SocketServer protocol, 186
socket() (in module socket), 106, 109
socket _type (SocketServer protocol), 186
SocketServer (standard module},85
SocketType (in module socket), 107
softspace (file attribute), 11
SOL* (in module socket), 106
SOMAXCONM module socket), 105
sort (list method), 8
sort _stats() (Stats method), 143
span() (MatchObject method), 70
split()

in module posixpath, 121

in module re, 68

in module regsub, 75

in module string, 63

RegexObject method, 69

splitext() (in module posixpath), 121
splitfields() (in module string), 63
splitx() (in module regsub), 75

sqrt()

in module cmath, 81

in module math, 80

in module mpz, 208
sgrtrem() (in module mpz), 208
ST_ATIME (in module stat), 132
ST_CTIME (in module stat), 132
ST_DEV(in module stat), 132
ST_GID (in module stat), 132
ST_INO (in module stat), 131

Index

253

ST_MODKin module stat), 131
ST_MTIME(in module stat), 132
ST_NLINK (in module stat), 132
ST_SIZE (in module stat), 132
ST_UID (in module stat), 132
StandardError
start() (MatchObject method), 70
start _new_thread() (in module thread), 110
stat (standard module), 11931
stat()

in module posix, 119

NNTP method, 165
statement

assert , 13

del , 8

except , 12

exec, 10

if ,3

import , 15

print ,3

raise ,12

try ,12

while , 3
Stats (class in pstats), 143
status() (IMAP4 method), 163
stderr (in module sys), 26
stdin (in module sys), 26
stdout (in module sys), 26
stdwin (built-in module), 109, 135
STILL (in module cd), 214
stop() (CD player method), 215
storbinary() (FTP method), 160
store() (IMAP4 method), 163
storlines() (FTP method), 160
str()

built-in function, 21

in module locale, 100

strcoll() (in module locale), 100
strerror() (in module posix), 118
strftime() (in module time), 90
string

type, 6
string

MatchObject attribute, 70

standard module, B1, 100, 101
StringlO

class in StringlO, 77

standard modul€&]7
StringType (in module types), 27
strip() (in module string), 63
strip _dirs() (Stats method), 143
strop (built-in module), 63, 101
struct (built-in module),75, 108
structures

(built-in exception base class), 13

C,75
strxfrm()
sub()

in module operator, 28

in module re, 68

in module regsub, 74

RegexObject method, 69
subn()

in module re, 68

RegexObject method, 69
subscribe() (IMAP4 method), 163
subscript

assignment, 8

operation, 6
suite() (in module parser), 40
SUNAUDIODEVstandard module), 228
sunaudiodev (built-in module),227
swapcase() (in module string), 63
sym_name (in module symbol), 48
symbol (standard module}8
symbol table, 3
symcomp() (in module regex), 73
symlink() (in module posix), 119
sync() (in module gdbm), 124
syntax _error() (XMLParser method), 172

(in module locale), 100

SyntaxError (built-in exception), 14
sys (built-in module),24
sys _version (BaseHTTPRequestHandler

tribute), 189
syslog (built-in module),130
syslog() (in module syslog), 130
system() (in module posix), 119
SystemError (built-in exception), 14
SystemExit (built-in exception), 14

T

tan()
in module cmath, 81
in module math, 80
tanh()
in module cmath, 81
in module math, 80

tcdrain() (in module termios), 124
tcflow() (in module termios), 125
tcflush() (in module termios), 124
tcgetattr() (in module termios), 124
tcgetpgrp() (in module posix), 119
tcsendbreak() (in module termios), 124
tcsetattr() (in module termios), 124
tcsetpgrp() (in module posix), 119
tell()

aifc method, 202
file method, 11
tempdir (in module tempfile), 92

254

Index

at-

tempfile
template
temporary
file, 92
file name, 92
TERMIOS(standard module), 12425
termios (built-in module),124, 125
test() (in module cgi), 152
tests (in module imghdr), 204
thread (built-in module),110
threads
IRIX, 111
POSIX, 110
tie() (in module fl), 218
time (built-in module),88
time() (in module time), 90
Time2Internaldate() (in module imaplib), 162
times() (in module posix), 119
timezone (in module time), 90
TMPDIR(in module tempfile), 92
tofile() (array method), 84
togglepause() (CD player method), 215
tok _name (in module token), 49
token (standard module}8
tolist()
array method, 84
AST method, 42
tomono() (in module audioop), 199

(standard modulep2
(in module tempfile), 92

tostereo() (in module audioop), 199
tostring() (array method), 84
totuple() (AST method), 42
tovideo() (in module imageop), 200
trace function, 26
traceback

object, 24, 30
traceback (standard moduleBO
tracebacklimit (in module sys), 26
TracebackType (in module types), 27
translate (regex attribute), 74
translate() (in module string), 63
translate _references() (XMLParser

method), 171

true, 3
truncate() (file method), 11
truth

value, 3
try

statement, 12
ttob()

in module imgfile, 225

in module rgbimg, 204
tty

I/O control, 124, 125
tuple

type, 6
tuple() (built-in function), 21
tuple2ast() (in module parser), 40
TupleType (in module types), 27
type

Boolean, 3

complex number, 5

dictionary, 8

floating point, 5

integer, 5

list, 6, 7

long integer, 5

object, 21

operations on dictionary, 8

operations on list, 8

string, 6

tuple, 6
type() (built-in function), 10, 21, 26
typecode (array attribute), 84
TypeError (built-in exception), 14
types

built-in, 3

integer, 5

mapping, 8

mutable sequence, 7

numeric, 4, 5

operations on integer, 6

operations on mapping, 8

operations on mutable sequence, 8

operations on numeric, 5

operations on sequence, 6, 8

sequence, 6
types (standard module), 10, 226
TypeType (in module types), 26
tzname (in module time), 90

U

u-LAW, 197, 202, 227

uid() (IMAP4 method), 163

ulaw2lin() (in module audioop), 199
umask() (in module posix), 119

uname() (in module posix), 119
UnboundMethodType (in module types), 27

unfreeze _form() (form method), 218

unfreeze _object() (FORMS object method),
221

uniform() (in module whrandom), 82

UNIX

file control, 125
1/0 control, 125
UnixMailbox (class in mailbox), 187
unknown _charref()
SGMLParser method, 169
XMLParser method, 172

Index

255

unknown _endtag()

SGMLParser method, 169

XMLParser method, 172
unknown _entityref()

SGMLParser method, 169

XMLParser method, 172
unknown _starttag()

SGMLParser method, 169

XMLParser method, 172
unlink() (in module posix), 120
unmimify() (in module mimify), 188
unpack() (in module struct), 75
unpack _array() (Unpacker method), 183
unpack _bytes() (Unpacker method), 183
unpack _double() (Unpacker method), 182
unpack _farray() (Unpacker method), 183
unpack _float() (Unpacker method), 182
unpack _fopaque() (Unpacker method), 183
unpack _fstring() (Unpacker method), 182
unpack _list() (Unpacker method), 183
unpack _opaque() (Unpacker method), 183
unpack _string() (Unpacker method), 183
Unpacker (class in xdrlib), 181
Unpickler (in module pickle), 32
unqdevice() (in module fl), 218
unquote() (in module urllib), 156
unquote _plus() (in module urllib), 156
unsubscribe() (IMAP4 method), 163
update() (md5 method), 208
upper() (in module string), 63
uppercase (in module string), 61
URL, 150, 155, 166, 188

parsing, 166

relative, 166
urlcleanup() (in module urllib), 156
urljoin() (in module urlparse), 167
urllib (standard module),55 157
urlopen() (in module urllib), 156
urlparse (standard module), 157166
urlparse() (in module urlparse), 167
urlretrieve() (in module urllib), 156
urlunparse() (in module urlparse), 167
$USER, 160
user

configuration file, 58
user (standard moduleh8
UserDict

class in UserDict, 28

standard module28
UserList

class in UserList, 28

standard module€28
UTC, 89
utime() (in module posix), 120

uu (standard module), 18280
\

value
truth, 3
ValueError (built-in exception), 15
varray() (in module gl), 223
vars() (built-in function), 21
VERBOSKin module re), 67
verify _request() (SocketServer protocol), 186
version (in module sys), 26
version _string() (BaseHTTPRequestHandler
method), 190
vnarray() (in module gl), 223
voidemd() (FTP method), 160
vonmisesvariate() (in module random), 83

w

wait() (in module posix), 120
waitpid() (in module posix), 120
walk() (in module posixpath), 121
wdb (standard module), 135
weibullvariate() (in module random), 83
wfile (BaseHTTPRequestHandler attribute), 189
what() (in module imghdr), 204
whichdb (standard module},12
whichdb() (in module whichdb), 112
while

statement, 3
whitespace (in module string), 62
whrandom (standard moduleg2
WNOHAN@ module posix), 120
World-Wide Web, 149, 155, 166
write()

array method, 85

audio device method, 228

file method, 11

in module imdfile, 225

in module posix, 120
writeframes() (aifc method), 203
writeframesraw() (aifc method), 203
writelines() (file method), 11
writer (formatter attribute), 173
writesamps() (audio port method), 212
WWW, 149, 155, 166

server, 150, 188

X

X (in module re), 67

xatom() (IMAP4 method), 163
XDR, 31, 181

xdrlib (standard module)},81
xgtitle() (NNTP method), 166
xhdr() (NNTP method), 166

256

Index

XML, 170

xmllib (standard module},70
XMLParser (class in xmllib), 171
xover() (NNTP method), 166
xpath() (NNTP method), 166
xrange() (built-in function), 21, 27
XRangeType (in module types), 27

Z

ZeroDivisionError (built-in exception), 15
Zfill() (in module string), 63
zlib (built-in module),112

Index

257

	1 Introduction
	2 Built-in Types, Exceptions and Functions
	2.1 Built-in Types
	Truth Value Testing
	Boolean Operations
	Comparisons
	Numeric Types
	Bit-string Operations on Integer Types

	Sequence Types
	More String Operations
	Mutable Sequence Types

	Mapping Types
	Other Built-in Types
	Modules
	Classes and Class Instances
	Functions
	Methods
	Code Objects
	Type Objects
	The Null Object
	File Objects
	Internal Objects

	Special Attributes

	2.2 Built-in Exceptions
	2.3 Built-in Functions

	3 Python Services
	3.1 Built-in Module sys
	3.2 Standard Module types
	3.3 Standard Module UserDict
	3.4 Standard Module UserList
	3.5 Built-in Module operator
	3.6 Standard Module traceback
	3.7 Standard Module pickle
	3.8 Built-in Module cPickle
	3.9 Standard Module copyprotect unhbox voidb@x kern .06emvbox {hrule width.3em}reg
	3.10 Standard Module shelve
	3.11 Standard Module copy
	3.12 Built-in Module marshal
	3.13 Built-in Module imp
	Examples

	3.14 Built-in Module parser
	Creating AST Objects
	Converting AST Objects
	Queries on AST Objects
	Exceptions and Error Handling
	AST Objects
	Examples
	Emulation of compile()
	Information Discovery

	3.15 Standard Module symbol
	3.16 Standard Module token
	3.17 Standard Module keyword
	3.18 Standard Module code
	3.19 Standard Module pprint
	PrettyPrinter Objects

	3.20 Standard Module dis
	Python Byte Code Instructions

	3.21 Standard Module site
	3.22 Standard Module user
	3.23 Built-in Module protect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}builtinprotect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}
	3.24 Built-in Module protect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}mainprotect unhbox voidb@x kern .06emvbox {hrule width.3em}protect unhbox voidb@x kern .06emvbox {hrule width.3em}

	4 String Services
	4.1 Standard Module string
	4.2 Built-in Module re
	Regular Expression Syntax
	Module Contents
	Regular Expression Objects
	Match Objects

	4.3 Built-in Module regex
	Regular Expressions
	Module Contents

	4.4 Standard Module regsub
	4.5 Built-in Module struct
	4.6 Standard Module StringIO
	4.7 Built-in Module cStringIO

	5 Miscellaneous Services
	5.1 Built-in Module math
	5.2 Built-in Module cmath
	5.3 Standard Module whrandom
	5.4 Standard Module random
	5.5 Built-in Module array
	5.6 Standard Module fileinput

	6 Generic Operating System Services
	6.1 Standard Module os
	6.2 Built-in Module time
	6.3 Standard Module getopt
	6.4 Standard Module tempfile
	6.5 Standard Module errno
	6.6 Standard Module glob
	6.7 Standard Module fnmatch
	6.8 Standard Module locale
	Background, details, hints, tips and caveats
	For extension writers and programs that embed Python

	7 Optional Operating System Services
	7.1 Built-in Module signal
	7.2 Built-in Module socket
	Socket Objects
	Example

	7.3 Built-in Module select
	7.4 Built-in Module thread
	7.5 Standard Module Queue
	Queue Objects

	7.6 Standard Module anydbm
	7.7 Standard Module dumbdbm
	7.8 Standard Module whichdb
	7.9 Built-in Module zlib
	7.10 Standard Module gzip

	8 Unix Specific Services
	8.1 Built-in Module posix
	8.2 Standard Module posixpath
	8.3 Built-in Module pwd
	8.4 Built-in Module grp
	8.5 Built-in Module crypt
	8.6 Built-in Module dbm
	8.7 Built-in Module gdbm
	8.8 Built-in Module termios
	Example

	8.9 Standard Module TERMIOS
	8.10 Built-in Module fcntl
	8.11 Standard Module posixfile
	8.12 Built-in Module resource
	Resource Limits
	Resource Usage

	8.13 Built-in Module syslog
	8.14 Standard Module stat
	8.15 Standard Module commands

	9 The Python Debugger
	9.1 Debugger Commands
	9.2 How It Works

	10 The Python Profiler
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	The Stats Class

	10.6 Limitations
	10.7 Calibration
	10.8 Extensions --- Deriving Better Profilers
	OldProfile Class
	HotProfile Class

	11 Internet and WWW Services
	11.1 Standard Module cgi
	Introduction
	Using the cgi module
	Old classes
	Functions
	Caring about security
	Installing your CGI script on a Unix system
	Testing your CGI script
	Debugging CGI scripts
	Common problems and solutions

	11.2 Standard Module urllib
	11.3 Standard Module httplib
	HTTP Objects
	Example

	11.4 Standard Module ftplib
	FTP Objects

	11.5 Standard Module gopherlib
	11.6 Standard Module imaplib
	IMAP4 Objects
	IMAP4 Example

	11.7 Standard Module nntplib
	NNTP Objects

	11.8 Standard Module urlparse
	11.9 Standard Module sgmllib
	11.10 Standard Module htmllib
	11.11 Standard Module xmllib
	11.12 Standard Module formatter
	The Formatter Interface
	Formatter Implementations
	The Writer Interface
	Writer Implementations

	11.13 Standard Module rfc822
	Message Objects

	11.14 Standard Module mimetools
	Additional Methods of Message objects

	11.15 Standard Module binhex
	Notes

	11.16 Standard Module uu
	11.17 Built-in Module binascii
	11.18 Standard Module xdrlib
	Packer Objects
	Unpacker Objects
	Exceptions

	11.19 Standard Module mailcap
	11.20 Standard Module base64
	11.21 Standard Module quopri
	11.22 Standard Module SocketServer
	11.23 Standard Module mailbox
	Mailbox Objects

	11.24 Standard Module mimify
	11.25 Standard Module BaseHTTPServer

	12 Restricted Execution
	12.1 Standard Module rexec
	An example

	12.2 Standard Module Bastion

	13 Multimedia Services
	13.1 Built-in Module audioop
	13.2 Built-in Module imageop
	13.3 Standard Module aifc
	13.4 Built-in Module jpeg
	13.5 Built-in Module rgbimg
	13.6 Standard Module imghdr

	14 Cryptographic Services
	14.1 Built-in Module md5
	14.2 Built-in Module mpz
	14.3 Built-in Module rotor

	15 SGI IRIX Specific Services
	15.1 Built-in Module al
	Configuration Objects
	Port Objects

	15.2 Standard Module AL
	15.3 Built-in Module cd
	Player Objects
	Parser Objects

	15.4 Built-in Module fl
	Functions Defined in Module fl
	Form Objects
	FORMS Objects

	15.5 Standard Module FL
	15.6 Standard Module flp
	15.7 Built-in Module fm
	15.8 Built-in Module gl
	15.9 Standard Modules GL and DEVICE
	15.10 Built-in Module imgfile

	16 SunOS Specific Services
	16.1 Built-in Module sunaudiodev
	Audio Device Objects

	17 Undocumented Modules
	17.1 Frameworks; somewhat harder to document, but well worth the effort
	17.2 Stuff useful to a lot of people, including the CGI crowd
	17.3 Miscellaneous useful utilities
	17.4 Parsing Python
	17.5 Platform specific modules
	17.6 Code objects and files, debugger etc.
	17.7 Multimedia
	17.8 Oddities
	17.9 Obsolete
	17.10 Extension modules

	Module Index
	Index

