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ABSTRACT

Python is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for rapid application development, as well
as for use as a scripting or glue language to connect existing components together. Py-
thon's simple, easy to learn syntax emphasizes readability and therefore reduces the cos
of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and
can be freely distributed.

This reference manual describes the syntax and “core semantics” of the language. It is
terse, but attempts to be exact and complete. The semantics of non-essential built-in ob-
ject types and of the built-in functions and modules are described in thePython Library
Reference. For an informal introduction to the language, see thePython Tutorial. For C
or C++ programmers, two additional manuals exist:Extending and Embedding the Py-
thon Interpreterdescribes the high-level picture of how to write a Python extension
module, and thePython/C API Reference Manualdescribes the interfaces available to
C/C++ programmers in detail.
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CHAPTER 1: INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tu

While I am trying to be as precise as possible, I have chosen to use English rather than formal
fications for everything except syntax and lexical analysis. This should make the document mo
derstandable to the average reader, but will leave room for ambiguities. Consequently, if you
coming from Mars and tried to re-implement Python from this document alone, you might ha
guess things and in fact you would probably end up implementing quite a different language. O
other hand, if you are using Python and wonder what the precise rules about a particular area
language are, you should definitely be able to find them here. If you would like to see a more fo
definitition of the language, maybe you could volunteer your time — or invent a cloning machin

It is dangerous to add too many implementation details to a language reference document — t
plementation may change, and other implementations of the same language may work differen
the other hand, there is currently only one Python implementation in widespread use, and its par
quirks are sometimes worth being mentioned, especially where the implementation imposes ad
al limitations. Therefore, you’ll find short “implementation notes” sprinkled throughout the text

Every Python implementation comes with a number of built-in and standard modules. These a
documented here, but in the separatePython Library Referencedocument. A few built-in modules are
mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This us
following style of definition:

name:           lc_letter (lc_letter | "_")*
lc_letter:      "a"..."z"

The first line says that aname is an lc_letter followed by a sequence of zero or mor
lc_letter s and underscores. Anlc_letter in turn is any of the single characters ‘a’ throug
‘z’. (This rule is actually adhered to for the names used in lexical and grammar rules in this d
ment.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertical b| )
is used to separate alternatives; it is the least binding operator in this notation. A star (* ) means zero
or more repetitions of the preceding item; likewise, a plus (+) means one or more repetitions, and
phrase enclosed in square brackets ([ ] ) means zero or one occurrences (in other words, the enclo
phrase is optional). The* and+ operators bind as tightly as possible; parentheses are used for gr
ing. Literal strings are enclosed in quotes. White space is only meaningful to separate tokens.
are normally contained on a single line; rules with many alternatives may be formatted alterna
with each line after the first beginning with a vertical bar.

In lexical definitions (as in the example above), two more conventions are used: Two literal ch
ters separated by three dots mean a choice of any single character in the given (inclusive) ra
ASCII characters. A phrase between angular brackets (<...> ) gives an informal description of the
symbol defined; e.g. this could be used to describe the notion of ‘control character’ if needed.
1
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Even though the notation used is almost the same, there is a big difference between the mea
lexical and syntactic definitions: a lexical definition operates on the individual characters of the
source, while a syntax definition operates on the stream of tokens generated by the lexical an
All uses of BNF in the next chapter (“Lexical Analysis”) are lexical definitions; uses in subsequ
chapters are syntactic definitions.
2
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CHAPTER 2: LEXICAL ANALYSIS

A Python program is read by aparser. Input to the parser is a stream oftokens, generated by thelex-
ical analyzer. This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text and string literals. 8-bit characters m
used in string literals and comments but their interpretation is platform dependent; the proper w
insert 8-bit characters in string literals is by using octal or hexadecimal escape sequences.

The run-time character set depends on the I/O devices connected to the program but is genera
perset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit charac
is ISO Latin-1 (an ASCII superset that covers most western languages that use the Latin alph
but it is possible that in the future Unicode text editors will become common. These generally u
UTF-8 encoding, which is also an ASCII superset, but with very different use for the characters
ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either
1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both
source character set and the run-time character set.

2.1 Line structure

A Python program is divided in a number oflogical lines.

2.1.1 Logical lines

The end of each logical line is represented by the token NEWLINE. Statements cannot cross l
line boundaries except where NEWLINE is allowed by the syntax (e.g. between statements in
pound statements). A logical line is constructed from one or morephysical linesby following the ex-
plicit or implicit line joining rules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. On UN
this is the ASCII LF (linefeed) character. On DOS/Windows, it is the ASCII sequence CR LF (re
followed by linefeed). On Macintosh, it is the ASCII CR (return) character.

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end
the physical line. A comment signifies the end of the logical line unless the implicit line joining r
are invoked. Comments are ignored by the syntax ; they are not tokens.

2.1.4 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\ ), as follows:
when a physical line ends in a backslash that is not part of a string literal or comment, it is joined
the following forming a single logical line, deleting the backslash and the following end-of-line c
acter. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
   and 1 <= day <= 31 and 0 <= hour < 24 \
3
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   and 0 <= minute < 60 and 0 <= second < 60:   # Looks like a valid date
        return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A
slash does not continue a token except for string literals (i.e., tokens other than string literals cannot
across physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string

2.1.5 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one phys
without using backslashes. For example:

month_names = [’Januari’, ’Februari’, ’Maart’,      # These are the
               ’April’,   ’Mei’,      ’Juni’,       # Dutch names
               ’Juli’,    ’Augustus’, ’September’,  # for the months
               ’Oktober’, ’November’, ’December’]   # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not impo
Blank continuation lines are allowed. There is no NEWLINE token between implicit continuation lines
plicit continued lines can also occur within triple-quoted strings (see below); in that case they canno
comments.

2.1.6 Blank lines

A logical line that contains only spaces, tabs, formfeeds, and possibly a comment, is ignored (i.e., no
LINE token is generated), except that during interactive input of statements, an entirely blank logica
(i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.7 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the inde
level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of charac
to there is a multiple of eight (this is intended to be the same rule as used by UNIX). The total num
spaces preceding the first non-blank character then determines the line’s indentation. Indentation ca
split over multiple physical lines using backslashes; the whitespace up to the first backslash determi
indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is u
wise to use a mixture of spaces and tabs for the indentation in a single source file.

A formfeed character may be present at the start of the line; formfeed characters occurring elsewher
leading whitespace have an undefined effect (for instance, they may reset the space count to zero)

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, u
stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be poppe
again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At the b
ning of each logical line, the line’s indentation level is compared to the top of the stack. If it is equal,
ing happens. If it is larger, it is pushed on the stack, and one INDENT token is generated. If it is sma
4
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mustbe one of the numbers occurring on the stack; all numbers on the stack that are larger are p
off, and for each number popped off a DEDENT token is generated. At the end of the file, a DED
token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
        # Compute the list of all permutations of l
    if len(l) <= 1:
                  return [l]
    r = []
    for i in range(len(l)):
             s = l[:i] + l[i+1:]
             p = perm(s)
             for x in p:
              r.append(l[i:i+1] + x)
    return r

The following example shows various indentation errors:

     def perm(l):                       # error: first line indented
    for i in range(len(l)):             # error: not indented
        s = l[:i] + l[i+1:]
            p = perm(l[:i] + l[i+1:])   # error: unexpected indent
            for x in p:
                    r.append(l[i:i+1] + x)
                return r                # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexic
alyzer — the indentation ofreturn r  does not match a level popped off the stack.)

2.1.8 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, ta
formfeed can be used interchangeably to separate tokens. Whitespace is needed between tw
only if their concatenation could otherwise be interpreted as a different token (e.g.,ab is one token,
buta b  is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist:identifiers,
keywords, literals, operators, anddelimiters. Whitespace characters (other than line terminators, d
cussed earlier) are not tokens, but serve to delimit tokens. Where ambiguity exists, a token com
the longest possible string that forms a legal token when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to asnames) are described by the following lexical definitions:

identifier:     (letter|"_") (letter|digit|"_")*
letter:         lowercase | uppercase
lowercase:      "a"..."z"
uppercase:      "A"..."Z"
digit:          "0"..."9"
5
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Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved words, orkeywordsof the language, and cannot be used
ordinary identifiers. They must be spelled exactly as written here:

and       del       for       is        raise
assert    elif      from      lambda    return
break     else      global    not       try
class     except    if        or        while
continue  exec      import    pass
def       finally   in        print

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These are:

(XXX need section references here.)

2.4 Literals

Literals are notations for constant values of some built-in types

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral:   [rawprefix] (shortstring | longstring)
rawprefix:       "r" | "R"
shortstring:     "’" shortstringitem* "’" | ’"’ shortstringitem* ’"’
longstring:      "’’’" longstringitem* "’’’" | ’"""’ longstringitem* ’"""’
shortstringitem: shortstringchar | escapeseq
longstringitem:  longstringchar | escapeseq
shortstringchar: <any ASCII character except "\" or newline or the quote>
longstringchar:  <any ASCII character except "\">
escapeseq:       "\" <any ASCII character>

In plain English: String literals can be enclosed in matching single quotes (’) or double quotes ("). The
also be enclosed in matching groups of three single or double quotes (these are generally referre
triple-quoted strings). The backslash (\) character is used to escape characters that otherwise have a
meaning, such as newline, backslash itself, or the quote character. String literals may optionally be p
with a letter ‘r’ or ‘R’; such strings are calledraw stringsand use different rules for backslash escape
quences.

Table 1: Special Meanings of Identifiers

Form Meaning

  _* Not imported byfrom  moduleimport *

  __*__ System-defined name

  __* Class-private name mangling
6
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In “long strings” (strings surrounded by sets of three quotes), unescaped newlines and quotes
lowed (and are retained), except that three unescaped quotes in a row terminate the string. (A “
is the character used to open the string, i.e. either’  or " .)

Unless an ‘r’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to
similar to those used by Standard C. The recognized escape sequences are:

In strict compatibility with Standard C, up to three octal digits are accepted, but an unlimited nu
of hex digits is taken to be part of the hex escape (and then the lower 8 bits of the resulting hex
ber are used in all current implementations...).

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e.,the back-
slash is left in the string.(This behavior is useful when debugging: if an escape sequence is misty
the resulting output is more easily recognized as broken.)

When an ‘r’ or ‘R’ prefix is present, backslashes are still used to quote the following character
all backslashes are left in the string.For example, the string literalr"\n" consists of two characters
a backslash and a lowercase ‘n’. String quotes can be escaped with a backslash, but the backs
mains in the string; for example,r"\"" is a valid string literal consisting of two characters: a bac
slash and a double quote;r"\" is not a value string literal (even a raw string cannot end in an o
number of backslashes).

Table 2: Escape Sequences

Escape Sequence Meaning

\ newline  Ignored

\\  Backslash (\ )

\’  Single quote (’ )

\"  Double quote (" )

\a  ASCII Bell (BEL)

\b  ASCII Backspace (BS)

\f  ASCII Formfeed (FF)

\n  ASCII Linefeed (LF)

\r  ASCII Carriage Return (CR)

\t  ASCII Horizontal Tab (TAB)

\v  ASCII Vertical Tab (VT)

\ ooo  ASCII character with octal valueooo

\x xx...  ASCII character with hex valuexx...
7
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2.4.1.1 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting con
tions, are allowed, and their meaning is the same as their concatenation. Thus,"hello" ’world’
is equivalent to"helloworld" . This feature can be used to reduce the number of backslas
needed, to split long strings conveniently across long lines, or even to add comments to pa
strings, for example:

regex.compile("[A-Za-z_]"       # letter or underscore
              "[A-Za-z0-9_]*"   # letter, digit or underscore
             )

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+
erator must be used to concatenate string expressions at run time. Also note that literal concat
can use different quoting styles for each component.

2.4.2 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers
imaginary numbers.

2.4.2.1 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger:    integer ("l"|"L")
integer:        decimalinteger | octinteger | hexinteger
decimalinteger: nonzerodigit digit* | "0"
octinteger:     "0" octdigit+
hexinteger:     "0" ("x"|"X") hexdigit+
nonzerodigit:   "1"..."9"
octdigit:       "0"..."7"
hexdigit:       digit|"a"..."f"|"A"..."F"

Although both lower case ‘l’ and upper case ‘L’ are allowed as suffix for long integers, it is stron
recommended to always use ‘L’, since the letter ‘l’ looks too much like the digit ‘1’.

Plain integer decimal literals must be at most 2147483647 (i.e., the largest positive integer, usi
bit arithmetic). Plain octal and hexadecimal literals may be as large as 4294967295, but values
than 2147483647 are converted to a negative value by subtracting 4294967296. There is no li
long integer literals apart from what can be stored in available memory.

Some examples of plain and long integer literals:

7     2147483647                        0177    0x80000000
3L    79228162514264337593543950336L    0377L   0x100000000L

2.4.2.2 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber:    pointfloat | exponentfloat
pointfloat:     [intpart] fraction | intpart "."
exponentfloat:  (intpart | pointfloat) exponent
intpart:        nonzerodigit digit* | "0"
8
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fraction:       "." digit+
exponent:       ("e"|"E") ["+"|"-"] digit+

Note that the integer part of a floating point number cannot look like an octal integer. The allo
range of floating point literals is implementation-dependent. Some examples of floating point
als:

3.14    10.     .001    1e100   3.14e-10

2.4.2.3 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber:     (floatnumber | intpart) ("j"|"J")

An imaginary literals yields a complex number with a real part of 0.0. Complex numbers are r
sented as a pair of floating point numbers and have the same restrictions on their range. To c
complex number with a nonzero real part, add a floating point number to it, e.g.(3+4j). Some ex-
amples of imaginary literals:

3.14j   10.j    10 j    .001j   1e100j  3.14e-10j

Note that numeric literals do not include a sign; a phrase like-1 is actually an expression compose
of the unary operator ‘- ’ and the literal1.

2.5 Operators

The following tokens are operators:

+       -       *       **      /       %
<<      >>      &       |       ^       ~
<       >       <=      >=      ==      !=      <>

The comparison operators<> and!= are alternate spellings of the same operator; != is the prefer
spelling,  <> is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

(       )       [       ]       {       }
,       :       .       ‘       =       ;

The period can also occur in floating-point and imaginary literals. A sequence of three periods
special meaning as ellipses in slices.

The following printing ASCII characters have special meaning as part of other tokens or are o
wise significant to the lexical analyzer:

’       "       #       \

The following printing ASCII characters are not used in Python. Their occurrence outside strin
erals and comments is an unconditional error:

@       $       ?
9
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CHAPTER 3: DATA MODEL

3.1 Objects, values and types

Objectsare Python’s abstraction for data. All data in a Python program is represented by obje
by relations between objects. (In conformance to Von Neumann’s model of a “stored program
puter”, code is also represented by objects.)

Every object has an identity, a type and a value. An object’sidentitynever changes once it has bee
created; you may think of it as the object’s address in memory. The ‘is ’ operator compares the iden
tity of two objects; the ‘id() ’ function returns an integer representing its identity (currently imp
mented as its address). An object’stype is also unchangeable. It determines the operations tha
object supports (e.g. “does it have a length?”) and also defines the possible values for objects
type. The ‘type() ’ function returns an object’s type (which is an object itself). Thevalueof some
objects can change. The ‘==’ operator compares the value of two objects. Objects whose value
change are said to bemutable; objects whose value is unchangeable once they are created are c
immutable. An object’s (im)mutability is determined by its type; for instance, numbers, strings
tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may b
bage-collected. An implementation is allowed to postpone garbage collection or omit it altogeth
it is a matter of implementation quality how garbage collection is implemented, as long as no o
are collected that are still reachable. (Implementation note: the current implementation uses a
ence-counting scheme which collects most objects as soon as they become unreachable, b
collects garbage containing circular references.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects aliv
would normally be collectable. Also note that catching an exception with a ‘try...except ’ state-
ment may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is
stood that these resources are freed when the object is garbage-collected, but since garbage c
is not guaranteed to happen, such objects also provide an explicit way to release the external re
usually aclose() method. Programs are strongly recommended to always explicitly close suc
jects. The ‘try...finally ’ statement provides a convenient way to do this.

Some objects contain references to other objects; these are calledcontainers. Examples of containers
are tuples, lists and dictionaries. The references are part of a container’s value. In most cases
we talk about the value of a container, we imply the values, not the identities of the contained ob
however, when we talk about the (im)mutability of a container, only the identities of the immedia
contained objects are implied. So, if an immutable container (like a tuple) contains a referenc
mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is aff
in some sense: for immutable types, operations that compute new values may actually return a
ence to any existing object with the same type and value, while for mutable objects this is n
lowed. E.g. after ‘‘a = 1; b = 1’’, a andb may or may not refer to the same object with the valu
one, depending on the implementation, but after ‘‘c = []; d = [] ’’, c andd are guaranteed to
refer to two different, unique, newly created empty lists. (Note that ‘‘c = d = [] ’’ assigns the
same object to bothc  andd.)
11
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3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules written in C can define
ditional types. Future versions of Python may add types to the type hierarchy (e.g. rational num
efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes’. These a
tributes that provide access to the implementation and are not intended for general use. Their
tion may change in the future. There are also some ‘generic’ special attributes, not listed wi
individual objects:__methods__ is a list of the method names of a built-in object, if it has an
__members__  is a list of the data attribute names of a built-in object, if it has any.

None This type has a single value. There is a single object with this value. This object is acce
through the built-in nameNone. It is used to signify the absence of a value in many situ
tions, e.g. it is returned from functions that don’t explicitly return anything. Its truth value
false.

Ellipsis This type has a single value. There is a single object with this value. This object is acce
through the built-in nameEllipsis . It is used to indicate the presence of the ‘‘...’’ synta
in a slice. Its truth value is true.

NumbersThese are created by numeric literals and returned as results by arithmetic operato
arithmetic built-in functions. Numeric objects are immutable; once created their value n
changes. Python numbers are of course strongly related to mathematical numbers, but s
to the limitations of numerical representation in computers.

Python distinguishes between integers and floating point numbers:

IntegersThese represent elements from the mathematical set of whole numbers

There are two types of integers:

Plain integersThese represent numbers in the range -2147483648 through 2147483
(The range may be larger on machines with a larger natural word size, bu
smaller.) When the result of an operation falls outside this range, the excep
OverflowError is raised. For the purpose of shift and mask operations, in
gers are assumed to have a binary, 2’s complement notation using 32 or
bits, and hiding no bits from the user (i.e., all 4294967296 different bit patte
correspond to different values).

Long integersThese represent numbers in an unlimited range, subject to available
tual) memory only. For the purpose of shift and mask operations, a binary re
sentation is assumed, and negative numbers are represented in a variant
complement which gives the illusion of an infinite string of sign bits extendi
to the left.

The rules for integer representation are intended to give the most meaningful interp
tion of shift and mask operations involving negative integers and the least surprises
switching between the plain and long integer domains. For any operation except left
if it yields a result in the plain integer domain without causing overflow, it will yield th
same result in the long integer domain or when using mixed operands.

Floating point numbersThese represent machine-level double precision floating point nu
bers. You are at the mercy of the underlying machine architecture and C implement
for the accepted range and handling of overflow. Python does not support single-p
sion floating point numbers; the savings in CPU and memory usage that are usual
reason for using these is dwarfed by the overhead of using objects in Python, so th
12
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no reason to complicate the language with two kinds of floating point numbers.

Complex numbersThese represent complex numbers as a pair of machine-level double
cision floating point numbers. The same caveats apply as for floating point numbers
real and imaginary value of a complex numberz can be retrieved through the attribute
z.real  andz.imag .

SequencesThese represent finite ordered sets indexed by natural numbers. The built-in fun
len() returns the number of items of a sequence. When the length of a sequence isn, the
index set contains the numbers 0, 1, ...,n. Item i  of sequencea is selected bya[i] .

Sequences also support slicing:a[i:j] selects all items with indexk such that
i <= k < j . When used as an expression, a slice is a sequence of the same type —
implies that the index set is renumbered so that it starts at 0 again.

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is
ated. (If the object contains references to other objects, these other objects may be
ble and may be changed; however the array of objects directly referenced b
immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a
acter is represented by a string of one item. Characters represent (at least
bytes. The built-in functionschr() andord() convert between characters an
nonnegative integers representing the byte values. Bytes with the values 0
usually represent the corresponding ASCII values, but the interpretation of
ues is up to the program. The string data type is also used to represent arra
bytes, e.g. to hold data read from a file.

(What should be done on systems whose native character set is not ASCII

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more ite
are formed by comma-separated lists of expressions. A tuple of one item (a
gleton’) can be formed by affixing a comma to an expression (an expressio
itself does not create a tuple, since parentheses must be usable for group
expressions). An empty tuple can be formed by enclosing ‘nothing’ in paren
ses: ‘‘() ’’.

Mutable sequencesMutable sequences can be changed after they are created. The sub
tion and slicing notations can be used as the target of assignment anddel (delete) state-
ments.

There is currently a single mutable sequence type:

Lists The items of a list are arbitrary Python objects. Lists are formed by placin
comma-separated list of expressions in square brackets. (Note that there a
special cases needed to form lists of length 0 or 1.)

The optional modulearray provides an additional example of a mutable sequence ty

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript no
a[k] selects the item indexed byk from the mappinga; this can be used in expressions an
as the target of assignments ordel statements. The built-in functionlen() returns the num-
ber of items in a mapping.
13
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There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values.
only types of values not acceptable as keys are values containing lists or dictionar
other mutable types that are compared by value rather than by object identity — the
son being that the efficient implementation of dictionaries requires a key’s value to
main constant. Numeric types used for keys obey the normal rules for num
comparison: if two numbers compare equal (e.g. 1 and 1.0) then they can be used
changeably to index the same dictionary entry.

Dictionaries are mutable; they are created by the{...} notation. (See “Dictionary dis-
plays” on page 28.)

The optional library modulesdbm, gdbm andbsddb provide additional examples of map
ping types.

Callable typesThese are the types to which the function call operation (for invocation, See “Ca
on page 31.) is applied:

User-defined functionsA user-defined function object is created by a function definitio
(See “Function definitions” on page 50.)

Special read-only attributes:func_doc or __doc__ is the function’s documentation
string, or None if unavailable;func_name or __name__ is the function’s name;
func_defaults is a tuple containing default argument values for those argume
that have defaults, orNone if no arguments have a default value;func_code is the
code object representing the compiled function body;func_globals is (a reference
to) the dictionary that holds the function’s global variables — it defines the global na
space of the module in which the function was defined. Additional information abo
function’s definition can be retrieved from its code object; see the description of inte
types below.

User-defined methodsA user-defined method object (a.k.a.object closure) combines a
class, a class instance (orNone) and a user-defined function.
Special read-only attributes:im_self is the instance object;im_func is the function
object;im_class is the class that defined the method (which may be a base class o
class of whichim_self is an instance);__doc__ is the method’s documentation
(same as im_func.__doc__ ); __name__ is the method name (same a
im_func.__name__ ).

User-defined method objects are created in two ways: when getting an attribute of a
that is a user-defined function object, or when getting an attributes of a class instanc
is a user-defined function object. In the former case (class attribute), theim_self at-
tribute isNone, and the method object is said to beunbound; in the latter case (instance
attribute),im_self is the instance, and the method object is said to bebound. For in-
stance, whenC is a class which contains a definition for a functionf , C.f does not yield
the function objectf ; rather, it yields an unbound method object m wherem.im_class
is C, m.im_function is f , and m.im_self is None. Whenx is aC instance,x.f
yields a bound method objectmwherem.im_class is C, m.im_function is f, and
m.im_self  is x .

When an unbound user-defined method object is called, the underlying func
(im_func ) is called, with the restriction that the first argument must be an instanc
the proper class (im_class ) or of a derived class thereof.
14
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When a bound user-defined method object is called, the underlying function (im_func )
is called, inserting the class instance (im_self ) in front of the argument list. For in-
stance, whenC is a class which contains a definition for a functionf , andx is an instance
of C, callingx.f(1)  is equivalent to callingC.f(x, 1) .

Note that the transformation from function object to (unbound or bound) method ob
happens each time the attribute is retrieved from the class or instance. In some ca
fruitful optimization is to assign the attribute to a local variable and call that local v
able. Also notice that this transformation only happens for user-defined functions; o
callable objects (and all non-callable objects) are retrieved without transformation.

Built-in functions A built-in function object is a wrapper around a C function. Examples of
built-in functions arelen andmath.sin (math is a standard built-in module). The
number and type of the arguments are determined by the C function. Special read
attributes:__doc__ is the function’s documentation string, orNone if unavailable;
__name__ is the function’s name;__self__ is set toNone (but see the next para-
graph).

Built-in methods This is really a different disguise of a built-in function, this time containin
an object passed to the C function as an implicit extra argument. An example of a b
in method islist.append , assuminglist is a list object. In this case, the specia
read-only attribute__self__  is set to the object denoted bylist .

ClassesClass objects are described below. When a class object is called, a new class in
(also described below) is created and returned. This implies a call to the cla
__init__ method if it has one. Any arguments are passed on to the__init__ meth-
od — if there is no__init__  method, the class must be called without arguments.

Class instancesClass instances are described below. Class instances can be called as a
tion only when the class has a__call__ method; in this case,x(arguments) is a
shorthand forx.__call__(arguments) .

ModulesModules are imported by theimport statement. (See “The import statement” on page 4
A module object has a name space implemented by a dictionary object (this is the dictio
referenced by thefunc_globals attribute of functions defined in the module). Attribut
references are translated to lookups in this dictionary, e.g.m.x is equivalent to
m.__dict__["x"] . A module object does not contain the code object used to initia
the module (since it isn’t needed once the initialization is done).

Attribute assignment update the module’s name space dictionary, e.g. ‘‘m.x = 1 ’’ is equiv-
alent to ‘‘m.__dict__["x"] = 1 ’’.

Special read-only attribute:__dict__ is the dictionary object that is the module’s nam
space.

Predefined (writable) attributes:__name__ is the module name;__doc__ is the module’s
documentation string, orNone if unavailable;__file__ is the pathname of the file from
which the module was loaded, if it was loaded from a file. The__file__ attribute is not
present for C modules that are statically linked into the interpreter; for extension mod
loaded dynamically from a shared library, it is the pathname of the shared library file.

ClassesClass objects are created by class definitions (See “Class definitions” on page 51.). A
has a name space implemented by a dictionary object. Class attribute references are tra
to lookups in this dictionary, e.g. ‘‘C.x ’’ is translated to ‘‘C.__dict__["x"] ’’. When
the attribute name is not found there, the attribute search continues in the base classe
search is depth-first, left-to-right in the order of their occurrence in the base class list. W
15
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a class attribute reference would yield a user-defined function object, it is transformed
an unbound user-defined method object (see above). Theim_class attribute of this method
object is the class in which the function object was found, not necessarily the class for w
the attribute reference was initiated.

Class attribute assignments update the class’s dictionary, never the dictionary of a base

A class object can be called as a function (see above) to yield a class instance (see b

Special read-only attributes:__dict__ is the dictionary that is the class’s name spac
__name__ is the class name;__bases__ is a tuple (possibly empty or a singleton) con
taining the base classes, in the order of their occurrence in the base class list.

Predefined (writable) attribute:__doc__ is the class’s documentation string, orNone if un-
defined.

Class instancesA class instance is created by calling a class object as a function (see above). A
instance has a name space implemented as a dictionary, which is the first place whe
stance attributes are searched. When an attribute is not found there, the search continu
the class attributes. If a class attribute is found that is a user-defined function object (a
no other case), it is transformed into an unbound user-defined method object (see above
im_class attribute of this method object is the class in which the function object w
found, not necessarily the class of the instance for which the attribute reference was init
If no class attribute is found, and the object’s class has a__getattr__ method, that is
called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s d
nary. If the class has a__setattr__ or __delattr__ method, this is called instead o
updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, mappings, or callable objec
override various other special operations, if they have methods with certain special na
See “Special method names” on page 18.

Special attributes:__dict__ yields the attribute dictionary;__class__ yields the in-
stance’s class. In some implementations these may be assigned a new value; the new
must have the same type as the old value.

Files A file object represents an open file. File objects are created by theopen() built-in function,
and also byos.popen() , os.fdopen() and themakefile() method of socket ob-
jects (and perhaps by other functions or methods provided by extension modules). Th
jects sys.stdin , sys.stdout and sys.stderr are initialized to file objects
corresponding to the interpreter’s standard input, output and error streams. See the Pyth
brary Reference for complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their defini
may change with future versions of the interpreter, but they are mentioned here for com
ness.

Code objectsCode objects representbyte-compileexecutable Python code, orbytecode. The
difference between a code object and a function object is that the function object con
an explicit reference to the function’s globals (the name space dictionary of the mo
in which it was defined), while a code object contains no context; also the default a
ment values are stored in the function object, not in the code object (because they
sent values calculated at run-time). Unlike function objects, code objects are immu
and contain no references (directly or indirectly) to mutable objects.
16
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Special read-only attributes:co_argcount is the number of positional arguments (in
cluding arguments with default values);co_nlocals is the number of local variables
used by the function (including arguments);co_varnames is a tuple containing the
names of the local variables (starting with the argument names);co_code is a string
representing the sequence of bytecode instructions;co_consts is a tuple containing
the literals used by the bytecode;co_names is a tuple containing the names used by th
bytecode; co_filename is the filename from which the code was compiled
co_flags is an integer encoding a number of flags for the interpreter. The follow
flag bits are defined: bit 2 is set if the function uses the “*arguments ’’ syntax to accept
an arbitrary number of positional arguments; bit 3 is set if the function uses
‘‘ **keywords ’’ syntax to accept arbitrary keyword arguments; other bits are used
ternally or reserved for future use. The first item inco_consts is the documentation
string of the function, orNone if undefined. To find out the first line number of a func
tion, you have to disassemble the bytecode instructions; the standard library m
codehack defines a functiongetlineno() that returns the first line number of a
code object.

Frame objectsFrame objects represent execution frames. They may occur in tracebac
jects (see below).

Special read-only attributes:f_back is to the previous stack frame (towards the calle
or None if this is the bottom stack frame;f_code is the code object being executed i
this frame;f_locals is the dictionary used to look up locals variables;f_globals
is used for global variables;f_builtins is used for built-in (intrinsic) names;
f_restricted is a flag indicating whether the function is executing in restricted e
ecution mode;f_lineno gives the current line number andf_lasti gives the precise
instruction (this is an index into the instruction string of the code object).

Special writable attributes:f_trace , if not None, is a function called at the start of
each source code line (this is used by the debugger).

Traceback objects Traceback objects represent a stack trace of an exception. A trace
object is created when an exception occurs. When the search for an exception hand
winds the execution stack, at each unwound level a traceback object is inserted in
of the current traceback. When an exception handler is entered, the stack trace is
available to the program. (See “The try statement” on page 49.) It is accessib
sys.exc_traceback , and also as the third item of the tuple returned b
sys.exc_info() . The latter is the preferred interface, since it works correctly wh
the program is using multiple threads. When the program contains no suitable exce
handler, the stack trace is printed on the standard error stream; if the interpreter is
active, it is also made available to the user assys.last_traceback .

Special read-only attributes:tb_next is the next level in the stack trace (towards th
frame where the exception occurred), orNone if there is no next level;tb_frame
points to the execution frame of the current level;tb_lineno gives the line number
where the exception occurred;tb_lasti indicates the precise instruction. The lin
number and last instruction in the traceback may differ from the line number of its fra
object if the exception occurred in atry statement with no matchingexcept clause or
with a finally  clause.

Slice objectsSlice objects are used to represent slices whenextended slice syntaxis used (this
is a slice using two colons, or multiple slices or ellipses separated by commas
a[i:j:step] , a[i:j, k:l] , or a[..., i:j] ). They are also created by the
built-in slice()  function.
17
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Special read-only attributes:start is the lowerbound;stop is the upperbound;step
is the step value; each isNone if omitted. These attributes can have any type.

3.3 Special method names

This section describes how user-defined classes can customize their behavior or emulate the b
of other object types. In the following, if a class defines a particular method, any class derived
it is also understood to define that method (implicitly).

A class can implement certain operations that are invoked by special syntax (such as arithmetic
ations or subscripting and slicing) by defining methods with special names. For instance, if a cla
fines a method named__getitem__ , andx is an instance of this class, thenx[i] is equivalent to
x.__getitem__(i) . (The reverse is not true; e.g. ifx is a list object,x.__getitem__(i) is
not equivalent tox[i] .) Except where mentioned, attempts to execute an operation raise an e
tion when no appropriate method is defined.

3.3.1 Basic customization

__init__(self, [args...]) Called when the instance is created. The arguments are th
that were passed to the class constructor expression. If a base class has an__init__ method
the derived class’s__init__ method must explicitly call it to ensure proper initializatio
of the base class part of the instance, e.g.
‘‘ BaseClass.__init__(self, [args...]) ’’.

__del__(self) Called when the instance is about to be destroyed. If a base class has a__del__
method the derived class’s__del__ method must explicitly call it to ensure proper deletio
of the base class part of the instance. e.g. ‘‘BaseClass.__del__(self) ’’. Note that it
is possible (though not recommended!) for the__del__ method to postpone destruction o
the instance by creating a new reference to it. It may then be called at a later time whe
new reference is deleted. It is not guaranteed that__del__ methods are called for objects
that still exist when the interpreter exits.

Programmer’s note: ‘‘ del x ’’ doesn’t directly callx.__del__() — the former decre-
ments the reference count forx by one, and the latter is only called when its reference cou
reaches zero. Some common situations that may prevent the reference count of an ob
go to zero include: circular references between objects (e.g. a doubly-linked list or a tree
structure with parent and child pointers); a reference to the object on the stack frame
function that caught an exception (the traceback stored insys.exc_traceback keeps the
stack frame alive); or a reference to the object on the stack frame that raised an unha
exception in interactive mode (the traceback stored insys.last_traceback keeps the
stack frame alive). The first situation can only be remedied by explicitly breaking the cyc
the latter two situations can be resolved by storingNone in sys.exc_traceback or
sys.last_traceback .

Warning: due to the precarious circumstances under which__del__ methods are invoked,
exceptions that occur during their execution areignored, and a warning is printed to
sys.stderr instead. Also, when__del__ is invoked is response to a module being d
leted (e.g. when execution of the program is done), other globals referenced by the__del__
method may already have been deleted. For this reason,__del__ methods should do the ab-
solute minimum needed to maintain external invariants. Python 1.5 guarantees that g
18
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whose name begins with a single underscore are deleted from their module before othe
bals are deleted; if no other references to such globals exist, this may help in assurin
imported modules are still available at the time when the__del__  method is called.

__repr__(self) Called by therepr() built-in function and by string conversions (revers
quotes) to compute the “official” string representation of an object. This should norm
look like a valid Python expression that can be used to recreate an object with the same

__str__(self) Called by thestr() built-in function and by theprint statement compute the
‘‘informal’’ string representation of an object. This differs from__repr__ in that it doesn’t
have to look like a valid Python expression: a more convenient or concise representatio
be used instead.

__cmp__(self, other) Called by all comparison operations. Should return a negative inte
if self < other , zero if self == other , a positive integer ifself > other . If no
__cmp__ method is defined, class instances are compared by object identity (“addre
(Note: the restriction that exceptions are not propagated by__cmp__ has been removed in
Python 1.5)

__hash__(self) Called for the key object for dictionary operations, and by the built-in functi
hash() . Should return a 32-bit integer usable as a hash value for dictionary operations
only required property is that objects which compare equal have the same hash value
advised to somehow mix together (e.g. using exclusive or) the hash values for the co
nents of the object that also play a part in comparison of objects. If no__hash__ method is
defined, class instances are hashed by object identity (‘‘address’’). If a class does not d
a__cmp__ method it should not define a__hash__ method either; if it defines__cmp__
but not__hash__ its instances will not be usable as dictionary keys. If a class defines
table objects and implements a__cmp__ method it should not implement__hash__ since
the dictionary implementation requires that a key’s hash value is immutable (if the obj
hash value changes, it will be in the wrong hash bucket).

__nonzero__(self) Called to implement truth value testing; should return 0 or 1. When t
method is not defined,__len__ is called, if it is defined (see below). If a class defines ne
ther__len__  nor__nonzero__ , all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, a
ment to, or deletion ofx. name) for class instances. For performance reasons, these method
cached in the class object at class definition time; therefore, they cannot be changed after th
definition is executed.

__getattr__(self, name) Called when an attribute lookup has not found the attribute in
usual places (i.e. it is not an instance attribute nor is it found in the class tree forself ). name
is the attribute name. This method should return the (computed) attribute value or rai
AttributeError  exception.

Note that if the attribute is found through the normal mechanism,__getattr__ is not
called. (This is an intentional asymmetry between__getattr__ and__setattr__ .)
This is done both for efficiency reasons and because otherwise__setattr__ would have
no way to access other attributes of the instance. Note that at least for instance variable
can fake total control by not inserting any values in the instance attribute dictionary (bu
stead inserting them in another object).

__setattr__(self, name, value) Called whenever an attribute assignment is attempt
19
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This is called instead of the normal mechanism (i.e. instead of storing the value in the ins
dictionary).name is the attribute name,value  is the value to be assigned to it.

If __setattr__ wants to assign to an instance attribute, it shouldnot simply execute
‘‘ self. name = value ’’ — this would cause a recursive call to itself. Instead, it shou
insert the value in the dictionary of instance attributes, e.g.
‘‘ self.__dict__[name] = value ’’.

__delattr__(self, name) Like __setattr__ but for attribute deletion instead of assign
ment.

3.3.3 Emulating callable objects

__call__(self, [args...]) Called when the instance is “called” as a function; if this met
od is defined,x(arg1, arg2, ...) is a shorthand forx.__call__(arg1, arg2,
...) .

3.3.4 Emulating sequence and mapping types

The following methods can be defined to emulate sequence or mapping objects. The first set of
ods is used either to emulate a sequence or to emulate a mapping; the difference is that for a se
the allowable keys should be the integersk for which 0<= k < N whereN is the length of the se-
quence, and the method__getslice__ (see below) should be defined. It is also recommended t
mappings provide methodskeys , values anditems behaving similar to those for Python’s stan
dard dictionary objects; mutable sequences should provide methodsappend , count , index ,
insert , sort , remove andreverse like Python standard list objects. Finally, sequence typ
should implement addition (meaning concatenation) and multiplication (meaning repetition) b
fining the methods__add__ , __radd__ , __mul__ and__rmul__ described below; they should
not define__coerce__  or other numerical operators.

__len__(self) Called to implement the built-in functionlen() . Should return the length of the
object, an integer>= 0. Also, an object that doesn’t define a__nonzero__ method and
whose__len__  method returns zero is considered to be false in a Boolean context.

__getitem__(self, key) Called to implement evaluation ofself[key] . Note that the spe-
cial interpretation of negative indices (if the class wishes to emulate a sequence type) is
the__getitem__  method.

__setitem__(self, key, value) Called to implement assignment toself[key] . Same
note as for__getitem__ .

__delitem__(self, key) Called to implement deletion ofself[key] . Same note as for
__getitem__ .

3.3.4.1 Additional methods for emulation of sequence types

The following methods can be defined to further emulate sequence objects. For immutable seq
methods, only__getslice__ should be defined; for mutable sequences, all three methods sh
be defined.

__getslice__(self, i, j) Called to implement evaluation ofself[i:j] . The returned
object should be of the same type asself . Note that missingi or j in the slice expression
are replaced by 0 orsys.maxint , respectively, and no further transformations on the ind
ces is performed (the implementation of negative indices is up to the__getslice__ meth-
od.
20
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__setslice__(self, i, j, sequence) Calledtoimplementassignmenttoself[i:j] .
Thesequence argument can have any type. The return value should beNone. Same notes
for i  andj  as for__getslice__ .

__delslice__(self, i, j) Called to implement deletion ofself[i:j] . Same notes fori
andj  as for__getslice__ .

Notice that these methods are only invoked when a single slice with a single colon is used. Fo
operations involvingextended slice notation, __getitem__ , __setitem__ or __delitem__
is called.

3.3.5 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to
tions that are not supported by the particular kind of number implemented (e.g., bitwise operatio
non-integral numbers) should be left undefined.

__add__(self, right)
__sub__(self, right)
__mul__(self, right)
__div__(self, right)
__mod__(self, right)
__divmod__(self, right)
__pow__(self, right)
__lshift__(self, right)
__rshift__(self, right)
__and__(self, right)
__xor__(self, right)
__or__(self, right)

These functions are called to implement the binary arithmetic operations (+, -, *, /, %,
mod(), pow(), <<, >>, &, ^, |). For instance: to evaluate the expression x+y, where x i
instance of a class that has an __add__ method, x.__add__(y) is called.

__radd__(self, left)
__rsub__(self, left)
__rmul__(self, left)
__rdiv__(self, left)
__rmod__(self, left)
__rdivmod__(self, left)
__rpow__(self, left)
__rlshift__(self, left)
__rrshift__(self, left)
__rand__(self, left)
__rxor__(self, left)
__ror__(self, left) These functionsarecalled to implement thebinaryarithmeticoperati

(+, - , * , / , %, divmod() , pow() , <<, >>, &, ^ , | ) with reversed operands. These function
are only called if the left operand does not support the corresponding operation. For ins
to evaluate the expression x+y, where x is an instance of a class that does not ha
__add__  method,y.__radd(x)  is called.

__neg__(self)
__pos__(self)
__abs__(self)
21
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__invert__(self) Called to implement the unary arithmetic operations (- , +, abs() and~).

__int__(self)
__long__(self)
__float__(self) Called to implement the built-in functionsint() , long() andfloat() .

Should return a value of the appropriate type.

__oct__(self)
__hex__(self) Called to implement the built-in functionsoct() andhex() . Should return a

string value.

__coerce__(self, other) Called to implement “mixed-mode” numeric arithmetic. Shou
either return a 2-tuple containingself andother converted to a common numeric type, o
None if no conversion is possible. When the common type would be the type ofother , it
is sufficient to returnNone, since the interpreter will also ask the other object to attemp
coercion (but sometimes, if the implementation of the other type cannot be changed, it is
ful to do the conversion to the other type here).

Coercion rules: to evaluate xop y, the following steps are taken (where__op__ and
__rop__ are the method names corresponding toop, e.g. if op is ‘+’, __add__ and
__radd__ are used). If an exception occurs at any point, the evaluation is abandoned
exception handling takes over.

0. If x is a string object andop is the modulo operator (%), the string formatting operation
(see [Ref:XXX]) is invoked and the remaining steps are skipped.

1. If x is a class instance:

1a. If x has a__coerce__ method: replace x and y with the 2-tuple returned b
x.__coerce__(y) ; skip to step 2 if the coercion returnsNone.

1b. If neither x nor y is a class instance after coercion, go to step 3.

1c. If x has a method__op__ , returnx.__op__(y) ; otherwise, restore x and y to
their value before step 1a.

2. If y is a class instance:

2a. If y has a__coerce__ method: replace y and x with the 2-tuple returned b
y.__coerce__(x) ; skip to step 3 if the coercion returns None.

2b. If neither x nor y is a class instance after coercion, go to step 3.

2b. If y has a method__rop__ , returny.__rop__(x) ; otherwise, restore x and
y to their value before step 2a.

3. We only get here if neither x nor y is a class instance.

3a. If op is ‘+’ and x is a sequence, sequence concatenation is invoked.

3b. If op is ‘* ’ and one operand is a sequence and the other an integer, sequenc
etition is invoked.

3c. Otherwise, both operands must be numbers; they are coerced to a commo
if possible, and the numeric operation is invoked for that type.
22
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CHAPTER 4: EXECUTION MODEL

4.1 Code blocks, execution frames, and name spaces

A code blockis a piece of Python program text that can be executed as a unit, such as a mod
class definition or a function body. Some code blocks (like modules) are normally executed
once, others (like function bodies) may be executed many times. Code blocks may textually c
other code blocks. Code blocks may invoke other code blocks (that may or may not be textuall
tained in them) as part of their execution, e.g. by invoking (calling) a function.

The following are code blocks: A module is a code block. A function body is a code block. A c
definition is a code block. Each command typed interactively is a separate code block; a script
file given as standard input to the interpreter or specified on the interpreter command line the fi
gument) is a code block; a script command (a command specified on the interpreter comman
with the ‘-c’ option) is a code block. The string argument passed to the built-in functioneval and to
the exec statement are code blocks. The file read by the built-in functionexecfile is a code
block. And finally, the expression read and evaluated by the built-in functioninput is a code block.
A code block is executed in an execution frame. Anexecution framecontains some administrative in
formation (used for debugging), determines where and how execution continues after the
block’s execution has completed, and (perhaps most importantly) defines two name spaces, th
and the global name space, that affect execution of the code block.

A name spaceis a mapping from names (identifiers) to objects. A particular name space may be
erenced by more than one execution frame, and from other places as well. Adding a name to a
space is calledbindinga name (to an object); changing the mapping of a name is calledrebinding; re-
moving a name isunbinding. Name spaces are functionally equivalent to dictionaries (and often
plemented as dictionaries).

The local name spaceof an execution frame determines the default place where names are de
and searched. Theglobal name spacedetermines the place where names listed inglobal statements
are defined and searched, and where names that are not bound anywhere in the current code b
searched.

Whether a name is local or global in a code block is determined by static inspection of the sourc
for the code block: in the absence ofglobal statements, a name that is bound anywhere in the c
block is local in the entire code block; all other names are considered global. Theglobal statement
forces global interpretation of specified names throughout the code block. The following cons
bind names: formal parameters to functions,import statements, class and function definition
(these bind the class or function name in the defining block), and targets that are identifiers if o
ring in an assignment,for loop header, or in the second position of anexcept clause header. Local
names are searched only on the local name space; global names are searched only in the glo

built-in namespace.1

A target occurring in adel statement is also considered bound for this purpose (though the actua
mantics are to “unbind” the name).

1. If the code block containsexec statements or the construct ‘‘from ... import * ’’, the semantics
of local names change subtly: local name lookup first searches in the local namespace, then in t
global namespace and in the built-in namespace.
23
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When a global name is not found in the global name space, it is searched in the built-in namespac
built-in namespace associated with the execution of a code block is actually found by looking up the
__builtins__ is its global name space; this should be a dictionary or a module (in the latter case it
tionary is used). Normally, the__builtins__ namespace is the dictionary of the built-in modu
__builtin__ (note: no ‘s’); if it isn’t, restricted execution modeis in effect, see [Ref:XXX]. When a
name is not found at all, aNameError  exception is raised.

The following table lists the local and global name space used for all types of code blocks. The name
for a particular module is automatically created when the module is first imported. Note that in almo
cases, the global name space is the name space of the containing module — scopes in Python do

Notes:

n.s. meansname space

(1) The main module for a script is always called__main__ ; ‘‘the filename don’t enter into it.’’

(2) The global and local name space for these can be overridden with optional extra arguments

(3) The exec statement and theeval() andexecfile() functions have optional arguments t
override the global and local namespace. If only one namespace is specified, it is used for b

The built-in functionsglobals() and locals() returns a dictionary representing the current glob
and local name space, respectively. The effect of modifications to this dictionary on the name space

defined.1

Table 3: Name Spaces for Various Code Blocks

Code block type  Global name space  Local name space  Notes

Module  n.s. for this module  same as global

Script (file or command)  n.s. for__main__  same as global (1)

Interactive command  n.s. for__main__  same as global

Class definition  global n.s. of containing block  new n.s.

Function body  global n.s. of containing block  new n.s.

String passed to
exec  statement

 global n.s. of containing block local n.s. of containing
block

 (2), (3)

String passed toeval()  global n.s. of caller  local n.s. of caller  (2), (3)

File read byexecfile()  global n.s. of caller  local n.s. of caller  (2), (3)

Expression read byinput  global n.s. of caller  local n.s. of caller

1. The current implementations return the dictionary actually used to implement the name space,exceptfor
functions, where the optimizer may cause the local name space to be implemented differently, an
locals()  returns a dictionary that is a shadow copy of the actual local name space.
24
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4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to
dle errors or other exceptional conditions. An exception israisedat the point where the error is de
tected; it may behandledby the surrounding code block or by any code block that directly
indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by
A Python program can also explicitly raise an exception with theraise statement. Exception han-
dlers are specified with thetry...except statement. Thetry ...finally statement specifies
cleanup code which does not handle the exception, but is executed whether an exception occu
not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what
pened and continue execution at an outer level, but it cannot repair the cause of the error and re
failing operation (except by re-entering the the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program,
turns to its interactive main loop. In this case, the interpreter normally prints a stack backtrace

Exceptions are identified by string objects or class instances. Selection of a matchingexcept clause
is based on object identity (i.e. two different string objects with the same value represent differe
ceptions). For string exceptions, the except clause must reference the same string object. For c
ceptions, the except clause must reference the same class or a base class of it.

When an exception is raised, an object (maybeNone) is passed as the exception’s “parameter”
‘‘value’’; this object does not affect the selection of an exception handler, but is passed to the se
exception handler as additional information. For class exceptions, this object must be an insta
the exception class being raised.

See also the description of thetry  andraise  statements in “Compound statements” on page 4
25
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CHAPTER 5: EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Python.

Syntax notes:in this and the following chapters, extended BNF notation will be used to describe
tax, not lexical analysis. When (one alternative of) a syntax rule has the form

name:    othername

and no semantics are given, the semantics of this form ofname are the same as forothername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments a
verted to a common type”, the arguments are coerced using the coercion rules listed at the
chapter 3. If both arguments are standard numeric types, the following coercions are applied:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating p

• otherwise, if either argument is a long integer, the other is converted to long integer;

• otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g. a string left argument to the ‘%’ operator). Ex-
tensions can define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or l
Forms enclosed in reverse quotes or in parentheses, brackets or braces are also categorized
cally as atoms. The syntax for atoms is:

atom:      identifier | literal | enclosure
enclosure: parenth_form|list_display|dict_display|string_conversion

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a reference to a local, global or built-in name binding. If a n
is assigned to anywhere in a code block (even in unreachable code), and is not mentione
global statement in that code block, then it refers to a local name throughout that code block. W
it is not assigned to anywhere in the block, or when it is assigned to but also explicitly listed
global statement, it refers to a global name if one exists, else to a built-in name (and this bin
may dynamically change).

When the name is bound to an object, evaluation of the atom yields that object. When a name
bound, an attempt to evaluate it raises aNameError  exception.

Private name mangling: when an identifier that textually occurs in a class definition begins w
two or more underscore characters and does not end in two or more underscores, it is consid
“private name” of that class. Private names are transformed to a longer form before code is gen
for them. The transformation inserts the class name in front of the name, with leading unders
removed, and a single underscore inserted in front of the class name. For example, the ide
__spam occurring in a class named Ham will be transformed to _Ham__spam. This transforma
27
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independent of the syntactical context in which the identifier is used. If the transformed name
tremely long (longer than 255 characters), implementation defined truncation may happen. If the
name consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal: stringliteral | integer | longinteger | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating p
number, complex number) with the given value. The value may be approximated in the case of
ing point and imaginary (complex) literals.  (See “Literals” on page 6 for details.)

All literals correspond to immutable data types, and hence the object’s identity is less importan
its value. Multiple evaluations of literals with the same value (either the same occurrence in the
gram text or a different occurrence) may obtain the same object or a different object with the
value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form:      "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains a
one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expr
list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the ru
literals apply(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator.
ception is the empty tuple, for which parenthesesarerequired — allowing unparenthesized “nothing
in expressions would cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display:   "[" [expression_list] "]"

A list display yields a new list object. If it has no expression list, the list object has no items. O
wise, the elements of the expression list are evaluated from left to right and inserted in the list
in that order.

5.2.5 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display:   "{" [key_datum_list] "}"
key_datum_list: key_datum ("," key_datum)* [","]
key_datum:      expression ":" expression

A dictionary display yields a new dictionary object
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The key/datum pairs are evaluated from left to right to define the entries of the dictionary: eac
object is used as a key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in “The standard type hierarch
page 12 (to summarize, the key type should be hashable, which excludes all mutable objects).
es between duplicate keys are not detected; the last datum (textually rightmost in the display)
for a given key value prevails.

5.2.6 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion: "‘" expression_list "‘"

A string conversion evaluates the contained expression list and converts the resulting object
string according to rules specific to its type.

If the object is a string, a number,None, or a tuple, list or dictionary containing only objects whos
type is one of these, the resulting string is a valid Python expression which can be passed to th
in functioneval() to yield an expression with the same value (or an approximation, if float
point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to esca
quences that are safe to print.)

It is illegal to attempt to convert recursive objects (e.g. lists or dictionaries that contain a referen
themselves, directly or indirectly.)

The built-in functionrepr() performs exactly the same conversion in its argument as enclosin
in parentheses and reverse quotes does. The built-in functionstr() performs a similar but more
user-friendly conversion.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary:        atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref:   primary "." identifier

The primary must evaluate to an object of a type that supports attribute references. This object
asked to produce the attribute whose name is the identifier. If this attribute is not available, the e
tion AttributeError is raised. Otherwise, the type and value of the object produced is de
mined by the object. Multiple evaluations of the same attribute reference may yield different ob

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) obje

subscription:   primary "[" expression_list "]"
29
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The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one
keys of the mapping, and the subscription selects the value in the mapping that corresponds
key.

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value i
ative, the length of the sequence is added to it (so that, e.g.x[-1] selects the last item ofx .) The re-
sulting value must be a nonnegative integer less than the number of items in the sequence,
subscription selects the item whose index is that value (counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly on
acter.

5.3.3 Slicings

A slicing selects a range of items in a sequence (string, tuple or list) object. Slicings may be us
expressions or as targets in assignment ordel  statements.  The syntax for a slicing:

slicing:          simple_slicing | extended_slicing
simple_slicing:   primary "[" short_slice "]"
extended_slicing: primary "[" slice_list "]"
slice_list:       slice_item ("," slice_item)* [","]
slice_item:       expression | proper_slice | ellipsis
proper_slice:     short_slice | long_slice
short_slice:      [lower_bound] ":" [upper_bound]
long_slice:       short_slice ":" [stride]
lower_bound:      expression
upper_bound:      expression
stride:           expression
ellipsis:         "..."

There’s an ambiguity in the formal syntax here: anything that looks like an expression list also
like a slice list, so any subscription can be interpreted as a slicing. Rather than further complic
the syntax, this is disambiguated by declaring that in this case the interpretation as a subsc
takes priority over the interpretation as a slicing (this is the case if the slice list contains no p
slice nor ellipses). Similarly, when the slice list has exactly one short slice and no trailing comm
interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence
The lower and upper bound expressions, if present, must evaluate to plain integers; defaults a
and the sequence’s length, respectively. If either bound is negative, the sequence’s length is a
it. The slicing now selects all items with indexk such thati <= k < j wherei andj are the specified
lower and upper bounds. This may be an empty sequence. It is not an error ifi or j lie outside the
range of valid indexes (such items don’t exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping
and it is indexed with a key that is constructed from the slice list, as follows. If the slice list cont
at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, th
version of the lone slice item is the key. The conversion of a slice item that is an expression is th
pression. The conversion of an ellipsis slice item is the built-inEllipsis object. The conversion of
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a proper slice is a slice object (see page 17) whosestart , stop andstep attributes are the values
of the expressions given as lower bound, upper bound and stride, respectively, substitutingNone for
missing expressions.

5.3.4 Calls

A call calls a callable object (e.g. a function) with a possibly empty series of arguments:

call:                 primary "(" [argument_list [","]] ")"
argument_list:        positional_arguments ["," keyword_arguments]
                    | keyword_arguments
positional_arguments: expression ("," expression)*
keyword_arguments:    keyword_item ("," keyword_item)*
keyword_item:         identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, metho
built-in objects, class objects, methods of class instances, and certain class instances themse
callable; extensions may define additional callable object types). All argument expressions are
uated before the call is attempted. Please refer to “Function definitions” on page 50 for the syn
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows
a list of unfilled slots is created for the formal parameters. If there are N positional arguments
are placed in the first N slots. Next, for each keyword argument, the identifier is used to determin
corresponding slot (if the identifier is the same as the first formal parameter name, the first s
used, and so on). If the slot is already filled, aTypeError exception is raised. Otherwise, the valu
of the argument is placed in the slot, filling it (even if the expression isNone, it fills the slot). When
all arguments have been processed, the slots that are still unfilled are filled with the correspondi
fault value from the function definition. (Default values are calculated, once, when the function i
fined; thus, a mutable object such as a list or dictionary used as default value will be shared
calls that don’t specify an argument value for the corresponding slot; this should usually be avo
If there are any unfilled slots for which no default value is specified, aTypeError exception is
raised. Otherwise, the list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter slots, aTypeError excep-
tion is raised, unless a formal parameter using the syntax‘‘*identifier ’’ is present; in this case,
that formal parameter receives a tuple containing the excess positional arguments (or an emp
if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, aTypeError exception
is raised, unless a formal parameter using the syntax ‘‘**identifier ’’ is present; in this case, that
formal parameter receives a dictionary containing the excess keyword arguments (using th
words as keys and the argument values as corresponding values), or a (new) empty dictionary
were no excess keyword arguments.

Formal parameters using the syntax ‘‘*identifier ’’ or ‘‘ **identifier ’’ cannot be used as
positional argument slots or as keyword argument names. Formal parameters using the
‘‘ (sublist) ’’ cannot be used as keyword argument names; the outermost sublist correspond
single unnamed argument slot, and the argument value is assigned to the sublist using the usu
assignment rules after all other parameter processing is done.
31
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A call always returns some value, possiblyNone, unless it raises an exception. How this value
computed depends on the type of the callable object.

If it is:

a user-defined function:the code block for the function is executed, passing it the argument list.
first thing the code block will do is bind the formal parameters to the arguments; this is
scribed in section“Function definitions” on page 50. When the code block executes are-
turn  statement, this specifies the return value of the function call.

a built-in function or method: the result is up to the interpreter; see the library reference manua
the descriptions of built-in functions and methods.

a class object:a new instance of that class is returned.

a class instance method:the corresponding user-defined function is called, with an argument list
is one longer than the argument list of the call. The instance becomes the first argume

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than u
operators on its right. The syntax is:

power:         primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evalua
right to left (this does not constrain the evaluation order for the operands).

The power operator has the same semantics as the built-inpow() function: it yields its left argument
raised to the power of its right argument. The numeric arguments are first converted to a com
type. The result type is that of the arguments after coercion; if the result is not expressible in tha
(as in raising an integer to a negative power, or a negative floating point number to a broken po
aTypeError  exception is raised.

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr:         power | "-" u_expr | "+" u_expr | "~" u_expr

The unary"-"  (minus) operator yields the negation of its numeric argument.

The unary"+"  (plus) operator yields its numeric argument unchanged.

The unary"~" (invert) operator yields the bit-wise inversion of its plain or long integer argume
The bit-wise inversion ofx  is defined as-(x+1) . It only applies to integral numbers.

In all three cases, if the argument does not have the proper type, aTypeError  exception is raised.

5.6 Binary arithmetic operations

The remaining binary arithmetic operations have the conventional priority levels. Note that som
these operations also apply to certain non-numeric types. Apart from the power operator, the
only two levels, one for multiplicative operators and one for additive operators:
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m_expr:         u_expr | m_expr "*" u_expr
              | m_expr "/" u_expr | m_expr "%" u_expr
a_expr:         m_expr | aexpr "+" m_expr | aexpr "-" m_expr

The "* " (multiplication) operator yields the product of its arguments. The arguments must either
be numbers, or one argument must be a plain integer and the other must be a sequence. In the
case, the numbers are converted to a common type and then multiplied together. In the latter c
quence repetition is performed; a negative repetition factor yields an empty sequence.

The "/ " (division) operator yields the quotient of its arguments. The numeric arguments are first
verted to a common type. Plain or long integer division yields an integer of the same type; the
is that of mathematical division with the ‘floor’ function applied to the result. Division by zero rai
theZeroDivisionError  exception

The "%" (modulo) operator yields the remainder from the division of the first argument by the sec
The numeric arguments are first converted to a common type. A zero right argument raise
ZeroDivisionError exception. The arguments may be floating point numbers, e.g.3.14%0.7
equals0.34 (since3.14 equals4*0.7+0.34 ). The modulo operator always yields a result wit
the same sign as its second operand (or zero); the absolute value of the result is strictly small
the second operand.

The integer division and modulo operators are connected by the following identity:x == (x/y)*y
+ (x%y) . Integer division and modulo are also connected with the built-in functiondivmod() :
divmod(x, y) == (x/y, x%y) . These identities don’t hold for floating point and comple
numbers; there a similar identity holds wherex/y  is replaced byfloor(x/y) ) or
floor((x/y).real) , respectively.

The"+" (addition) operator yields the sum of its arguments. The arguments must either both be
bers, or both sequences of the same type. In the former case, the numbers are converted to a c
type and then added together. In the latter case, the sequences are concatenated.

The "-" (subtraction) operator yields the difference of its arguments. The numeric argumen
first converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr:     a_expr | shift_expr ( "<<" | ">>" ) a_expr

These operators accept plain or long integers as arguments. The arguments are converted to
mon type. They shift the first argument to the left or right by the number of bits given by the se
argument.

A right shift by n bits is defined as division bypow(2, n). A left shift byn bits is defined as multi-
plication withpow(2, n); for plain integers there is no overflow check so this drops bits and flips
sign if the result is not less thanpow(2,31) in absolute value. Negative shift counts raise aVal-
ueError  exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:
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and_expr:       shift_expr | and_expr "&" shift_expr
xor_expr:       and_expr | xor_expr "^" and_expr
or_expr:       xor_expr | or_expr "|" xor_expr

The "&" operator yields the bit-wise AND of its arguments, which must be plain or long integ
The arguments are converted to a common type.

The "^" operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plai
long integers. The arguments are converted to a common type.

The"|" operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long
tegers. The arguments are converted to a common type.

5.9 Comparisons

Contrary to C, all comparison operations in Python have the same priority, which is lower than
of any arithmetic, shifting or bitwise operation. Also contrary to C, expressions likea < b < c
have the interpretation that is conventional in mathematics:

comparison:     or_expr (comp_operator or_expr)*
comp_operator: "<"|">"|"=="|">="|"<="|"<>"|"!="|"is" ["not"]|["not"] "in"

Comparisons yield integer values: 1 for true, 0 for false.

Comparisons can be chained arbitrarily, e.g.x < y <= z is equivalent tox < y and y <= z,
except thaty is evaluated only once (but in both casesz is not evaluated at all whenx < y is found
to be false).

Formally, ifa, b, c, ...,y, zare expressions andopa, opb, ...,opyare comparison operators, thena opa
b opb c... y opy zis equivalent toa opa band b opb cand ... y opy z, except that each expressio
is evaluated at most once.

Note thata opa b opb cdoesn’t imply any kind of comparison betweena andc, so that e.g.x < y
> z  is perfectly legal (though perhaps not pretty).

The forms<> and!= are equivalent; for consistency with C,!= is preferred; where!= is mentioned
below<> is also implied.

The operators"<", ">", "==", ">=", "<=" , and"!=" compare the values of two objects
The objects needn’t have the same type. If both are numbers, they are converted to a commo
Otherwise, objects of different typesalwayscompare unequal, and are ordered consistently but a
trarily. (This unusual definition of comparison is done to simplify the definition of operations l
sorting and thein  andnot in  operators.)

Comparison of objects of the same type depends on the type:

• Numbers are compared arithmetically.

• Strings are compared lexicographically using the numeric equivalents (the result of the bu
functionord ) of their characters.

• Tuples and lists are compared lexicographically using comparison of corresponding items.

• Mappings (dictionaries) are compared through lexicographic comparison of their sorted (key
34
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• Most other types compare unequal unless they are the same object; the choice whether one
is considered smaller or larger than another one is made arbitrarily but consistently within on
ecution of a program.

The operatorsin andnot in test for sequence membership: ify is a sequence,x in y is true if and
only if there exists an indexi such thatx = y[i]. x not iny yields the inverse truth value. The exceptio
TypeError is raised wheny is not a sequence, or wheny is a string andx is not a string of length

one.2

The operatorsis andis not test for object identity:x is y is true if and only ifx andy are the same
object.x is not y yields the inverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression:      or_test | lambda_form
or_test:        and_test | or_test "or" and_test
and_test:       not_test | and_test "and" not_test
not_test:       comparison | "not" not_test
lambda_form:"lambda" [parameter_list]: expression

In the context of Boolean operations, and also when expressions are used by control flow state
the following values are interpreted as false:None, numeric zero of all types, empty sequence
(strings, tuples and lists), and empty mappings (dictionaries). All other values are interpreted as

The operatornot  yields 1 if its argument is false, 0 otherwise.

The expressionx and y first evaluatesx; if x is false, its value is returned; otherwise,y is evaluated
and the resulting value is returned.

The expressionx or y first evaluatesx; if x is true, its value is returned; otherwise,y is evaluated and
the resulting value is returned.

(Note that neitherand nor or restrict the value and type they return to 0 and 1, but rather return
last evaluated argument. This is sometimes useful, e.g. ifs is a string that should be replaced by a d
fault value if it is empty, the expressions or ’foo’ yields the desired value. Becausenot has to
invent a value anyway, it does not bother to return a value of the same type as its argument,
not ’foo’  yields0, not ’’ .)

Lambda forms (lambda expressions) have the same syntactic position as expressions. The
shorthand to create anonymous functions; the expressionlambda arguments: expression yields a
function object that behaves virtually identical to one defined with

1. This is expensive since it requires sorting the keys first, but about the only sensible defin
tion. An earlier version of Python compared dictionaries by identity only, but this caused
surprises because people expected to be able to test a dictionary for emptiness by compar
it to {} .

2. The latter restriction is sometimes a nuisance.
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def name (arguments):
    return expression

See “Function definitions” on page 50 for the syntax of parameter lists. Note that functions cr
with lambda forms cannot contain statements.

5.11 Expression lists

expression_list:      expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the nu
of expressions in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.k.a. asingle); it is optional in all other
cases. A single expression without a trailing comma doesn’t create a tuple, but rather yields the
of that expression. (To create an empty tuple, use an empty pair of parentheses:() .)
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5.12 Summary

The following table summarizes the operator precedences in Python, from lowest precedence
binding) to highest precedence (most binding). Operators in the same box have the same prec
Unless the syntax is explicitly given, operators are binary. Operators in the same box group
right (except for comparisons, which chain from left to right — see above).

Table 4: Operator Precedence

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in
is, is not

<, <=, >, >=, <>, !=, =

Membership tests
Identity tests
Comparisons

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

*, /, % Multiplication, division, remainder

+x, -x
~x

Positive, negative
Bitwise not

x.attribute
x[index]

x[index:index]
f(arguments, ...)

Attribute reference
Subscription

Slicing
Function call

(expressions . . .)
[expressions . . .]
{ key:datum, . . .}

`expressioǹ

Binding or tuple display
List display

Dictionary display
String conversion
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CHAPTER 6: SIMPLE STATEMENTS

Simple statements are comprised within a single logical line. Several simple statements may oc
a single line separated by semicolons. The syntax for simple statements is:

simple_stmt:    expression_stmt
              | assert_stmt
              | assignment_stmt
              | pass_stmt
              | del_stmt
              | print_stmt
              | return_stmt
              | raise_stmt
              | break_stmt
              | continue_stmt
              | import_stmt
              | global_stmt
              | exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usua
call a procedure (a function that returns no meaningful result; in Python, procedures return the
None). Other uses of expression statements are allowed and occasionally useful. The syntax
expression statement is:

expression_stmt: expression_list

An expression statement evaluates the expression list (which may be a single expression). In i
tive mode, if the value is notNone, it is converted to a string using the built-inrepr() function and
the resulting string is written to standard output (see “The print statement” on page 42) on a li
itself. (Expression statements yieldingNone are not written, so that procedure calls do not cause a
output.)

6.2 Assert statements

Assert statements are a convenient way to insertdebugging assertions into a program:

assert_statement: "assert" expression ["," expression]

The simple form, “assert expression ”, is equivalent to

if __debug__:
   if not expression : raise AssertionError

The extended form, “assert expression1, expression2 ”, is equivalent to

if __debug__:
   if not expression1 : raise AssertionError, expression2

These equivalences assume that__debug__ andAssertionError refer to the built-in variables
with those names. In the current implementation, the built-in variable__debug__ is 1 under normal
circumstances, 0 when optimization is requested (command line option-O). The current code gener-
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ator emits no code for anassert statement when optimization is requested at compile time. Note th
is unnecessary to include the source code for the expression that failed in the error message; it will
played as part of the stack trace.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of m
objects:

assignment_stmt: (target_list "=")+ expression_list
target_list:     target ("," target)* [","]
target:          identifier | "(" target_list ")" | "[" target_list "]"
               | attributeref | subscription | slicing

(See “Primaries” on page 29 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single expres
comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of th
lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of
table object (an attribute reference, subscription or slicing), the mutable object must ultimately perfor
assignment and decide about its validity, and may raise an exception if the assignment is unaccepta
rules observed by various types and the exceptions raised are given with the definition of the objec
(See “The standard type hierarchy” on page 12.)

Assignment of an object to a target list is recursively defined as follows.

• If the target list is a single target: the object is assigned to that target.

• If the target list is a comma-separated list of targets: the object must be a sequence with the same
of items as there are targets in the target list, and the items are assigned, from left to right, to the
sponding targets. (This rule has been relaxed since Python 1.5; in earlier versions, the object had
tuple. Since strings are sequences, an assignment like “a, b = "xy" ” is now legal.)

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

• If the name does not occur in aglobal statement in the current code block: the name is bou
to the object in the current local name space.

• Otherwise: the name is bound to the object in the current global name space.

The name is rebound if it was already bound. This can cause the reference count for the object pre
bound to the name to reach zero, causing the object to be deallocated and its

• If the target is a target list enclosed in parentheses or square brackets: the object must be a seque
the same number of items there are targets in the target list, and its items are assigned, from left t
to the corresponding targets.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It shoul
an object with assignable attributes; if this is not the case,TypeError is raised. That object is then
asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it ra
exception (usually but not necessarilyAttributeError ).
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• If the target is a subscription: The primary expression in the reference is evaluated. It should
either a mutable sequence object (e.g. a list) or a mapping object (e.g. a dictionary). Next, th
script expression is evaluated.

If the primary is a mutable sequence object (e.g. a list), the subscript must yield a plain integ
it is negative, the sequence’s length is added to it. The resulting value must be a nonnegativ
ger less than the sequence’s length, and the sequence is asked to assign the assigned ob
item with that index. If the index is out of range,IndexError is raised (assignment to a sub
scripted sequence cannot add new items to a list).

If the primary is a mapping object (e.g. a dictionary), the subscript must have a type comp
with the mapping’s key type, and the mapping is then asked to create a key/datum pair which
the subscript to the assigned object. This can either replace an existing key/value pair wi
same key value, or insert a new key/value pair (if no key with the same value existed).

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a
table sequence object (e.g. a list). The assigned object should be a sequence object of th
type. Next, the lower and upper bound expressions are evaluated, insofar they are present; d
are zero and the sequence’s length. The bounds should evaluate to (small) integers. If either
is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie be
zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace t
with the items of the assigned sequence. The length of the slice may be different from the l
of the assigned sequence, thus changing the length of the target sequence, if the object al

(In the current implementation, the syntax for targets is taken to be the same as for expressio
invalid syntax is rejected during the code generation phase, causing less detailed error mess

Warning: Although the definition of assignment implies that overlaps between the left-hand side
the right-hand side are ‘safe’ (e.g. ‘‘a, b = b, a ’’ swaps two variables), overlapswithin the collec-
tion of assigned-to variables are not safe! For instance, the following program prints ‘‘[0, 2] ’’:

x = [0, 1]
i = 0
i, x[i] = 1, 2
print x

6.4 The pass  statement

pass_stmt:      "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder
a statement is required syntactically, but no code needs to be executed, for example:

def f(arg): pass    # a function that does nothing (yet)
class C: pass       # a class with no methods (yet)

6.5 The del  statement

del_stmt:       "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spell
out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.
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Deletion of a name removes the binding of that name (which must exist) from the local or global n
space, depending on whether the name occurs in aglobal  statement in the same code block.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; d
of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is
mined by the sliced object).

6.6 The print  statement

print_stmt:     "print" [ expression ("," expression)* [","] ]

print evaluates each expression in turn and writes the resulting object to standard output (see be
an object is not a string, it is first converted to a string using the rules for string conversions. The (res
or original) string is then written. A space is written before each object is (converted and) written, unle
output system believes it is positioned at the beginning of a line. This is the case: (1) when no cha
have yet been written to standard output; or (2) when the last character written to standard output is\n ; or
(3) when the last write operation on standard output was not aprint statement. (In some cases it may b
functional to write an empty string to standard output for this reason.)

A "\n" character is written at the end, unless theprint statement ends with a comma. This is the on
action if the statement contains just the keywordprint . Standard output is defined as the object nam
stdout in the built-in modulesys . If no such object exists, or if it does not have awrite() method,
an exception is raised.

6.7 The return  statement

return_stmt:    "return" [expression_list]

return  may only occur syntactically nested in a function definition, not within a nested class defin

If an expression list is present, it is evaluated, elseNone is substituted.

return  leaves the current function call with the expression list (orNone) as return value.

Whenreturn passes control out of atry statement with afinally clause, that finally clause is exe
cuted before really leaving the function.

6.8 The raise  statement

raise_stmt:     "raise" expression ["," expression ["," expression]]

raise evaluates its first expression, which must yield a string, class, or instance object. If there is a s
expression, this is evaluated, elseNone is substituted. If the first expression is a class object, then the s
ond expression must be an instance of that class or one of its derivatives. If the first expression is an in
object, the second expression must beNone.

If the first object is a class or string, it then raises the exception identified by the first object, with the se
one (orNone) as its parameter. If the first object is an instance, it raises the exception identified by the
of the object, with the instance as its parameter (and there should be no second object, or the secon
should beNone).
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If a third object is present, and it is notNone, it should be a traceback object (see page 17 traceb
objects), and it is substituted instead of the current location as the place where the exception oc
This is useful to re-raise an exception transparently in an except clause.

6.9 The break  statement

break_stmt:     "break"

break may only occur syntactically nested in afor or while loop, but not nested in a function o
class definition within that loop.

It terminates the nearest enclosing loop, skipping the optionalelse  clause if the loop has one.

If a for  loop is terminated bybreak , the loop control target keeps its current value.

Whenbreak passes control out of atry statement with afinally clause, that finally clause is ex-
ecuted before really leaving the loop.

6.10 The continue  statement

continue_stmt:  "continue"

continue may only occur syntactically nested in afor or while loop, but not nested in a function

or class definition ortry statement within that loop.1 It continues with the next cycle of the neares
enclosing loop.

6.11 The import  statement

import_stmt:    "import" module ("," module)*
              | "from" module "import" identifier ("," identifier)*
              | "from" module "import" "*"
module:         (identifier ".")* identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) d
a name or names in the local name space (of the scope where theimport statement occurs). The first
form (withoutfrom ) repeats these steps for each identifier in the list. The form withfrom performs
step (1) once, and then performs step (2) repeatedly.

The system maintains a table of modules that have been initialized, indexed by module name
current implementation makes this table accessible assys.modules .) When a module name is
found in this table, step (1) is finished. If not, a search for a module definition is started. When a
ule is found, it is loaded. Details of the module searching and loading process are implementati
platform specific. It generally involves searching for a “built-in” module with the given name
then searching a list of locations given assys.path .

When step (1) finishes without raising an exception, step (2) can begin.

1. Except that it may currently occur within anexcept  clause.
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The first form ofimport statement binds the module name in the local name space to the module o
and then goes on to import the next identifier, if any. Thefrom form does not bind the module name:
goes through the list of identifiers, looks each one of them up in the module found in step (1), and bin
name in the local name space to the object thus found. If a name is not found,ImportError is raised. If
the list of identifiers is replaced by a star (* ), all names defined in the module are bound, except those
ginning with an underscore(_).

Names bound by import statements should not occur inglobal  statements in the same scope.

Thefrom  form with *  should only occur in a module scope.

(The current implementation does not enforce the latter two restrictions, but programs should not abu
freedom, as future implementations may enforce them or silently change the meaning of the progra

Hierarchical module names:when the module names contains aone or more dots, the module search
is carried out differently. The sequence of identifiers up to the last dot is used to find a “package”; the
identifier is then searched inside the package. [XXX Can’t be bothered to spell this out right now; se
URL http://grail.cnri.reston.va.us/python/essays/packages.hmtl for more details, also about how the
ule search works from inside a package.]

6.12 The global  statement

global_stmt:    "global" identifier ("," identifier)*

Theglobal statement is a declaration which holds for the entire current code block. It means that th
ed identifiers are to be interpreted as globals. Whileusingglobal names is automatic if they are not define
in the local scope,assigning to global names would be impossible withoutglobal .

Names listed in aglobal statement must not be used in the same code block before thatglobal state-
ment is executed.

Names listed in aglobal statement must not be defined as formal parameters or in afor loop control tar-
get,class definition, function definition, orimport  statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abu
freedom, as future implementations may enforce them or silently change the meaning of the progra

Programmer’s note: theglobal is a directive to the parser. It applies only to code parsed at the s
time as theglobal statement. In particular, aglobal statement contained in anexec statement does
not affect the code blockcontainingtheexec statement, and code contained in anexec statement is un-
affected byglobal statements in the code containing theexec statement. The same applies to th
eval() , execfile()  andcompile()  functions.

6.13 The exec  statement

exec_stmt:    "exec" expression ["in" expression ["," expression]]
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This statement supports dynamic execution of Python code. The first expression should eval
either a string, an open file object, or a code object. If it is a string, the string is parsed as a su
Python statements which is then executed (unless a syntax error occurs). If it is an open file, t
is parsed until EOF and executed. If it is a code object, it is simply executed.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only th
expression afterin is specified, it should be a dictionary, which will be used for both the global a
the local variables. If two expressions are given, both must be dictionaries and they are used
global and local variables, respectively.

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in funct
eval() . The built-in functionsglobals() and locals() return the current global and loca
dictionary, respectively, which may be useful to pass around for use byexec . When assigning to a
global variable, aglobal statement for that variable should be present in the source code s
passed to theexec  statement.
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CHAPTER 7: COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execu
those other statements in some way. In general, compound statements span multiple lines, a
in simple incarnations a whole compound statement may be contained in one line.

Theif , while andfor statements implement traditional control flow constructs.try specifies ex-
ception handlers and/or cleanup code for a group of statements. Function and class definitions a
syntactically compound statements.

Compound statements consist of one or more ‘clauses’. A clause consists of a header and a
The clause headers of a particular compound statement are all at the same indentation leve
clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a g
of statements controlled by a clause. A suite can be one or more semicolon-separated simpl
ments on the same line as the header, following the header’s colon, or it can be one or more in
statements on subsequent lines. Only the latter form of suite can contain nested compound stat
the following is illegal, mostly because it wouldn’t be clear to whichif clause a followingelse
clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following
ample, either all or none of theprint  statements are executed:

if x < y < z: print x; print y; print z

Summarizing:

compound_stmt:  if_stmt | while_stmt | for_stmt
              | try_stmt | funcdef | classdef
suite:          stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement:      stmt_list NEWLINE | compound_stmt
stmt_list:      simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in aNEWLINEpossibly followed by aDEDENT. Also note that op-
tional continuation clauses always begin with a keyword that cannot start a statement, thus th
no ambiguities (the ‘danglingelse ’ problem is solved in Python by requiring nestedif statements
to be indented).

The formatting of the grammar rules in the following sections places each clause on a separa
for clarity.

7.1 The if  statement

The if  statement is used for conditional execution:

if_stmt:        "if" expression ":" suite
               ("elif" expression ":" suite)*
               ["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found
true (see section “Boolean operations” on page 35 for the definition of true and false); then tha
is executed (and no other part of theif statement is executed or evaluated). If all expressions
false, the suite of theelse  clause, if present, is executed.
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7.2 The while  statement

Thewhile  statement is used for repeated execution as long as an expression is true:

while_stmt:     "while" expression ":" suite
               ["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false
may be the first time it is tested) the suite of theelse clause, if present, is executed and the loop terminat

A break statement executed in the first suite terminates the loop without executing theelse clause’s
suite. Acontinue statement executed in the first suite skips the rest of the suite and goes back to t
the expression.

7.3 The for  statement

Thefor  statement is used to iterate over the elements of a sequence (string, tuple or list):

for_stmt:       "for" target_list "in" expression_list ":" suite
               ["else" ":" suite]

The expression list is evaluated once; it should yield a sequence. The suite is then executed once
item in the sequence, in the order of ascending indices. Each item in turn is assigned to the target lis
the standard rules for assignments, and then the suite is executed. When the items are exhausted
immediately when the sequence is empty), the suite in theelse clause, if present, is executed, and the loo
terminates.

A break statement executed in the first suite terminates the loop without executing theelse clause’s
suite. Acontinue statement executed in the first suite skips the rest of the suite and continues wit
next item, or with theelse clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have
assigned to at all by the loop. Hint: the built-in functionrange() returns a sequence of integers suitab
to emulate the effect of Pascal’sfor i := a to b do ; e.g.range(3) returns the list[0, 1, 2] .

Warning: There is a subtlety when the sequence is being modified by the loop (this can only occur fo
table sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and
incremented on each iteration. When this counter has reached the length of the sequence the loo
nates. This means that if the suite deletes the current (or a previous) item from the sequence, the n
will be skipped (since it gets the index of the current item which has already been treated). Likewise
suite inserts an item in the sequence before the current item, the current item will be treated again t
time through the loop. This can lead to nasty bugs that can be avoided by making a temporary copy
slice of the whole sequence, e.g.

for x in a[:]:
    if x < 0: a.remove(x)
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7.4 The try  statement

Thetry  statement specifies exception handlers and/or cleanup code for a group of statemen

try_stmt:       try_exc_stmt | try_fin_stmt
try_exc_stmt:   "try" ":" suite
               ("except" [expression ["," target]] ":" suite)+
               ["else" ":" suite]
try_fin_stmt:   "try" ":" suite
               "finally" ":" suite

There are two forms oftry statement:try...except andtry...finally . These forms can-
not be mixed (but they can be nested in each other).

The try...except form specifies one or more exception handlers (theexcept clauses). When
no exception occurs in thetry clause, no exception handler is executed. When an exception oc
in thetry suite, a search for an exception handler is started. This inspects the except clauses
until one is found that matches the exception. An expression-less except clause, if present, m
last; it matches any exception. For an except clause with an expression, that expression is eva
and the clause matches the exception if the resulting object is “compatible” with the exceptio
object is compatible with an exception if it is either the object that identifies the exception, or (fo
ceptions that are classes) it is a base class of the exception, or it is a tuple containing an item
compatible with the exception. Note that the object identities must match, i.e. it must be the sam
ject, not just an object with the same value.

If no except clause matches the exception, the search for an exception handler continues in t
rounding code and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the o
search for a handler is cancelled and a search starts for the new exception in the surrounding c
on the call stack (it is treated as if the entiretry  statement raised the exception).

When a matching except clause is found, the exception’s parameter is assigned to the target sp
in that except clause, if present, and the except clause’s suite is executed. When the end of th
is reached, execution continues normally after the entire try statement. (This means that if two
handlers exist for the same exception, and the exception occurs in the try clause of the inner h
the outer handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three v
in the sys module: sys.exc_type receives the object identifying the exception
sys.exc_value receives the exception’s parameter;sys.exc_traceback receives a trace-
back object (see page 17) identifying the point in the program where the exception occurred.
details are also available through thesys.exc_info() function, which returns a tuple
(exc_type, exc_value, exc_traceback) . Use of the corresponding variables is depr
cated in favor of this function, since their use is unsafe in a threaded program. (As of Python 1.
variables are restored to their old values when returning from a function that handled an exce

The optionalelse clause is executed when no exception occurs in thetry clause. Exceptions in the
else  clause are not handled by the precedingexcept  clauses.
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The try...finally form specifies a ‘cleanup’ handler. Thetry clause is executed. When no excep
tion occurs, thefinally clause is executed. When an exception occurs in thetry clause, the exception
is temporarily saved, thefinally clause is executed, and then the saved exception is re-raised. I
finally clause raises another exception or executes areturn , break or continue statement, the
saved exception is lost. The exception information is not available to the program during execution
finally  clause.

When areturn or break statement is executed in thetry suite of atry...finally statement, the
finally clause is also executed ‘on the way out’. Acontinue statement is illegal in thetry clause.
(The reason is a problem with the current implementation — this restriction may be lifted in the futu

7.5 Function definitions

A function definition defines a user-defined function object (see “The standard type hierarchy” on pag

funcdef:        "def" funcname "(" [parameter_list] ")" ":" suite
parameter_list: (defparameter ",")* ("*" identifier [, "**" identifier]
                                    | "**" identifier
                                    | defparameter [","])
defparameter:   parameter ["=" expression]
sublist:        parameter ("," parameter)* [","]
parameter:      identifier | "(" sublist ")"
funcname:       identifier

A function definition is an executable statement. Its execution binds the function name in the curren
name space to a function object (a wrapper around the executable code for the function). This funct
ject contains a reference to the current global name space as the global name space to be used w
function is called.

The function definition does not execute the function body; this gets executed only when the funct
called.

When one or more top-level parameters have the formparameter = expression, the function is said to have
“default parameter values”.Default parameter values are evaluated when the function definition is ex-
ecuted. For a parameter with a default value, the correponding argument may be omitted from a c
which case the parameter’s default value is substituted. If a parameter has a default value, all follow
rameters must also have a default value — this is a syntactic restriction that is not expressed by the

mar.1

Function call semantics are described in more detail in section “Calls” on page 31. A function call a
assigns values to all parameters mentioned in the parameter list, either from position arguments, fro
word arguments, or from default values. If the form"*identifier" is present, it is initialized to a tuple
receiving any excess positional parameters, defaulting to the empty tuple. If the form"**identifier" is
present, it is initialized to a new dictionary receiving anyt excess keyword arguments, defaulting to
empty dictionary.

1. Currently this is not checked; instead,def f(a=1,b) is interpreted as def
f(a=1,b=None) .
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It is also possible to create anonymous functions (functions not initially bound to a name), for im
diate use in expressions. This uses lambda forms, described in section “Boolean operatio
page 35. Note that the lambda form is merely a shorthand for a simplified function definition; a f
tion defined in a"def" statement can be passed around or assigned to another name just like a
tion defined by a lambda form. The"def" form is actually more powerful since it allows the
execution of multiple statements.

Programmer’s note: A "def" form executed inside a function definition defines a local functio
that can be returned or passed around. Because of Python’s two-scope philosophy, a local fu
defined in this way doesnot have access to the local variables of the function that contains its de
tion; the same rule applies to functions defined by a lambda form. A standard trick to pass se
local variables into a locally defined function is to use default argument values, like this:

# Return a function that returns its argument incremented by ’n’
def make_incrementer(n):
    def increment(x, n=n):
        return x+n
    return increment

add1 = make_incrementer(1)
print add1(3)  # This prints ’4’

7.6 Class definitions

A class definition defines a class object (see section “The standard type hierarchy” on page 1

classdef:       "class" classname [inheritance] ":" suite
inheritance:    "(" [expression_list] ")"
classname:      identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present.
item in the inheritance list should evaluate to a class object. The class’s suite is then executed in
execution frame (see section “Code blocks, execution frames, and name spaces” on page 23),
newly created local name space and the original global name space. (Usually, the suite contai
function definitions.) When the class’s suite finishes execution, its execution frame is discarde
its local name space is saved. A class object is then created using the inheritance list for th
classes and the saved local name space for the attribute dictionary. The class name is bound
class object in the original local name space.

Programmer’s note: variables defined in the class definition are class variables; they are share
all instances. To define instance variables, they must be given a value in the the__init__ method
or in another method. Both class and instance variables are accessible through the no
“self.name ”, and an instance variable hides a class variable with the same name when acces
this way. Class variables with immutable values can be used as defaults for instance variable
51
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CHAPTER 8: TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it as
dard input or as program argument, typed in interactively, from a module source file, etc. This ch
gives the syntax used in these cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is
to have a notion of a complete Python program. A complete Python program is executed in a
mally initialized environment: all built-in and standard modules are available, but none have bee
tialized, except forsys (various system services),__builtin__ (built-in functions, exceptions
andNone) and__main__ . The latter is used to provide the local and global name space for ex
tion of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and exe
complete program but reads and executes one statement (possibly compound) at a time. Th
environment is identical to that of a complete program; each statement is executed in the name
of __main__ .

Under UNIX , a complete program can be passed to the interpreter in three forms: with the-c string
command line option, as a file passed as the first command line argument, or as standard inpu
file or standard input is a tty device, the interpreter enters interactive mode; otherwise, it execut
file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:

file_input:     (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to theexec  statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input: [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode
is needed to help the parser detect the end of the input.
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8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argument toeval()
must have the following form:

eval_input:     expression_list NEWLINE*

The input line read byinput()  must have the following form:

input_input:    expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in functionraw_input() or
thereadline()  method of file objects.
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