

NFSv4 D. Noveck, Ed.
Internet-Draft EMC
Intended status: Informational P. Shivam
Expires: July 19, 2012 C. Lever
 B. Baker
 ORACLE
 January 16, 2012

NFSv4.0 migration: Implementation experience and spec issues to resolve
 draft-dnoveck-nfsv4-migration-issues-02

Abstract

 The migration feature of NFSv4 provides for moving responsibility for
 a single filesystem from one server to another, without disruption to
 clients. Recent implementation experience has shown problems in the
 existing specification for this feature. This document discusses the
 issues which have arisen and explores the options available for
 curing the issues via clarification and correction of the NFSv4.0
 specification.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 19, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Noveck, et al. Expires July 19, 2012 [Page 1]

Internet-Draft nfsv4-migr-isssues January 2012

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Noveck, et al. Expires July 19, 2012 [Page 2]

Internet-Draft nfsv4-migr-isssues January 2012

Table of Contents

 1. Introduction . 5
 2. Conventions . 5
 3. Implementation Experience 6
 3.1. Implementation issues 6
 3.1.1. Failure to free migrated state on client reboot . . . 6
 3.1.2. Server reboots resulting in a confused lease
 situation . 7
 3.1.3. Client complexity issues 8
 3.2. Sources of Protocol difficulties 9
 3.2.1. Issues with nfs_client_id4 generation and use 9
 3.2.2. Issues with lease proliferation 11
 4. Issues to be resolved . 12
 4.1. Possible changes to nfs_client_id4 client-string 12
 4.2. Possible changes to handle differing nfs_client_id4
 string values . 13
 4.3. Other issues within migration-state sections 13
 4.4. Issues within other sections 14
 5. Proposed resolution of protocol difficulties 14
 5.1. Proposed changes: nfs_client_id4 client-string 14
 5.2. Client-string Models (AS PROPOSED) 15
 5.2.1. Non-Uniform Client-string Model 16
 5.2.2. Uniform Client-string Model 17
 5.3. Proposed changes: merged (vs. synchronized) leases 21
 5.4. Other proposed changes to migration-state sections 22
 5.4.1. Proposed changes: Client ID migration 22
 5.4.2. Proposed changes: Callback re-establishment 23
 5.4.3. Proposed changes: NFS4ERR_LEASE_MOVED rework 23
 5.5. Proposed changes to other sections 24
 5.5.1. Proposed changes: callback update 24
 5.5.2. Proposed changes: clientid4 handling 24
 5.6. Migration, Replication and State (AS PROPOSED) 26
 5.6.1. Migration and State 26
 5.6.2. Replication and State 28
 5.6.3. Notification of Migrated Lease 29
 5.6.4. Migration and the Lease_time Attribute 31
 6. Results of proposed changes 32
 6.1. Results: Failure to free migrated state on client
 reboot . 32
 6.2. Results: Server reboots resulting in confused lease
 situation . 33
 6.3. Results: Client complexity issues 34
 6.4. Result summary . 35
 7. Security Considerations 35
 8. IANA Considerations . 35
 9. Acknowledgements . 35
 10. References . 36

Noveck, et al. Expires July 19, 2012 [Page 3]

Internet-Draft nfsv4-migr-isssues January 2012

 10.1. Normative References 36
 10.2. Informative References 36
 Authors’ Addresses . 36

Noveck, et al. Expires July 19, 2012 [Page 4]

Internet-Draft nfsv4-migr-isssues January 2012

1. Introduction

 This document is in the informational category, and while the facts
 it reports may have normative implications, any such normative
 significance reflects the readers’ preferences. For example, we may
 report that the reboot of a client with migrated state results in
 state not being promptly cleared and that this will prevent granting
 of conflicting lock requests at least for the lease time, which is a
 fact. While it is to be expected that client and server implementers
 will judge this to be a situation that is best avoided, the judgment
 as to how pressing this issue should be considered is a judgment for
 the reader, and eventually the nfsv4 working group to make.

 We do explore possible ways in which such issues can be avoided, with
 minimal negative effects, in the expectation that the working group
 will choose to address these issues, but the choice of exactly how to
 address this is best given effect in a working group document.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In the context of this informational document, these normative
 keywords will always occur in the context of a quotation, most often
 direct but sometimes indirect. The context will make it clear
 whether the quotation is from:

 o The current definitive definition of the NFSv4.0 protocol, whether
 that is the original NFSv4.0 specification [RFC3530], the current
 pending draft of RFC3530bis expected to become the definitive
 definition of NFSv4.0 once certain procedural steps are taken
 [cur-v4.0-bis], or an eventual RFC3530bis RFC, taking over the
 role of definitive definition of NFSv4.0 from RFC3530.

 As the identity of that document may change during the lifetime of
 this document, we will often refer to the current or pending
 definition of NFSv4.0 and quote from portions of the documents
 that are identical among all existing drafts. Given that RFC3530
 and all RFC3530bis drafts agree as to the issues under discussion,
 this should not cause undue difficulty. Note that to simplify
 document maintenance, section names rather than section numbers
 are used when referring to sections in existing documents so that
 only minimal changes will be necessary as the identity of the
 document defining NFSv4.0 changes.

Noveck, et al. Expires July 19, 2012 [Page 5]

Internet-Draft nfsv4-migr-isssues January 2012

 o A proposed or possible text to serve as a replacement for the
 current definitive document text. Sometimes, a number of possible
 alternative texts may be listed and benefits and detriments of
 each examined in turn.

3. Implementation Experience

3.1. Implementation issues

 Note that the examples below reflect current experience which arises
 from clients implementing the recommendation to use different
 nfs_client_id4 id strings for different server addresses, i.e. using
 what is later referred to herein as the "non-uniform client-string
 model"

 This is simply because that is the experience implementers have had.
 The reader should not assume that in all cases, this practice is the
 source of the difficulty. It may be so in some cases but clearly it
 is not in all cases.

3.1.1. Failure to free migrated state on client reboot

 The following sort of situation has proved troublesome:

 o A client C establishes a clientid4 C1 with server ABC specifying
 an nfs_client_id4 with "id" value "C-ABC" and verifier 0x111.

 o The client begins to access files in filesystem F on server ABC,
 resulting in generating stateids S1, S2, etc. under the lease for
 clientid C1. It may also access files on other filesystems on the
 same server.

 o The filesystem is migrated from ABC to server XYZ. When
 transparent state migration is in effect, stateids S1 and S2 and
 clientid4 C1 are now available for use by client C at server XYZ.
 So far, so good.

 o Client C reboots and attempts to access data on server XYZ,
 whether in filesystem F or another. It does a SETCLIENTID with an
 nfs_client_id4 with "id" value "C-XYZ" and verifier 0x112. There
 is thus no occasion to free stateids S1 and S2 since they are
 associated with a different client name and so lease expiration is
 the only way that they can be gotten rid of.

 Note here that while it seems clear to us in this example that C-XYZ
 and C-ABC are from the same client, the server has no way to
 determine the structure of the "opaque" id. In the protocol, it

Noveck, et al. Expires July 19, 2012 [Page 6]

Internet-Draft nfsv4-migr-isssues January 2012

 really is opaque. Only the client knows which nfs_client_id4 values
 designate the same client on a different server.

3.1.2. Server reboots resulting in a confused lease situation

 Further problems arise from scenarios like the following.

 o Client C talks to server ABC using an nfs_client_id4 id like
 "C-ABC" and verifier v1. As a result a lease with clientid4 c.i
 is established: {v1, "C-ABC", c.i}.

 o fs_a1 migrates from server ABC to server XYZ along with its state.
 Now server XYZ also has a lease: {v1, "C-ABC", c.i}.

 o Server ABC reboots.

 o Client C talks to server ABC using an nfs_client_id4 id like
 "C-ABC" and verifier v1. As a result a lease with clientid4 c.j
 is established: {v1, "C-ABC", c.j}.

 o fs_a2 migrates from server ABC to server XYZ. Now server XYZ also
 has a lease: {v1, "C-ABC", c.j}.

 o Now server XYZ has two leases that match {v1, "C-ABC", *}, when
 the protocol clearly assumes there can be only one.

 Note that if the client used "C" (rather than "C-ABC") as the
 nfs_client_id4 id string, the exact same situation would arise.

 One of the first cases in which this sort of situation has resulted
 in difficulties is in connection with doing a SETCLIENTID for
 callback update.

 The SETCLIENTID for callback update only includes the nfs_client_id4,
 assuming there can only be one such with a given nfs_client_id4
 value. If there are multiple, confirmed client records with
 identical nfs_client_id4 values, there is no way to map the callback
 update request to the correct client record.

 One possible accommodation for this particular issue that has been
 used is to add a RENEW operation along with SETCLIENTID (on a
 callback update) to disambiguate the client.

 When the client updates the callback info to the destination, the
 client would, by convention, send a compound like this:

 { RENEW clientid4, SETCLIENTID nfs_client_id4,verf,cb }

Noveck, et al. Expires July 19, 2012 [Page 7]

Internet-Draft nfsv4-migr-isssues January 2012

 The presence of the clientid4 in the compound would allow the server
 to differentiate among the various leases that it knows of, all with
 the same nfs_client_id4 value.

 While this would be a reasonable patch for an isolated protocol
 weakness, interoperable clients and servers would require that the
 protocol truly be updated to allow such a situation, specifically
 that of multiple clientid4’s with the same nfs_client_id4 value. The
 protocol is currently designed and implemented assuming this can’t
 happen. We need to either prevent the situation from happening, or
 fully adapt to the possibilities which can arise. See Section 4 for
 a discussion of such issues.

3.1.3. Client complexity issues

 Consider the following situation:

 o There are a set of clients C1 through Cn accessing servers S1
 through Sm. Each server manages some significant number of
 filesystems with the filesystem count L being significantly
 greater than m.

 o Each client Cx will access a subset of the servers and so will
 have up to m clientid’s, which we will call Cxy for server Sy.

 o Now assume that for load-balancing or other operational reasons,
 numbers of filesystems are migrated among the servers. As a
 result, each client-server pair will have up to m clientid’s and
 each client will have up to m**2 clientids. If we add the
 possibility of server reboot, the only bound on a client’s
 clientid count is L.

 Now, instead of a clientid4 identifying a client-server pair, we have
 many more entities for the client to deal with. In addition, it
 isn’t clear how new state is to be incorporated in this structure.

 The limitations of the migrated state (inability to be freed on
 reboot) would argue against adding more such state but trying to
 avoid that would run into its own difficulties. For example, a
 single lockowner string presented under two different clientids would
 appear as two different entities.

 Thus we have to choose between:

 o indefinite prolongation of foreign clientid’s even after all
 transferred state is gone.

Noveck, et al. Expires July 19, 2012 [Page 8]

Internet-Draft nfsv4-migr-isssues January 2012

 o having multiple requests for the same lockowner-string-named
 entity carried on in parallel by separate identically named
 lockowners under different clientid4’s

 o Adding serialization at the lock-owner string level, in addition
 to that at the lockowner level.

 In any case, we have gone (in adding migration as it was described)
 from a situation in which

 o Each client has a single clientid4/lease or each server it talks
 to.

 o Each client has a single nfs_client_id4 for each server it talks
 to.

 o Every state id can be mapped to an associated lease based on the
 server it was obtained from.

 To one in which

 o Each client may have multiple clientid4’s for a single server.

 o For each stateid, the client must separately record the clientid4
 that it is assigned to, or it must manage separate "state blobs"
 for each fsid and map those to clientid4’s.

 o Before doing an operation that can result in a stateid, the client
 must either find a "state blob" based on fsid or create a new one,
 possibly with a new clinetid4.

 o There may be multiple clientid4’s all connected to the same server
 and using the same nfs_clientid4.

 This sort of additional client complexity is troublesome and needs to
 be eliminated.

3.2. Sources of Protocol difficulties

3.2.1. Issues with nfs_client_id4 generation and use

 The current definitive definition of the NFSv4.0 protocol [RFC3530],
 and the current pending draft of RFC3530bis [cur-v4.0-bis] both
 agree. The section entitled "Client ID" says:

 The second field, id is a variable length string that uniquely
 defines the client.

Noveck, et al. Expires July 19, 2012 [Page 9]

Internet-Draft nfsv4-migr-isssues January 2012

 There are two possible interpretations of the phrase "uniquely
 defines" in the above:

 o The relation between strings and clients is a function from such
 strings to clients so that each string designates a single client.

 o The relation between strings and clients is a bijection between
 such strings and clients so that each string designates a single
 client and each client is named by a single string.

 The first interpretation would make these client-strings like phone
 numbers (a single person can have several) while the second would
 make them like social security numbers.

 Endless debate about the true meaning of "uniquely defines" in this
 context is quite possible but not very helpful. The following points
 should be noted though:

 o The second interpretation is more consistent with the way
 "uniquely defines" is used elsewhere in the spec.

 o The spec as now written intends the first interpretation (or is
 internally inconsistent). In fact, it recommends, although it
 doesn’t "RECOMMEND" that a single client have at least as many
 client-strings as server addresses that it interacts with. It
 says, in the third bullet point regarding construction of the
 string (which we shall henceforth refer to as client-string-BP3):

 The string should be different for each server network address
 that the client accesses, rather than common to all server
 network addresses.

 o If internode interactions are limited to those between a client
 and its servers, there is no occasion for servers to be concerned
 with the question of whether two client-strings designate the same
 client, so that there is no occasion for the difference in
 interpretation to matter.

 o When transparent migration of client state occurs between two
 servers, it becomes important to determine when state on two
 different servers is for the same client or not, and this
 distinction becomes very important.

 Given the need for the server to be aware of client identity with
 regard to migrated state, either client-string construction rules
 will have to change or there will be need to get around current
 issues, or perhaps a combination of these two will be required.
 Later sections will examine the options and propose a solution.

Noveck, et al. Expires July 19, 2012 [Page 10]

Internet-Draft nfsv4-migr-isssues January 2012

 One consideration that may indicate that this cannot remain exactly
 as it is today has to do with the fact that the current explanation
 for this behavior is not correct. The current definitive definition
 of the NFSv4.0 protocol [RFC3530], and the current pending draft of
 RFC3530bis [cur-v4.0-bis] both agree. The section entitled "Client
 ID" says:

 The reason is that it may not be possible for the client to tell
 if the same server is listening on multiple network addresses. If
 the client issues SETCLIENTID with the same id string to each
 network address of such a server, the server will think it is the
 same client, and each successive SETCLIENTID will cause the server
 to begin the process of removing the client’s previous leased
 state.

 In point of fact, a "SETCLIENTID with the same id string" sent to
 multiple network addresses will be treated as all from the same
 client but will not "cause the server to begin the process of
 removing the client’s previous leased state" unless the server
 believes it is a newer instance of the same client, i.e. if the id is
 the same and there is a different verifier. If the client does not
 reboot, the verifier should not change. If it does reboot, the
 verifier will change, and the server should "begin the process of
 removing the client’s previous leased state.

 The situation of multiple SETCLIENTID requests received by a server
 on multiple network addresses is exactly the same, from the protocol
 design point of view, as when multiple (i.e. duplicate) SETCLIENTID
 requests are received by the server on a single network address. The
 same protocol mechanisms that prevent erroneous state deletion in the
 latter case prevent it in the former case. There is no reason for
 special handling of the multiple-network-appearance case, in this
 regard.

3.2.2. Issues with lease proliferation

 It is often felt that this is a consequence of the client-string
 construction issues, and it is certainly the case that the two are
 closely connected in that non-uniform client-strings make it
 impossible for the server to appropriately combine leases from the
 same client. See Section 5.2.1 for a discussion of non-uniform
 client-strings.

 However, even where the server could combine leases from the same
 client, it needs to be clear how and when it will do so, so that the
 client will be prepared. These issues will have to be addressed at
 various places in the spec.

Noveck, et al. Expires July 19, 2012 [Page 11]

Internet-Draft nfsv4-migr-isssues January 2012

 This could be enough only if we are prepared to do away with the
 "should" recommending non-uniform client-strings and replace it with
 a "should not" or even a "SHOULD NOT". Current client implementation
 patterns make this an unpalatable choice for use as a general
 solution, but it is reasonable to "RECOMMEND" this choice for a well-
 defined subset of clients. One alternative would be to create a way
 for the server to infer from client behavior which leases are held by
 the same client and use this information to do appropriate lease
 mergers. Prototyping and detailed specification work has shown that
 this could be done but the resulting complexity is such that a better
 choice is to "RECOMMEND" use of the uniform model for clients
 supporting the migration feature.

4. Issues to be resolved

4.1. Possible changes to nfs_client_id4 client-string

 The fact that the reason given in client-string-BP3 is not valid
 makes the existing "should" insupportable. We can’t either

 o Keep a reason we know is invalid.

 o Keep saying "should" without giving a reason.

 What are often presented as reasons that motivate use of the non-
 uniform model always turn out to be cases in which, if the uniform
 model were used, the server will treat a client which accesses that
 server via two different IP addresses as part of a single client, as
 it in fact is. This may be disconcerting to a client unaware that
 the two IP addresses connect to the same server. This is thus not a
 reason to use the non-uniform model but rather an illustration of the
 fact that those using the uniform model must use server behavior to
 determine whether any trunking of IP addresses exists, as is
 described in Section 5.2.2.

 It is always possible that a valid new reason will be found, but so
 far none has been proposed. Given the history, the burden of proof
 should be on those asserting the validity of a proposed new reason.

 So we will assume for now that the "should" will have to go. The
 question is what to replace it with.

 o We can’t say "MUST NOT", despite the problems this raises for
 migration since this is pretty late in the day for such a change.
 Many currently operating clients obey the existing "should".
 Similar considerations would apply for "SHOULD NOT" or "should
 not".

Noveck, et al. Expires July 19, 2012 [Page 12]

Internet-Draft nfsv4-migr-isssues January 2012

 o Dropping client-string-BP3 entirely is a possibility but, given
 the context and history, it would just be a confusing version of
 "SHOULD NOT".

 o Using "MAY" would clearly specify that both ways of doing this are
 valid choices for clients and that servers will have to deal with
 clients that make either choice.

 o This might be modified by a "SHOULD" (or even a "MUST") for
 particular groups of clients.

 o There will have to be some text explaining why a client might make
 either choice but, except for the particular cases referred to
 above, we will have to make sure that it is truly descriptive, and
 not slanted in either direction.

4.2. Possible changes to handle differing nfs_client_id4 string values

 Given the difficulties caused by having different nfs_client_id4
 client-string values for the same client, we have two choices:

 o Deprecate the existing treatment and basically say the client is
 on its own doing migration, if it follows it.

 o Introduce a way of having the client provide client identity
 information to the server, if it can be done compatibly while
 staying within the bounds of v4.0.

4.3. Other issues within migration-state sections

 There are a number of issues where the existing text is unclear
 and/or wrong and needs to be fixed in some way.

 o Lack of clarity in the discussion of moving clientids (as well as
 stateids) as part of moving state for migration.

 o The discussion of synchronized leases is wrong in that there is no
 way to determine (in the current spec) when leases are for the
 same client and also wrong in suggesting a benefit from leases
 synchronized at the point of transfer. What is needed is merger
 of leases, which is necessary to keep client complexity
 requirements from getting out of hand.

 o Lack of clarity in the discussion of LEASE_MOVED handling.

Noveck, et al. Expires July 19, 2012 [Page 13]

Internet-Draft nfsv4-migr-isssues January 2012

4.4. Issues within other sections

 There are a number of cases in which certain sections, not
 specifically related to migration require additional clarification.
 This is generally because text that is clear in a context in which
 leases and clientids are created in one place and live there forever
 may need further refinement in the more dynamic environment that
 arises as part of migration.

 Some examples:

 o Some people are under the impression that updating callback
 endpoint information for an existing client, which is part of the
 client’s handling of migration, may cause the destination server
 to free existing state. There needs to be additions to clarify
 the situation.

 o The handling of the sets of clientid4’s maintained by each server
 needs to be clarified. In particular, the issue of how the client
 adapts to the presumably independent and uncoordinated clientid4
 sets needs to be clearly addressed

 o Statements regarding handling of invalid clientid4’s need to be
 clarified and/or refined in light of the possibilities that arise
 due to lease motion and merger.

5. Proposed resolution of protocol difficulties

5.1. Proposed changes: nfs_client_id4 client-string

 We propose replacing client-string-BP3 with the following text and
 adding the following proposed Section 5.2 to provide implementation
 guidance.

 o The string MAY be different for each server network address that
 the client accesses, rather than common to all server network
 addresses. The considerations that might influence a client to
 use different strings for each are explained in Section 5.2.

 o Despite the use of the word "string" for this identifier, and the
 fact that using strings will often be convenient, it should be
 understood that the protocol defines this as opaque data. In
 particular, those receiving such an id should not assume that it
 will be in UTF-8 format nor should they reject it if it is not.

Noveck, et al. Expires July 19, 2012 [Page 14]

Internet-Draft nfsv4-migr-isssues January 2012

5.2. Client-string Models (AS PROPOSED)

 One particular aspect of the construction of the nfs4_client_id4
 string has proved recurrently troublesome. The client has a choice
 of:

 o Presenting the same id string to each server address accessed.
 This is referred to as the "uniform client-string model" and is
 discussed in Section 5.2.2.

 o Presenting a different id string to each server address accessed.
 This is referred to as the "non-uniform client-string model" and
 is discussed in Section 5.2.1.

 Construction of the client-string has been a troublesome issue
 because of the way in which the NFS protocols have evolved.

 o NFSv3 as a stateless protocol had no need to identify the state
 shared by a particular client-server pair. Thus there was no
 occasion to consider the question of whether a set of requests
 come from the same client, or whether two server IP addresses are
 connected to the same server. As the environment was one in which
 the user supplied the target server IP address as part of
 incorporating the remote filesystem in the client’s file name
 space, there was no occasion to take note of server trunking.
 Within a stateless protocol, the situation was symmetrical. The
 client has no server identity information and the server has no
 client identity information.

 o NFSv4.1 is a stateful protocol with full support for client and
 server identity determination. This enables the server to be
 aware when two requests come from the same client (they are on
 sessions sharing a clientid4) and the client to be aware when two
 server IP addresses are connected to the same server (they return
 the same server name in responding to an EXCHANGE_ID).

 NFSv4.0 is unfortunately halfway between these two. The two client-
 string models have arisen in attempts to deal with the changing
 requirements of the protocol as implementation has proceeded and
 features that were not very substantial in [RFC3530], got more
 substantial.

 o In the absence of any implementation of the fs_locations-related
 features (replication, referral, and migration), the situation is
 very similar to that of NFSv3, with the addition of state but with
 no concern to provide accurate client and server identity
 determination. This is the situation that gave rise to the non-
 uniform client-string model.

Noveck, et al. Expires July 19, 2012 [Page 15]

Internet-Draft nfsv4-migr-isssues January 2012

 o In the presence of replication and referrals, the client may have
 occasion to take advantage of knowledge of server trunking
 information. Even more important, migration, by transferring
 state among servers, causes difficulties for the non-uniform
 client-string model, in that the two different client-strings sent
 to different IP addresses may wind up on the same IP address,
 adding confusion.

 Both models have to deal with the asymmetry in client and server
 identity information between client and server. Each seeks to make
 the client’s and the server’s views match. In the process, each
 encounters some combination of inelegant protocol features and/or
 implementation difficulties. The choice of which to use is up to the
 client implementer and the sections below try to give some useful
 guidance.

5.2.1. Non-Uniform Client-string Model

 The non-uniform client-string model is an attempt to handle these
 matters in NFSv4.0 client implementations in as NFSv3-like a way as
 possible.

 For a client using the non-uniform model, all internal recording of
 clientid4 values is to include, whether explicitly or implicitly, the
 server IP address so that one always has an (IP-address, clientid4)
 pair. Two such pairs from different servers are always distinct even
 when the clientid4 values are the same, as they may occasionally be.
 In this model, such equality is always treated as simple
 happenstance.

 Making the client-string different on different servers means that a
 server has no way of tying together information from the same client
 and so will treat a single client as multiple clients with multiple
 leases for each server network address. Since there is no way in the
 protocol for the client to determine if two network addresses are
 connected to the same server, the resulting lack of knowledge is
 symmetrical and can result in simpler client implementations in which
 there is a single clientid/lease per server network addresses.

 Support for migration, particularly with transparent state migration,
 is more complex in the case of non-uniform client-strings. For
 example, migration of a lease can result in multiple leases for the
 same client accessing the same server addresses, vitiating many of
 the advantages of this approach. Therefore, client implementations
 that support migration with transparent state migration SHOULD NOT
 use the non-uniform client-string model.

Noveck, et al. Expires July 19, 2012 [Page 16]

Internet-Draft nfsv4-migr-isssues January 2012

5.2.2. Uniform Client-string Model

 When the client-string is kept uniform, the server has the basis to
 have a single clientid4/lease for each distinct client. The problem
 that has to be addressed is the lack of explicit server identity
 information, which is made available in NFSv4.1.

 When the same client-string is given to multiple IP addresses, the
 client can determine whether two IP addresses correspond to a single
 server, based on the server’s behavior. This is the inverse of the
 strategy adopted for the non-uniform model in which different server
 IP addresses are told about different clients, simply to prevent a
 server from manifesting behavior that is inconsistent with there
 being a single server for each IP address, in line with the
 traditions of NFS. So, to compare:

 o In the non-uniform model, servers are told about different clients
 because, if the server were to use accurate information as to
 client identity, two IP addresses on the same server would behave
 as if they were talking to the same client, which might prove
 disconcerting to a client not expecting such behavior.

 o In the uniform model, the servers are told about there being a
 single client, which is, after all, the truth. Then, when the
 server uses this information, two IP addresses on the same server
 will behave as if they are talking to the same client, and this
 difference in behavior allows the client to infer the server IP
 address trunking configuration, even though NFSv4.0 does not
 explicitly provide this information.

 The approach given below shows one example of how this might be
 done.

 For a client using the uniform model, clientid4 values are treated as
 important information in determining server trunking patterns. For
 two different IP addresses to return the same clientid4 value is a
 necessary, though not a sufficient condition for them to be
 considered as connected to the same server. As a result, when two
 different IP addresses return the same clientid4, the client needs to
 determine, using the procedure given below or otherwise, whether the
 IP addresses are connected to the same server. For such clients, all
 internal recording of clientid4 values needs to include, whether
 explicitly or implicitly, identification of the server from which the
 clientid4 was received so that one always has a (server clientid4)
 pair. Two such pairs from different servers are always considered
 distinct even when the clientid4 values are the same, as they may
 occasionally be.

Noveck, et al. Expires July 19, 2012 [Page 17]

Internet-Draft nfsv4-migr-isssues January 2012

 In order to make this approach work, the client must have accessible,
 for each nfs4_client_id4 used (only one in the uniform model) a list
 of all server IP addresses, together with the associated clientid4
 values. As a part of the associated data structures, there should be
 the ability to mark a server IP structure as having the same server
 as another and to mark an IP-address as currently unresolved. One
 way to do this is to a allow each such entry to point to another with
 the pointer value being one of:

 o A pointer to another entry for an IP address associated with the
 same server, where that IP address is the first one referenced to
 access that server.

 o A pointer to the current entry if there is no earlier IP address
 associated with the same server, i.e. where the current IP address
 is the first one referenced to access that server. We’ll refer to
 such an IP address as the lead IP address for a given server.

 o The value NULL if the address’s server identity is currently
 unresolved.

 When a SETCLIENTID is done and a clientid4 returned, the data
 structure is searched for a matching clientid4 and processing depends
 on what is found. We will refer to the IP address on which this
 SETCLIENTID is done as X. The SETCLIENTID will use the common
 nfs_client_id4 and specify X as part of the callback parameters. We
 call the clientid4 and verifier returned by this operation XC and XV.

 Note that at this point no SETCLIENTID_CONFIRM has yet been done.
 This is because we have either established a new clientid4 on a
 previously unknown server or changed the callback parameters on a
 clientid4 associated with some already known server. We don’t want
 to confirm something that we are not sure we want to happen.

 o If no matching clientid4 is found, the IP address X and clientid4
 XC are added to the list and considered as having no existing
 known IP addresses trunked with it. The IP address is marked as a
 lead IP address for a new server. A SETCLIENTID_CONFIRM is done
 using XC and XV.

 o If a matching clientid4 is found which is marked unresolved,
 processing on the new IP address is suspended. In order to
 simplify processing, there can only be one unresolved IP address
 for any given clientid4.

 o If one or more matching clientid4’s is found, none of which is
 marked unresolved, the new IP address in entered and marked
 unresolved. After applying the steps below to each of the lead IP

Noveck, et al. Expires July 19, 2012 [Page 18]

Internet-Draft nfsv4-migr-isssues January 2012

 addresses with a matching clientid4, the address will have been
 resolved: either it will be part of the same server as a new IP
 address to be added to an existing set of IP addresses for a
 server, or it will be recognized as a new server. At the point at
 which this determination is made, the unresolved indication is
 cleared and any suspended SETCLIENTID processing is restarted

 So for each lead IP address IPn with a clientid4 matching XC, the
 following steps are done.

 o If the server has an associated stateid S, S is used in a request
 issued on the address X with the fact of whether it is recognized
 on X giving definitive information of X’s server identity.

 o If S is not recognized as valid on X, then X and IPn are
 recognized as distinct and we go on to the next IPn, until we run
 out of them.

 o If S is recognized as valid on X, then X and IPn are recognized as
 connected to the same server and the entry for X is marked as
 associated with IPn. The entry is now resolved and processing can
 be restarted for IP addresses whose clientid4 matched XC and whose
 resolution had been deferred.

 o If there is no such S for IPn, a different procedure is used. a
 SETCLIENTID is done to update the callback parameters to reflect
 the possibility that X will be marked as associated with the
 server whose lead IP address is IPn. So assume that we do that
 SETCLIENTID and get back verifier Vn.

 o Note that we don’t want this to happen if address X is not
 associated with this server. So we do a SETCLIENTID_CONFIRM on
 address IPn using verifier Vn.

 o If the verifier generated on X is accepted on IPn, then X and IPn
 are recognized as connected to the same server and the entry for X
 is marked as associated with IPn. The entry is now resolved and
 processing can be restarted for IP addresses whose clientid4
 matched XC but whose resolution had been deferred.

 o If the verifier generated on X is not accepted on IPn, then X and
 IPn are distinct and the callback update will not be confirmed.
 So we go on to the next IPn, until we run out of them.

 The procedure above has made no explicit mention of the possibility
 that server reboot can occur at any time. To address this
 possibility the client should periodically use the clientid4 XC in
 RENEW operations, directed to both the IP address X and the current

Noveck, et al. Expires July 19, 2012 [Page 19]

Internet-Draft nfsv4-migr-isssues January 2012

 lead IP address that is currently being tested for identity.

 o When XC becomes invalid on X, the resolution process should be
 terminated, subject to being redone later. Before redoing the
 resolution, XC should be checked on all the lead IP addresses on
 which it was valid. Once a new clientid4 is established on any
 servers on which XC became invalid, a new clientid4 can be
 established on X and the resolution process for X can be
 restarted.

 o When XC does not becomes invalid on X, but becomes invalid on the
 current IPn being tested, it should be concluded that X and IPn do
 not match and that it is time to advance to the next IPn, if any.

 o In the event of a reboot detected on any server lead IP, the set
 of IP addresses associated with the server should not change and
 state should be re-established for the lease as a whole, using all
 available connected server IP addresses. It is prudent to verify
 connectivity by doing a RENEW using the new clientid4 on each such
 server address before using it, however.

 If we have run out of IPn’s without finding a matching server, X is
 considered as having no existing known IP addresses trunked with it.
 The IP address is marked as a lead IP address for a new server. A
 SETCLIENTID_CONFIRM is done using XC and XV.

 The following are advantages for the implementation of using the
 uniform client-string model:

 o Clients can take advantage of server trunking (and clustering with
 single-server-equivalent semantics) to increase bandwidth or
 reliability.

 o There are advantages in state management so that, for example, we
 never have a delegation under one clientid revoked because of a
 reference to the same file from the same client under a different
 clientid.

 o The uniform client-string model allows the server to do any
 necessary automatic lease merger in connection with migration,
 without requiring any client involvement. This consideration is
 of sufficient weight to cause us RECOMMEND use of the uniform
 client-string model for clients supporting transparent state
 migration.

 The following implementation considerations might cause issues for
 client implementations.

Noveck, et al. Expires July 19, 2012 [Page 20]

Internet-Draft nfsv4-migr-isssues January 2012

 o This model is considerably different from the non-uniform model,
 which most client implementations have been following. Until
 substantial implementation experience is obtained with this model,
 reluctance to embrace something so new is to be expected.

 o Mapping between server network addresses and leases is more
 complicated in that it is no longer a one-to-one mapping.

 How to balance these considerations depends on implementation goals.

5.3. Proposed changes: merged (vs. synchronized) leases

 The current definitive definition of the NFSv4.0 protocol [RFC3530],
 and the current pending draft of RFC3530bis [cur-v4.0-bis] both
 agree. The section entitled "Migration and State" says:

 As part of the transfer of information between servers, leases
 would be transferred as well. The leases being transferred to the
 new server will typically have a different expiration time from
 those for the same client, previously on the old server. To
 maintain the property that all leases on a given server for a
 given client expire at the same time, the server should advance
 the expiration time to the later of the leases being transferred
 or the leases already present. This allows the client to maintain
 lease renewal of both classes without special effort:

 There are a number of problems with this and any resolution of our
 difficulties must address them somehow.

 o The current v4.0 spec recommends that the client make it
 essentially impossible to determine when two leases are from "the
 same client".

 o It is not appropriate to speak of "maintain[ing] the property that
 all leases on a given server for a given client expire at the same
 time", since this is not a property that holds even in the absence
 of migration. A server listening on multiple network addresses
 may have the same client appear as multiple clients with no way to
 recognize the client as the same.

 o Even if the client identity issue could be resolved, advancing the
 lease time at the point of migration would not maintain the
 desired synchronization property. The leases would be
 synchronized until one of them was renewed, after which they would
 be unsynchronized again.

 To avoid client complexity, we need to have no more than one lease
 between a single client and a single server. This requires merger of

Noveck, et al. Expires July 19, 2012 [Page 21]

Internet-Draft nfsv4-migr-isssues January 2012

 leases since there is no real help from synchronizing them at a
 single instant.

 For the uniform model, the destination server would simply merge
 leases as part of state transfer, since two leases with the same
 nfs_client_id4 values must be for the same client.

 We have made the following decisions as far as proposed normative
 statements regarding for state merger. They reflect the facts that
 we want to support fully migration support in the simplest way
 possible and that we can’t say MUST since we have older clients and
 servers to deal with.

 o Clients SHOULD use the uniform client-string model in order to get
 good migration support.

 o Servers SHOULD provide automatic lease merger during state
 migration so that clients using the uniform id model get the
 support automatically.

 If the clients and the servers obey the SHOULD’s, having more than a
 single lease for a given client-server pair will be a transient
 situation, cleaned up as part of adapting to use of migrated state.

 Since clients and servers will be a mixture of old and new and
 because nothing is a MUST we have to ensure that no combination will
 show worse behavior than is exhibited by current (i.e. old) clients
 and servers.

5.4. Other proposed changes to migration-state sections

5.4.1. Proposed changes: Client ID migration

 The current definitive definition of the NFSv4.0 protocol [RFC3530],
 and the current pending draft of RFC3530bis [cur-v4.0-bis] both
 agree. The section entitled "Migration and State" says:

 In the case of migration, the servers involved in the migration of
 a filesystem SHOULD transfer all server state from the original to
 the new server. This must be done in a way that is transparent to
 the client. This state transfer will ease the client’s transition
 when a filesystem migration occurs. If the servers are successful
 in transferring all state, the client will continue to use
 stateids assigned by the original server. Therefore the new
 server must recognize these stateids as valid. This holds true
 for the client ID as well. Since responsibility for an entire
 filesystem is transferred with a migration event, there is no
 possibility that conflicts will arise on the new server as a

Noveck, et al. Expires July 19, 2012 [Page 22]

Internet-Draft nfsv4-migr-isssues January 2012

 result of the transfer of locks.

 This poses some difficulties, mostly because the part about "client
 ID" is not clear:

 o It isn’t clear what part of the paragraph the "this" in the
 statement "this holds true ..." is meant to signify.

 o The phrase "the client ID" is ambiguous, possibly indicating the
 clientid4 and possibly indicating the nfs_client_id4.

 o If the text means to suggest that the same clientid4 must be used,
 the logic is not clear since the issue is not the same as for
 stateids of which there might be many. Adapting to the change of
 a single clientid, as might happen as a part of lease migration,
 is relatively easy for the client.

 We have decided to address this issue as follows, with the relevant
 changes all reflected in Section 5.6.

 o Make it clear that both clientid4 and nfs_client_id4 are to be
 transferred.

 o Indicate that the initial transfer will result in the same
 clientid4 after transfer but this is not guaranteed since there
 may conflict with an existing clientid4 on the destination server
 and because lease merger can result in a change of the clientid4.

5.4.2. Proposed changes: Callback re-establishment

 The current definitive definition of the NFSv4.0 protocol [RFC3530],
 and the current pending draft of RFC3530bis [cur-v4.0-bis] both
 agree. The section entitled "Migration and State" says:

 A client SHOULD re-establish new callback information with the new
 server as soon as possible, according to sequences described in
 sections "Operation 35: SETCLIENTID - Negotiate Client ID" and
 "Operation 36: SETCLIENTID_CONFIRM - Confirm Client ID". This
 ensures that server operations are not blocked by the inability to
 recall delegations.

 The above will need to be fixed to reflect the possibility of merging
 of leases and the text to do this appears as part of Section 5.6.

5.4.3. Proposed changes: NFS4ERR_LEASE_MOVED rework

 The current definitive definition of the NFSv4.0 protocol [RFC3530],
 and the current pending draft of RFC3530bis [cur-v4.0-bis] both

Noveck, et al. Expires July 19, 2012 [Page 23]

Internet-Draft nfsv4-migr-isssues January 2012

 agree. The section entitled "Notification of Migrated Lease" says:

 Upon receiving the NFS4ERR_LEASE_MOVED error, a client that
 supports filesystem migration MUST probe all filesystems from that
 server on which it holds open state. Once the client has
 successfully probed all those filesystems which are migrated, the
 server MUST resume normal handling of stateful requests from that
 client.

 There is a lack of clarity that is prompted by ambiguity about what
 exactly probing is and what the interlock between client and server
 must be. This has led to some worry about the scalability of the
 probing process, and although the time required does scale linearly
 with the number of fs’s that the client may have state for with
 respect to a given server, the actual process can be done
 efficiently.

 To address these issues we propose replacing the above with the text
 addressing NFS4RR_LEASE_MOVED as given in Section 5.6.3.

5.5. Proposed changes to other sections

5.5.1. Proposed changes: callback update

 Some changes are necessary to reduce confusion about the process of
 callback information update and in particular to make it clear that
 no state is freed as a result:

 o Make it clear that after migration there are confirmed entries for
 transferred clientid4/nfs_client_id4 pairs.

 o Be explicit in the sections headed "otherwise," in the
 descriptions of SETCLIENTID and SETCLIENTID_CONFIRM, that these
 don’t apply in the cases we are concerned about.

5.5.2. Proposed changes: clientid4 handling

 To address both of the clientid4-related issues mentioned in
 Section 4.4, we propose replacing the last three paragraphs of the
 section entitled "Client ID" with the following:

 Once a SETCLIENTID and SETCLIENTID_CONFIRM sequence has
 successfully completed, the client uses the shorthand client
 identifier, of type clientid4, instead of the longer and less
 compact nfs_client_id4 structure. This shorthand client
 identifier (a client ID) is assigned by the server and should be
 chosen so that it will not conflict with a client ID previously
 assigned by same server. This applies across server restarts or

Noveck, et al. Expires July 19, 2012 [Page 24]

Internet-Draft nfsv4-migr-isssues January 2012

 reboots.

 Distinct servers MAY assign clientid4’s independently, and will
 generally do so. Therefore, a client has to be prepared to deal
 with multiple instances of the same clientid4 value received on
 distinct IP addresses, denoting separate entities. When trunking
 of server IP addresses is not a consideration, a client should
 keep track of (IP-address, clientid4) pairs, so that each pair is
 distinct. For a discussion of how to address the issue in the
 face of possible trunking of server IP addresses, see Section 5.2.

 When a clientid4 is presented to a server and that clientid4 is
 not recognized, the server will reject the request with the error
 NFS4ERR_STALE_CLIENTID. This can occur for a number of reasons:

 * A server reboot causing loss of the server’s knowledge of
 client

 * Client error sending an incorrect clientid4 or valid clientid4
 to the wrong server.

 * Loss of lease state due to lease expiration.

 * Client or server error causing the server to believe that the
 client has rebooted (i.e. receiving a SETCLIENTID with an
 nfs_client_id4 which has a matching id and a non-matching
 verifier.

 * Migration of all state under the associated lease causes its
 non-existence to be recognized on the source server.

 * Merger of state under the associated lease with another lease
 under a different clientid causes the clientid4 serving as the
 source of the merge to cease being recognized on its server.

 In the event of a server reboot, or loss of lease state due to
 lease expiration, the client must obtain a new clientid4 by use of
 the SETCLIENTID operation and then proceed to any other necessary
 recovery for the server reboot case (See the section entitled
 "Server Failure and Recovery"). In cases of server or client
 error resulting in this error, use of SETCLIENTID to establish a
 new lease is desirable as well.

 In the last two cases, different recovery procedures are required.
 See Section 5.6 for details. Note that in cases in which there is
 any uncertainty about which sort of handling is applicable, the
 distinguishing characteristic is that in reboot-like cases, the
 clientid4 and all associated stateid cease to exist while in

Noveck, et al. Expires July 19, 2012 [Page 25]

Internet-Draft nfsv4-migr-isssues January 2012

 migration-related cases, the clientid4 ceases to exist while the
 stateids are still valid.

 The client must also employ the SETCLIENTID operation when it
 receives a NFS4ERR_STALE_STATEID error using a stateid derived
 from its current clientid4, since this indicates a situation, such
 as server reboot which has invalidated the existing clientid4 and
 associated stateids (see the section entitled "lock-owner" for
 details).

 See the detailed descriptions of SETCLIENTID and
 SETCLIENTID_CONFIRM for a complete specification of the
 operations.

5.6. Migration, Replication and State (AS PROPOSED)

 When responsibility for handling a given filesystem is transferred to
 a new server (migration) or the client chooses to use an alternate
 server (e.g., in response to server unresponsiveness) in the context
 of filesystem replication, the appropriate handling of state shared
 between the client and server (i.e., locks, leases, stateids, and
 client IDs) is as described below. The handling differs between
 migration and replication.

 If a server replica or a server immigrating a filesystem agrees to,
 or is expected to, accept opaque values from the client that
 originated from another server, then it is a wise implementation
 practice for the servers to encode the "opaque" values in network
 byte order. When doing so, servers acting as replicas or immigrating
 filesystems will be able to parse values like stateids, directory
 cookies, filehandles, etc. even if their native byte order is
 different from that of other servers cooperating in the replication
 and migration of the filesystem.

5.6.1. Migration and State

 In the case of migration, the servers involved in the migration of a
 filesystem SHOULD transfer all server state from the original to the
 new server. This must be done in a way that is transparent to the
 client. This state transfer will ease the client’s transition when a
 filesystem migration occurs. If the servers are successful in
 transferring all state, the client will continue to use stateids
 assigned by the original server. Therefore the new server must
 recognize these stateids as valid.

 If transferring stateids from server to server would result in a
 conflict for an existing stateid for the destination server with the
 existing client, transparent state migration MUST NOT happen for that

Noveck, et al. Expires July 19, 2012 [Page 26]

Internet-Draft nfsv4-migr-isssues January 2012

 client. Servers participating in using transparent state migration
 should co-ordinate their stateid assignment policies to make this
 situation unlikely or impossible. The means by which this might be
 done, like all of the inter-server interactions for migration, are
 not specified by the NFS version 4.0 protocol.

 Handling of clientid values is similar but not identical. The
 clientid4 and nfs_client_id4 information (id and verifier) will be
 transferred with the rest of the state information and the
 destination server should use that information to determine
 appropriate clientid4 handling. Although the destination server may
 make state stored under an existing lease available under the
 clientid4 used on the source server, the client should not assume
 that this is always so. In particular,

 o If there is an existing lease with an nfs_client_id4 that matches
 a migrated lease (same id and verifier), the server SHOULD merge
 the two, making the union of the sets of stateids available under
 the clientid4 for the existing lease. As part of the lease
 merger, the expiration time of the lease will reflect renewal done
 within either of the ancestor leases (and so will reflect the
 latest of the renewals).

 o If there is an existing lease with an nfs_client_id4 that
 partially matches a migrated lease (same id and a different
 verifier), the server MUST eliminate one of the two, possibly
 invalidating one of the ancestor clientid4’s. Since verifiers are
 not ordered, the later lease renewal time will prevail.

 When leases are not merged, the transfer of state should result in
 creation of a confirmed client record with empty callback information
 but matching the {v, x, c} for the transferred client information.
 This should enable establishment of new callback information using
 SETCLIENTID and SETCLIENTID_CONFIRM.

 A client may determine the disposition of migrated state by using a
 stateid associated with the migrated state and in an operation on the
 new server and using the associated clientid4 in a RENEW on the new
 server.

 o If the stateid is not valid and an error NFS4ERR_BAD_STATEID is
 received, either transparent state migration has not occurred or
 the state was purged due to verifier mismatch.

 o If the stateid is valid and an error NFS4ERR_STALE_CLIENTID is
 received on the RENEW, transparent state migration has occurred
 and the lease has been merged with an existing lease on the
 destination server.

Noveck, et al. Expires July 19, 2012 [Page 27]

Internet-Draft nfsv4-migr-isssues January 2012

 o If the stateid is valid and the clientid4 is valid, the lease has
 been transferred intact.

 Since responsibility for an entire filesystem is transferred with a
 migration event, there is no possibility that conflicts will arise on
 the new server as a result of the transfer of locks.

 The servers may choose not to transfer the state information upon
 migration. However, this choice is discouraged, except where
 specific issues such as stateid conflicts make it necessary. In the
 case of migration without state transfer, when the client presents
 state information from the original server (e.g. in a RENEW op or a
 READ op of zero length), the client must be prepared to receive
 either NFS4ERR_STALE_CLIENTID or NFS4ERR_STALE_STATEID from the new
 server. The client should then recover its state information as it
 normally would in response to a server failure. The new server must
 take care to allow for the recovery of state information as it would
 in the event of server restart.

 When a lease is transferred to a new server (as opposed to being
 merged with a lease already on the new server), a client SHOULD re-
 establish new callback information with the new server as soon as
 possible, according to sequences described in sections "Operation 35:
 SETCLIENTID - Negotiate Client ID" and "Operation 36:
 SETCLIENTID_CONFIRM - Confirm Client ID". This ensures that server
 operations are not blocked by the inability to recall delegations.

5.6.2. Replication and State

 Since client switch-over in the case of replication is not under
 server control, the handling of state is different. In this case,
 leases, stateids and client IDs do not have validity across a
 transition from one server to another. The client must re-establish
 its locks on the new server. This can be compared to the re-
 establishment of locks by means of reclaim-type requests after a
 server reboot. The difference is that the server has no provision to
 distinguish requests reclaiming locks from those obtaining new locks
 or to defer the latter. Thus, a client re-establishing a lock on the
 new server (by means of a LOCK or OPEN request), may have the
 requests denied due to a conflicting lock. Since replication is
 intended for read-only use of filesystems, such denial of locks
 should not pose large difficulties in practice. When an attempt to
 re-establish a lock on a new server is denied, the client should
 treat the situation as if its original lock had been revoked.

Noveck, et al. Expires July 19, 2012 [Page 28]

Internet-Draft nfsv4-migr-isssues January 2012

5.6.3. Notification of Migrated Lease

 In the case of lease renewal, the client may not be submitting
 requests for a filesystem that has been migrated to another server.
 This can occur because of the implicit lease renewal mechanism. The
 client renews a lease containing state of multiple filesystems when
 submitting a request to any one filesystem at the server.

 In order for the client to schedule renewal of leases that may have
 been relocated to the new server, the client must find out about
 lease relocation before those leases expire. To accomplish this, all
 operations which implicitly renew leases for a client (such as OPEN,
 CLOSE, READ, WRITE, RENEW, LOCK, and others), will return the error
 NFS4ERR_LEASE_MOVED if responsibility for any of the leases to be
 renewed has been transferred to a new server. Note that when the
 transfer of responsibility leaves remaining state for that lease on
 the source server, the lease is renewed just as it would have been in
 the NFS4ERR_OK case, despite returning the error. The transfer of
 responsibility happens when the server receives a
 GETATTR(fs_locations) from the client for each filesystem for which a
 lease has been moved to a new server. Normally it does this after
 receiving an NFS4ERR_MOVED for an access to the filesystem but the
 server is not required to verify that this happens in order to
 terminate the return of NFS4ERR_LEASE_MOVED. By convention, the
 compounds containing GETATTR(fs_locations) SHOULD include an appended
 RENEW operation to permit the server to identify the client getting
 the information.

 Note that the NFS4ERR_LEASE_MOVED error is only required when
 responsibility for at least one stateid has been transferred. In the
 case of a null lease, where the only associated state is a clientid,
 no NFS4ERR_LEASE_MOVED error need be generated.

 Upon receiving the NFS4ERR_LEASE_MOVED error, a client that supports
 filesystem migration MUST perform the necessary GETATTR operation for
 each of the filesystems containing state that have been migrated and
 so give the server evidence that it is aware of the migration of the
 filesystem. Once the client has done this for all migrated
 filesystems on which the client holds state, the server MUST resume
 normal handling of stateful requests from that client.

 One way in which clients can do this efficiently in the presence of
 large numbers of filesystems is described below. This approach
 divides the process into two phases, one devoted to finding the
 migrated filesystems and the second devoted to doing the necessary
 GETATTRs.

 The client can find the migrated filesystems by building and issuing

Noveck, et al. Expires July 19, 2012 [Page 29]

Internet-Draft nfsv4-migr-isssues January 2012

 one or more COMPOUND requests, each consisting of a set of PUTFH/
 GETFH pairs, each pair using an fh in one of the filesystems in
 question. All such COMPOUND requests can be done in parallel. The
 successful completion of such a request indicates that none of the
 fs’s interrogated have been migrated while termination with
 NFS4ERR_MOVED indicates that the filesystem getting the error has
 migrated while those interrogated before it in the same COMPOUND have
 not. Those whose interrogation follows the error remain in an
 uncertain state and can be interrogated by restarting the requests
 from after the point at which NFS4ERR_MOVED was returned or by
 issuing a new set of COMPOUND requests for the filesystems which
 remain in an uncertain state.

 Once the migrated filesystems have been found, all that is needed is
 for client to give evidence to the server that it is aware of the
 migrated status of filesystems found by this process, by
 interrogating the fs_locations attribute for an fh each of the
 migrated filesystems. The client can do this building and issuing
 one or more COMPOUND requests, each of which consists of a set of
 PUTFH operations, each followed by a GETATTR of the fs_locations
 attribute. A RENEW follows to help tie the operations to the lease
 returning NFS4ERR_LEASE_MOVED. Once the client has done this for all
 migrated filesystems on which the client holds state, the server will
 resume normal handling of stateful requests from that client.

 In order to support legacy clients that do not handle the
 NFS4ERR_LEASE_MOVED error correctly, the server SHOULD time out after
 a wait of at least two lease periods, at which time it will resume
 normal handling of stateful requests from all clients. If a client
 attempts to access the migrated files, the server MUST reply
 NFS4ERR_MOVED.

 When the client receives an NFS4ERR_MOVED error, the client can
 follow the normal process to obtain the new server information
 (through the fs_locations attribute) and perform renewal of those
 leases on the new server. If the server has not had state
 transferred to it transparently, the client will receive either
 NFS4ERR_STALE_CLIENTID or NFS4ERR_STALE_STATEID from the new server,
 as described above. The client can then recover state information as
 it does in the event of server failure.

 Aside from recovering from a migration, there are other reasons a
 client may wish to retrieve fs_locations information from a server.
 When a server becomes unresponsive, for example, a client may use
 cached fs_locations data to discover an alternate server hosting the
 same fs data. A client may periodically request fs_locations data
 from a server in order to keep its cache of fs_locations data fresh.

Noveck, et al. Expires July 19, 2012 [Page 30]

Internet-Draft nfsv4-migr-isssues January 2012

 Since a GETATTR(fs_locations) operation would be used for refreshing
 cached fs_locations data, a server could mistake such a request as
 indicating recognition of an NFS4ERR_LEASE_MOVED condition.
 Therefore a compound which is not intended to signal that a client
 has recognized a migrated lease SHOULD be prefixed with a guard
 operation which fails with NFS4ERR_MOVED if the file handle being
 queried is no longer present on the server. The guard can be as
 simple as a GETFH operation.

 Though unlikely, it is possible that the target of such a compound
 could be migrated in the time after the guard operation is executed
 on the server but before the GETATTR(fs_locations) operation is
 encountered. When a client issues a GETATTR(fs_locations) operation
 as part of a compound not intended to signal recognition of a
 migrated lease, it SHOULD be prepared to process fs_locations data in
 the reply that shows the current location of the fs is gone.

5.6.4. Migration and the Lease_time Attribute

 In order that the client may appropriately manage its leases in the
 case of migration, the destination server must establish proper
 values for the lease_time attribute.

 When state is transferred transparently, that state should include
 the correct value of the lease_time attribute. The lease_time
 attribute on the destination server must never be less than that on
 the source since this would result in premature expiration of leases
 granted by the source server. Upon migration in which state is
 transferred transparently, the client is under no obligation to re-
 fetch the lease_time attribute and may continue to use the value
 previously fetched (on the source server).

 In the case in which lease merger occurs as part of state transfer,
 the lease_time attribute of the destination lease remains in effect.
 The client can simply renew that lease with its existing lease_time
 attribute. State in the source lease is renewed at the time of
 transfer so that it cannot expire, as long as the destination lease
 is appropriately renewed.

 If state has not been transferred transparently (i.e., the client
 sees a real or simulated server reboot), the client should fetch the
 value of lease_time on the new (i.e., destination) server, and use it
 for subsequent locking requests. However the server must respect a
 grace period at least as long as the lease_time on the source server,
 in order to ensure that clients have ample time to reclaim their
 locks before potentially conflicting non-reclaimed locks are granted.
 The means by which the new server obtains the value of lease_time on
 the old server is left to the server implementations. It is not

Noveck, et al. Expires July 19, 2012 [Page 31]

Internet-Draft nfsv4-migr-isssues January 2012

 specified by the NFS version 4.0 protocol.

6. Results of proposed changes

 The purpose of this section is to examine the troubling results
 reported in Section 3.1. We will look at the scenarios as they would
 be handled within the proposal.

 Because the choice of uniform vs. non-uniform nfs_client_id4 id
 strings is a "SHOULD" in these cases, we will designate clients that
 follow this recommendation by SHOULD-UF-CID.

 We will also have to take account of the various merger-related
 "SHOULD" clauses to better understand how they have addressed the
 issues seen, we abbreviate these (collectively known as "SHOULD-
 merges") as follows:

 o SHOULD-SVR-AM refers to the server obeying the SHOULD which
 RECOMMENDS that they merge leases with identical nfs_client_id4 id
 strings and verifiers.

6.1. Results: Failure to free migrated state on client reboot

 Let’s look at the troublesome situation cited in Section 3.1.1. We
 have already seen what happens when SHOULD-UF-CID does not hold. Now
 let’s look at the situation in which SHOULD-UF-CID holds, whether
 SHOULD-SVR-AM is in effect or not.

 o A client C establishes a clientid4 C1 with server ABC specifying
 an nfs_client_id4 with "id" value "C" and verifier 0x111.

 o The client begins to access files in filesystem F on server ABC,
 resulting in generating stateids S1, S2, etc. under the lease for
 clientid C1. It may also access files on other filesystems on the
 same server.

 o The filesystem is migrated from ABC to server XYZ. When
 transparent state migration is in effect, stateids S1 and S2 and
 lease {0x111, "C", C1} are now available for use by client C at
 server XYZ. So far, so good.

 o Client C reboots and attempts to access data on server XYZ,
 whether in filesystem F or another. It does a SETCLIENID with an
 nfs_client_id4 with "id" value "C" and verifier 0x112. The state
 associated with lease {0x111, "C", C1} is deleted as part of
 creating {0x112, "C", C2}. No problem.

Noveck, et al. Expires July 19, 2012 [Page 32]

Internet-Draft nfsv4-migr-isssues January 2012

 The correctness signature for this issue is

 SHOULD-UF-CID

 so if you have clients and servers that obey the SHOULD clauses, the
 problem is gone regardless of the choice on the MAY.

6.2. Results: Server reboots resulting in confused lease situation

 Now let’s consider the scenario given in Section 3.1.2. We have
 already seen what happens when SHOULD-UF-CID does not hold . Now
 let’s look at the situation in which SHOULD-UF-CID holds and SHOULD-
 SVR-AM holds as well.

 o Client C talks to server ABC using an nfs_client_id4 id like
 "C-ABC" and verifier v1. As a result a lease with clientid4 c.i
 established: {v1, "C-ABC", c.i}.

 o fs_a1 migrates from server ABC to server XYZ along with its state.
 Now server XYZ also has a lease: {v1, "C-ABC", c.i}

 o Server ABC reboots.

 o Client C talks to server ABC using an nfs_client_id4 id like
 "C-ABC" and verifier v1. As a result a lease with clientid4 c.j
 established: {v1, "C-ABC", c.j}.

 o fs_a2 migrates from server ABC to server XYZ. As part of
 migration the incoming lease is seen to denote same Nfs_client_id4
 and so is merged with {v1, "C-ABC, c.i}.

 o Now server XYZ has only one lease that matches {v1, "C_ABC", *},
 so the problem is solved

 Now let’s consider the same scenario in the situation in which
 SHOULD-UF-CID holds and SHOULD-SVR-AM holds as well.

 o Client C talks to server ABC using an nfs_client_id4 id like "C"
 and verifier v1. As a result a lease with clientid4 c.i is
 established: {v1, "C", c.i}.

 o fs_a1 migrates from server ABC to server XYZ along with its state.
 Now XYZ also has a lease: {v1, "C", c.i}

 o Server ABC reboots.

 o Client C talks to server ABC using an nfs_client_id4 id like "C"
 and verifier v1. As a result a lease with clientid4 c.j is

Noveck, et al. Expires July 19, 2012 [Page 33]

Internet-Draft nfsv4-migr-isssues January 2012

 established: {v1, "C", c.j}.

 o fs_a2 migrates from server ABC to server XYZ. As part of
 migration the incoming lease is seen to denote the same
 nfs_client_id4 and so is merged with {v1, "C", c.i}.

 o Now server XYZ has only one lease that matches {v1, "C", *}, so
 the problem is solved

 The correctness signature for this issue is

 SHOULD-SVR-AM

 so if you have clients and servers that obey the SHOULD clauses, the
 problem is gone regardless of the choice on the MAY.

6.3. Results: Client complexity issues

 Consider the following situation:

 o There are a set of clients C1 through Cn accessing servers S1
 through Sm. Each server manages some significant number of
 filesystems with the filesystem count L being significantly
 greater than m.

 o Each client Cx will access a subset of the servers and so will
 have up to m clientid’s, which we will call Cxy for server Sy.

 o Now assume that for load-balancing or other operational reasons,
 numbers of filesystems are migrated among the servers. As a
 result, depending on how this handled, the number of clientids may
 explode. See below.

 Now look what will happen under various scenarios:

 o We have previously (in Section 3.1.3) looked at this in case of
 client following the non-uniform client-string model. In that
 case, each client-server pair could have up to m clientid’s and
 each client will have up to m**2 clientids. If we add the
 possibility of server reboot, the only bound on a client’s
 clientid count is L.

 o If we look at this in the SHOULD-UF-CID case in which the SHOULD-
 SVR_AM condition holds, the situation is no different. Although
 the server has the client identity information that could enable
 same-client-same-server leases to be combined, it does not do so.
 We still have up to L clientid’s per client.

Noveck, et al. Expires July 19, 2012 [Page 34]

Internet-Draft nfsv4-migr-isssues January 2012

 o On the other hand, if we look at the SHOULD-UF-CID case in which
 SHOULD-SVR-AM holds, the problem is gone. There can be no more
 than m clientids per client, and n clientid’s per server.

 The correctness signature for this issue is

 (SHOULD-UF-CID & SHOULD-SVR-AM)

 so if you have clients and servers that obey the SHOULD clauses, the
 problem is gone regardless of the choice on the MAY.

6.4. Result summary

 We have seen that (SHOULD-SVR-AM & SHOULD-UF-CID) are sufficient to
 solve the problems people have experienced.

7. Security Considerations

 The current definitive definition of the NFSv4.0 protocol [RFC3530],
 and the current pending draft of RFC3530bis [cur-v4.0-bis] both
 agree. The section entitled "Security Considerations" encourages
 that clients protect the integrity of the SECINFO operation, any
 GETATTR operation for the fs_locations attribute, and the operations
 SETCLIENTID/SETCLIENTID_CONFIRM. A migration recovery event can use
 any or all of these operations. We do not recommend any change here.

8. IANA Considerations

 This document does not require actions by IANA.

9. Acknowledgements

 The editor and authors of this document gratefully acknowledge the
 contributions of Trond Myklebust of NetApp and Robert Thurlow of
 Oracle. We also thank Tom Haynes of NetApp and Spencer Shepler of
 Microsoft for their guidance and suggestions.

 Special thanks go to members of the Oracle Solaris NFS team,
 especially Rick Mesta and James Wahlig, for their work implementing
 an NFSv4.0 migration prototype and identifying many of the issues
 documented here.

10. References

Noveck, et al. Expires July 19, 2012 [Page 35]

Internet-Draft nfsv4-migr-isssues January 2012

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

10.2. Informative References

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",
 RFC 5661, January 2010.

 [cur-v4.0-bis]
 Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", 2011, <http://www.ietf.org/id/
 draft-ietf-nfsv4-rfc3530bis-16.txt>.

 Work in progress.

Authors’ Addresses

 David Noveck (editor)
 EMC Corporation
 228 South Street
 Hopkinton, MA 01748
 US

 Phone: +1 508 249 5748
 Email: david.noveck@emc.com

 Piyush Shivam
 Oracle Corporation
 5300 Riata Park Ct.
 Austin, TX 78727
 US

 Phone: +1 512 401 1019
 Email: piyush.shivam@oracle.com

Noveck, et al. Expires July 19, 2012 [Page 36]

Internet-Draft nfsv4-migr-isssues January 2012

 Charles Lever
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 US

 Phone: +1 248 614 5091
 Email: chuck.lever@oracle.com

 Bill Baker
 Oracle Corporation
 5300 Riata Park Ct.
 Austin, TX 78727
 US

 Phone: +1 512 401 1081
 Email: bill.baker@oracle.com

Noveck, et al. Expires July 19, 2012 [Page 37]

