

 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track E. Rescorla

Expires: July 19, 2012 RTFM, Inc.

 J. Hildebrand

 Cisco Systems, Inc.

 January 16, 2012

JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-00

Abstract

JSON Web Encryption (JWE) is a means of representing encrypted content using JSON data
structures. Cryptographic algorithms and identifiers used with this specification are
enumerated in the separate JSON Web Algorithms (JWA) specification. Related digital
signature and HMAC capabilities are described in the separate JSON Web Signature (JWS)
specification.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on July 19, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Terminology
3. JSON Web Encryption (JWE) Overview
 3.1. Example JWE

RFC 2119

 TOC

 TOC

4. JWE Header
 4.1. Reserved Header Parameter Names
 4.2. Public Header Parameter Names
 4.3. Private Header Parameter Names
5. Message Encryption
6. Message Decryption
7. CEK Encryption
 7.1. Asymmetric Encryption
 7.2. Symmetric Encryption
8. Composition
9. Encrypting JWEs with Cryptographic Algorithms
10. IANA Considerations
11. Security Considerations
 11.1. Unicode Comparison Security Issues
12. Open Issues and Things To Be Done (TBD)
13. References
 13.1. Normative References
 13.2. Informative References
Appendix A. JWE Examples
 A.1. JWE Example using TBD Algorithm
 A.1.1. Encrypting
 A.1.2. Decrypting
Appendix B. Acknowledgements
Appendix C. Document History
§ Authors' Addresses

1. Introduction

JSON Web Encryption (JWE) is a compact encryption format intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. It provides a
wrapper for encrypted content using JSON [RFC4627] data structures. The JWE
encryption mechanisms are independent of the type of content being encrypted.
Cryptographic algorithms and identifiers used with this specification are enumerated in the
separate JSON Web Algorithms (JWA) specification. Related digital signature and HMAC
capabilities are described in the separate JSON Web Signature (JWS) specification.

2. Terminology

JSON Web Encryption (JWE)
A data structure representing an encrypted version of a Plaintext. The structure
consists of three parts: the JWE Header, the JWE Encrypted Key, and the JWE
Ciphertext.

Plaintext
The bytes to be encrypted - a.k.a., the message.

Ciphertext
The encrypted version of the Plaintext.

Content Encryption Key (CEK)
A symmetric key generated to encrypt the Plaintext for the recipient to produce
the Ciphertext, which is encrypted to the recipient as the JWE Encrypted Key.

JWE Header
A string representing a JSON object that describes the encryption operations
applied to create the JWE Encrypted Key and the JWE Ciphertext.

JWE Encrypted Key
The Content Encryption Key (CEK) is encrypted with the intended recipient's key
and the resulting encrypted content is recorded as a byte array, which is referred
to as the JWE Encrypted Key.

JWE Ciphertext
A byte array containing the Ciphertext.

Encoded JWE Header
Base64url encoding of the bytes of the UTF-8 [RFC3629]
representation of the JWE Header.

RFC 4627

[JWA]
[JWS]

RFC 3629

 TOC

 TOC

Encoded JWE Encrypted Key
Base64url encoding of the JWE Encrypted Key.

Encoded JWE Ciphertext
Base64url encoding of the JWE Ciphertext.

Header Parameter Names
The names of the members within the JWE Header.

Header Parameter Values
The values of the members within the JWE Header.

Base64url Encoding
For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See Appendix B of for notes on implementing base64url encoding without
padding.)

3. JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and base64url encoding. The
representation consists of three parts: the JWE Header, the JWE Encrypted Key, and the JWE
Ciphertext. The three parts are base64url-encoded for transmission, and typically
represented as the concatenation of the encoded strings in that order, with the three strings
being separated by period ('.') characters.

JWE utilizes encryption to ensure the confidentiality of the contents of the Plaintext. JWE does
not add a content integrity check if not provided by the underlying encryption algorithm. If
such a check is needed, an algorithm providing it such as AES-GCM can be
used, or alternatively, it can be provided through composition by encrypting a representation
of the digitally signed or HMACed content.

3.1. Example JWE

The following example JWE Header declares that:

the Content Encryption Key is encrypted to the recipient using the RSA-
PKCS1_1.5 algorithm to produce the JWE Encrypted Key,
the Plaintext is encrypted using the AES-256-GCM algorithm to produce the JWE
Ciphertext,
the specified 64-bit Initialization Vector with the base64url encoding __79_Pv6-
fg was used, and
the thumbprint of the X.509 certificate that corresponds to the key used to
encrypt the JWE has the base64url encoding 7noOPq-hJ1_hCnvWh6IeYI2w9Q0.

{"alg":"RSA1_5",
 "enc":"A256GCM",
 "iv":"__79_Pv6-fg",
 "x5t":"7noOPq-hJ1_hCnvWh6IeYI2w9Q0"}

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value (with line breaks for display purposes only):

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2R0NNIiwNCiAiaXYiOiJfXzc5
X1B2Ni1mZyIsDQogIng1dCI6Ijdub09QcS1oSjFfaENudldoNkllWUkydzlRMCJ9

TBD: Finish this example by showing generation of a Content Encryption Key (CEK), using the
CEK to encrypt the Plaintext to produce the Ciphertext (and base64url encoding it), and using
the recipient's key to encrypt the CEK to produce the JWE Encrypted Key (and base64url
encoding it).

RFC 4648

[JWS]

[NIST‑800‑38D]

 TOC

 TOC

4. JWE Header

The members of the JSON object represented by the JWE Header describe the encryption
applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter
Names within this object MUST be unique. Implementations MUST understand the entire
contents of the header; otherwise, the JWE MUST be rejected.

4.1. Reserved Header Parameter Names

The following header parameter names are reserved. All the names are short because a core
goal of JWE is for the representations to be compact.

TBD: Describe the relationship between the JWS and JWE header parameters - especially the
alg parameter, which can contain digital signature or HMAC algorithms (from JWS) or
encryption algorithms (from JWE), and the key reference parameters jku, kid, x5u, and x5t.

Header
Parameter
Name

JSON
Value
Type

Header
Parameter
Syntax

Header Parameter Semantics

alg string StringOrURI

The alg (algorithm) header parameter identifies the cryptographic
algorithm used to secure the JWE Encrypted Key. A list of defined
encryption alg values is presented in Section 4, Table 2 of the
JSON Web Algorithms (JWA) specification. The processing of
the alg (algorithm) header parameter requires that the value
MUST be one that is both supported and for which there exists a
key for use with that algorithm associated with the intended
recipient. The alg value is case sensitive. This header parameter
is REQUIRED.

enc string StringOrURI

The enc (encryption method) header parameter identifies the
symmetric encryption algorithm used to secure the Ciphertext. A
list of defined enc values is presented in Section 4, Table 3 of the
JSON Web Algorithms (JWA) specification. The processing of
the enc (encryption method) header parameter requires that the
value MUST be one that is supported. The enc value is case
sensitive. This header parameter is REQUIRED.

iv string String
Initialization Vector (iv) value for algorithms requiring it,
represented as a base64url encoded string. This header
parameter is OPTIONAL.

epk object
JWK Key
Object

Ephemeral Public Key (epk) value created by the originator for the
use in ECDH-ES [RFC6090] encryption. This key is
represented in the same manner as a JSON Web Key JWK
Key Object value, containing crv (curve), x, and y members. The
inclusion of the JWK Key Object alg (algorithm) member is
OPTIONAL. This header parameter is OPTIONAL.

zip string String

Compression algorithm (zip) applied to the Plaintext before
encryption, if any. This specification defines the value GZIP to refer
to the encoding format produced by the file compression program
"gzip" (GNU zip) as described in ; this format is a
Lempel-Ziv coding (LZ77) with a 32 bit CRC. If no zip parameter is
present, or its value is none, no compression is applied to the
Plaintext before encryption. The zip value is case sensitive. This
header parameter is OPTIONAL.

jku string URL

The jku (JSON Web Key URL) header parameter is an absolute
URL that refers to a resource for a set of JSON-encoded public
keys, one of which corresponds to the key that was used to
encrypt the JWE. The keys MUST be encoded as described in the
JSON Web Key (JWK) specification. The protocol used to
acquire the resource MUST provide integrity protection. An HTTP

[JWA]

[JWA]

RFC 6090
[JWK]

[RFC1952]

[JWK]

 TOC

 TOC

GET request to retrieve the certificate MUST use TLS
[RFC2818] [RFC5246] with server authentication

 [RFC6125]. This header parameter is OPTIONAL.

kid string String

The kid (key ID) header parameter is a hint indicating which key
was used to encrypt the JWE. This allows originators to explicitly
signal a change of key to recipients. The interpretation of the
contents of the kid parameter is unspecified. This header
parameter is OPTIONAL.

x5u string URL

The x5u (X.509 URL) header parameter is an absolute URL that
refers to a resource for the X.509 public key certificate or
certificate chain corresponding to the key used to encrypt the JWE.
The identified resource MUST provide a representation of the
certificate or certificate chain that conforms to
[RFC5280] in PEM encoded form [RFC1421]. The
protocol used to acquire the resource MUST provide integrity
protection. An HTTP GET request to retrieve the certificate MUST
use TLS [RFC2818] [RFC5246] with server
authentication [RFC6125]. This header parameter is
OPTIONAL.

x5t string String

The x5t (x.509 certificate thumbprint) header parameter provides
a base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
encoding of the X.509 certificate that corresponds to the key that
was used to encrypt the JWE. This header parameter is OPTIONAL.

typ string String
The typ (type) header parameter is used to declare the type of
the encrypted content. The typ value is case sensitive. This
header parameter is OPTIONAL.

 Table 1: Reserved Header Parameter Definitions

Additional reserved header parameter names MAY be defined via the IANA JSON Web
Encryption Header Parameters registry, as per . The syntax values used above
are defined as follows:

Syntax
Name

Syntax Definition

String Any string value MAY be used.

StringOrURI Any string value MAY be used but a value containing a ":" character MUST be a URI as
defined in [RFC3986].

URL A URL as defined in [RFC1738].

 Table 2: Header Parameter Syntax Definitions

4.2. Public Header Parameter Names

Additional header parameter names can be defined by those using JWE. However, in order to
prevent collisions, any new header parameter name or algorithm value SHOULD either be
defined in the IANA JSON Web Encryption Header Parameters registry or be defined as a URI
that contains a collision resistant namespace. In each case, the definer of the name or value
needs to take reasonable precautions to make sure they are in control of the part of the
namespace they use to define the header parameter name.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

4.3. Private Header Parameter Names

A producer and consumer of a JWE may agree to any header parameter name that is not a

RFC 2818
RFC 5246 RFC

6125

RFC 5280
RFC 1421

RFC 2818 RFC 5246
RFC 6125

Section 10

RFC 3986

RFC 1738

 TOC

 TOC

 TOC

 TOC

Reserved Name or a Public Name . Unlike Public Names, these
private names are subject to collision and should be used with caution.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

5. Message Encryption

The message encryption process is as follows:

1. Generate a random Content Encryption Key (CEK). The CEK MUST have a length
at least equal to that of the required encryption keys and MUST be generated
randomly. See [RFC4086] for considerations on generating random
values.

2. Encrypt the CEK for the recipient (see).
3. Generate a random IV (if required for the algorithm).
4. Compress the Plaintext if a zip parameter was included.
5. Serialize the (compressed) Plaintext into a bitstring M.
6. Encrypt M using the CEK and IV to form the bitstring C.
7. Set the Encoded JWE Ciphertext equal to the base64url encoded representation

of C.
8. Create a JWE Header containing the encryption parameters used. Note that

white space is explicitly allowed in the representation and no canonicalization is
performed before encoding.

9. Base64url encode the bytes of the UTF-8 representation of the JWE Header to
create the Encoded JWE Header.

10. The three encoded parts, taken together, are the result of the encryption.

6. Message Decryption

The message decryption process is the reverse of the encryption process. If any of these
steps fails, the JWE MUST be rejected.

1. The Encoded JWE Header, the Encoded JWE Encrypted Key, and the Encoded JWE
Ciphertext MUST be successfully base64url decoded following the restriction that
no padding characters have been used.

2. The resulting JWE Header MUST be completely valid JSON syntax conforming to
 [RFC4627].

3. The resulting JWE Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported.

4. Verify that the JWE Header appears to reference a key known to the recipient.
5. Decrypt the JWE Encrypted Key to produce the CEK.
6. Decrypt the binary representation of the JWE Ciphertext using the CEK.
7. Uncompress the result of the previous step, if a zip parameter was included.
8. Output the result.

7. CEK Encryption

JWE supports two forms of CEK encryption:

Asymmetric encryption under the recipient's public key.
Symmetric encryption under a shared key.

7.1. Asymmetric Encryption

In the asymmetric encryption mode, the CEK is encrypted under the recipient's public key.
The asymmetric encryption modes defined for use with this in this specification are listed in

Section 4.1 Section 4.2

RFC 4086

Section 7

RFC 4627

 TOC

 TOC

 TOC

 TOC

 TOC

Section 4, Table 2 of the JSON Web Algorithms (JWA) specification.

7.2. Symmetric Encryption

In the symmetric encryption mode, the CEK is encrypted under a symmetric key shared
between the sender and receiver. The symmetric encryption modes defined for use with this
in this specification are listed in Section 4, Table 2 of the JSON Web Algorithms (JWA)
specification. For GCM, the random 64-bit IV is prepended to the ciphertext.

8. Composition

This document does not specify a combination integrity and encrypted mode. However,
because the contents of a message can be arbitrary, encryption and data origin
authentication can be provided by recursively encapsulating multiple JWE and JWS messages.
In general, senders SHOULD digitally sign or HMAC the message and then encrypt the result
(thus encrypting the digital signature or HMAC). This prevents attacks in which the digital
signature or HMAC is stripped, leaving just an encrypted message, as well as providing
privacy for signers.

9. Encrypting JWEs with Cryptographic Algorithms

JWE uses cryptographic algorithms to encrypt the Content Encryption Key (CEK) and the
Plaintext. The JSON Web Algorithms (JWA) specification enumerates a set of
cryptographic algorithms and identifiers to be used with this specification. Specifically,
Section 4, Table 2 enumerates a set of alg (algorithm) header parameter values and
Section 4, Table 3 enumerates a set of enc (encryption method) header parameter values
intended for use this specification. It also describes the semantics and operations that are
specific to these algorithms and algorithm families.

Public keys employed for encryption can be identified using the Header Parameter methods
described in or can be distributed using methods that are outside the scope of
this specification.

10. IANA Considerations

This specification calls for:

A new IANA registry entitled "JSON Web Encryption Header Parameters" for
reserved header parameter names is defined in . Inclusion in the
registry is RFC Required in the [RFC5226] sense for reserved JWE
header parameter names that are intended to be interoperable between
implementations. The registry will just record the reserved header parameter
name and a pointer to the RFC that defines it. This specification defines inclusion
of the header parameter names defined in .

11. Security Considerations

TBD: Lots of work to do here. We need to remember to look into any issues relating to
security and JSON parsing. One wonders just how secure most JSON parsing libraries are.
Were they ever hardened for security scenarios? If not, what kind of holes does that open up?
Also, we need to walk through the JSON standard and see what kind of issues we have
especially around comparison of names. For instance, comparisons of header parameter
names and other parameters must occur after they are unescaped. Need to also put in text
about: Importance of keeping secrets secret. Rotating keys. Strengths and weaknesses of

[JWA]

[JWA]

[JWA]

Section 4.1

Section 4.1
RFC 5226

Table 1

 TOC

 TOC

the different algorithms.

TBD: Need to put in text about why strict JSON validation is necessary. Basically, that if
malformed JSON is received then the intent of the sender is impossible to reliably discern.
One example of malformed JSON that MUST be rejected is an object in which the same
member name occurs multiple times.

TBD: We need a section on generating randomness in browsers - it's easy to screw up.

When utilizing TLS to retrieve information, the authority providing the resource MUST be
authenticated and the information retrieved MUST be free from modification.

11.1. Unicode Comparison Security Issues

Header parameter names in JWEs are Unicode strings. For security reasons, the
representations of these names must be compared verbatim after performing any escape
processing (as per [RFC4627], Section 2.5).

This means, for instance, that these JSON strings must compare as being equal ("enc",
"\u0065nc"), whereas these must all compare as being not equal to the first set or to each
other ("ENC", "Enc", "en\u0043").

JSON strings MAY contain characters outside the Unicode Basic Multilingual Plane. For
instance, the G clef character (U+1D11E) may be represented in a JSON string as
"\uD834\uDD1E". Ideally, JWE implementations SHOULD ensure that characters outside the
Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not
possible due to these characters exercising limitations present in the underlying JSON
implementation, then input containing them MUST be rejected.

12. Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

Describe the relationship between the JWE, JWS, and JWT header parameters. In
particular, point out that the set of "alg" values defined by each must be
compatible and non-overlapping.
Consider whether we want to define composite integrity/encryption operations
(as was the consensus to do at IIW, as documented at http://self-issued.info/?
p=378). This would provide both confidentiality and integrity.
Consider whether reusing the JWS jku, kid, x5u, and x5t parameters is the right
thing to do, particularly as it effectively precludes specifying composite
operations.
Consider whether to add parameters for directly including keys in the header,
either as JWK Key Objects, or X.509 cert values, or both.
Consider whether to add version numbers.
Consider which of the open issues from the JWS and JWT specs also apply here.
Think about how to best describe the concept currently described as "the bytes
of the UTF-8 representation of". Possible terms to use instead of "bytes of"
include "byte sequence", "octet series", and "octet sequence". Also consider
whether we want to add an overall clarifying statement somewhere in each spec
something like "every place we say 'the UTF-8 representation of X', we mean 'the
bytes of the UTF-8 representation of X'". That would potentially allow us to omit
the "the bytes of" part everywhere else.
Finish the Security Considerations section.
Write a note in the Security Considerations section about how x5t (x.509
certificate thumbprint) should be deprecated because of known problems with
SHA-1.
Should StringOrURI use IRIs rather than RFC 3986 URIs?
Provide a more robust description of the use of the IV. The current statement
"For GCM, the random 64-bit IV is prepended to the ciphertext" in the Symmetric
Encryption section is almost certainly out of place.

RFC 4627

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

13. References

13.1. Normative References

[JWA] Jones, M., “JSON Web Algorithms (JWA),” January 2012.

[JWK] Jones, M., “JSON Web Key (JWK),” January 2012.

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” January 2012.

[NIST-800-
38D]

National Institute of Standards and Technology (NIST), “Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC,” NIST PUB 800-38D, December 2001.

[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, “Uniform Resource Locators (URL),” RFC 1738,
December 1994 (TXT).

[RFC1952] Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and G. Randers-Pehrson, “GZIP file format specification
version 4.3,” RFC 1952, May 1996 (TXT, PS, PDF).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086,
June 2005 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26,
RFC 5226, May 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[RFC6090] McGrew, D., Igoe, K., and M. Salter, “Fundamental Elliptic Curve Cryptography Algorithms,” RFC 6090,
February 2011 (TXT).

[RFC6125] Saint-Andre, P. and J. Hodges, “Representation and Verification of Domain-Based Application Service
Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of
Transport Layer Security (TLS),” RFC 6125, March 2011 (TXT).

13.2. Informative References

[I-D.rescorla-jsms] Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work in
progress), March 2011 (TXT).

[JSE] Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.

[RFC5652] Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT).

[W3C.CR-xmlenc-
core1-20110303]

Hirsch, F., Roessler, T., Reagle, J., and D. Eastlake, “XML Encryption Syntax and Processing Version
1.1,” World Wide Web Consortium CR CR-xmlenc-core1-20110303, March 2011 (HTML).

Appendix A. JWE Examples

This section provides several examples of JWEs.

A.1. JWE Example using TBD Algorithm

A.1.1. Encrypting

TBD: Demonstrate encryption steps with this algorithm

mailto:mbj@microsoft.com

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms

mailto:mbj@microsoft.com

http://tools.ietf.org/html/draft-ietf-jose-json-web-key

mailto:mbj@microsoft.com

mailto:ve7jtb@ve7jtb.com

mailto:n-sakimura@nri.co.jp

http://tools.ietf.org/html/draft-ietf-jose-json-web-signature

mailto:104-8456@mcimail.com

http://tools.ietf.org/html/rfc1421

http://www.rfc-editor.org/rfc/rfc1421.txt

mailto:timbl@info.cern.ch

mailto:masinter@parc.xerox.com

mailto:mpm@boombox.micro.umn.edu

http://tools.ietf.org/html/rfc1738

http://www.rfc-editor.org/rfc/rfc1738.txt

mailto:ghost@aladdin.com

mailto:gzip@prep.ai.mit.edu

mailto:madler@alumni.caltech.edu

mailto:ghost@aladdin.com

mailto:randeg@alumni.rpi.edu

http://tools.ietf.org/html/rfc1952

http://www.rfc-editor.org/rfc/rfc1952.txt

http://www.rfc-editor.org/rfc/rfc1952.ps

http://www.rfc-editor.org/rfc/rfc1952.pdf

mailto:sob@harvard.edu

http://tools.ietf.org/html/rfc2119

http://www.rfc-editor.org/rfc/rfc2119.txt

http://xml.resource.org/public/rfc/html/rfc2119.html

http://xml.resource.org/public/rfc/xml/rfc2119.xml

http://tools.ietf.org/html/rfc2818

http://www.rfc-editor.org/rfc/rfc2818.txt

http://tools.ietf.org/html/rfc3629

http://www.rfc-editor.org/rfc/rfc3629.txt

mailto:timbl@w3.org

mailto:fielding@gbiv.com

mailto:LMM@acm.org

http://tools.ietf.org/html/rfc3986

http://www.rfc-editor.org/rfc/rfc3986.txt

http://xml.resource.org/public/rfc/html/rfc3986.html

http://xml.resource.org/public/rfc/xml/rfc3986.xml

http://tools.ietf.org/html/rfc4086

http://www.rfc-editor.org/rfc/rfc4086.txt

http://tools.ietf.org/html/rfc4627

http://www.rfc-editor.org/rfc/rfc4627.txt

http://tools.ietf.org/html/rfc4648

http://www.rfc-editor.org/rfc/rfc4648.txt

http://tools.ietf.org/html/rfc5226

http://www.rfc-editor.org/rfc/rfc5226.txt

http://tools.ietf.org/html/rfc5246

http://www.rfc-editor.org/rfc/rfc5246.txt

http://tools.ietf.org/html/rfc5280

http://www.rfc-editor.org/rfc/rfc5280.txt

http://tools.ietf.org/html/rfc6090

http://www.rfc-editor.org/rfc/rfc6090.txt

http://tools.ietf.org/html/rfc6125

http://www.rfc-editor.org/rfc/rfc6125.txt

http://tools.ietf.org/html/draft-rescorla-jsms-00

http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt

http://jsonenc.info/enc/1.0/

http://tools.ietf.org/html/rfc5652

http://www.rfc-editor.org/rfc/rfc5652.txt

http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303

http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303

 TOC

 TOC

 TOC

 TOC

A.1.2. Decrypting

TBD: Demonstrate decryption steps with this algorithm

Appendix B. Acknowledgements

Solutions for encrypting JSON content were also explored by [JSE]
and [I‑D.rescorla‑jsms], both of which significantly
influenced this draft. This draft attempts to explicitly reuse as many of the relevant concepts
from [W3C.CR‑xmlenc‑core1‑20110303] and [RFC5652] as
possible, while utilizing simple compact JSON-based data structures.

Special thanks are due to John Bradley and Nat Sakimura for the discussions that helped
inform the content of this specification and to Eric Rescorla and Joe Hildebrand for allowing
the reuse of text from in this document.

Appendix C. Document History

-00

Created the initial IETF draft based upon draft-jones-json-web-encryption-02 with
no normative changes.
Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 Eric Rescorla
 RTFM, Inc.

Email: ekr@rtfm.com

 Joe Hildebrand
 Cisco Systems, Inc.

Email: jhildebr@cisco.com

JSON Simple Encryption
JavaScript Message Security Format

XML Encryption 1.1 RFC 5652

[I‑D.rescorla‑jsms]

mailto:mbj@microsoft.com

http://self-issued.info/

mailto:ekr@rtfm.com

mailto:jhildebr@cisco.com

		JSON Web Encryption (JWE) draft-ietf-jose-json-web-encryption-00

		Abstract

		Requirements Language

		Status of this Memo

		Copyright Notice

		Table of Contents

		1. Introduction

		2. Terminology

		3. JSON Web Encryption (JWE) Overview

		3.1. Example JWE

		4. JWE Header

		4.1. Reserved Header Parameter Names

		4.2. Public Header Parameter Names

		4.3. Private Header Parameter Names

		5. Message Encryption

		6. Message Decryption

		7. CEK Encryption

		7.1. Asymmetric Encryption

		7.2. Symmetric Encryption

		8. Composition

		9. Encrypting JWEs with Cryptographic Algorithms

		10. IANA Considerations

		11. Security Considerations

		11.1. Unicode Comparison Security Issues

		12. Open Issues and Things To Be Done (TBD)

		13. References

		13.1. Normative References

		13.2. Informative References

		Appendix A. JWE Examples

		A.1. JWE Example using TBD Algorithm

		A.1.1. Encrypting

		A.1.2. Decrypting

		Appendix B. Acknowledgements

		Appendix C. Document History

		Authors' Addresses

