

Network Working Group N. Borenstein
Request for Comments: 1563 Bellcore
Obsoletes: 1523 January 1994
Category: Informational

The text/enriched MIME Content-type

Status of this Memo

This memo provides information for the Internet community. This memo does not
specify an Internet standard of any kind. Distribution of this memo is unlimited.

Abstract

MIME [RFC-1341, RFC-1521] defines a format and general framework for the
representation of a wide variety of data types in Internet mail. This document defines
one particular type of MIME data, the text/enriched type, a refinement of the
"text/richtext" type defined in RFC 1341. The text/enriched MIME type is intended to
facilitate the wider interoperation of simple enriched text across a wide variety of
hardware and software platforms.

The Text/enriched MIME type

In order to promote the wider interoperability of simple formatted text, this document
defines an extremely simple subtype of the MIME content-type "text", the
"text/enriched" subtype. This subtype was designed to meet the following criteria:

1. The syntax must be extremely simple to parse, so that even teletype-
oriented mail systems can easily strip away the formatting information
and leave only the readable text.

2. The syntax must be extensible to allow for new formatting commands
that are deemed essential for some application.

3. If the character set in use is ASCII or an 8-bit ASCII superset, then the
raw form of the data must be readable enough to be largely
unobjectionable in the event that it is displayed on the screen of the user
of a non-MIME-conformant mail reader.

4. The capabilities must be extremely limited, to ensure that it can
represent no more than is likely to be representable by the user’s primary
word processor. While this limits what can be sent, it increases the
likelihood that what is sent can be properly displayed.

Borenstein [Page 1]

RFC 1563 A text/enriched type for MIME January 1994

This document defines a new MIME content-type, "text/enriched". The content-type line
for this type may have one optional parameter, the "charset" parameter, with the same
values permitted for the "text/plain" MIME content-type.

The syntax of "text/enriched" is very simple. It represents text in a single character set --
US-ASCII by default, although a different character set can be specified by the use of the
"charset" parameter. (The semantics of text/enriched in non-ASCII character sets are
discussed later in this document.) All characters represent themselves, with the
exception of the "<" character (ASCII 60), which is used to mark the beginning of a
formatting command. Formatting instructions consist of formatting commands
surrounded by angle brackets ("<>", ASCII 60 and 62). Each formatting command may
be no more than 60 characters in length, all in US-ASCII, restricted to the alphanumeric
and hyphen ("-") characters. Formatting commands may be preceded by a solidus ("/",
ASCII 47), making them negations, and such negations must always exist to balance the
initial opening commands. Thus, if the formatting command "<bold>" appears at some
point, there must later be a "</bold>" to balance it. (NOTE: The 60 character limit on
formatting commands does NOT include the "<", ">", or "/" characters that might be
attached to such commands.)

Formatting commands are always case-insensitive. That is, "bold" and "BoLd" are
equivalent in effect, if not in good taste.

Beyond tokens delimited by "<" and ">", there are two other special processing rules.
First, a literal less-than sign ("<") can be represented by a sequence of two such
characters, "<<". Second, line breaks (CRLF pairs in standard network representation)
are handled specially. In particular, isolated CRLF pairs are translated into a single
SPACE character. Sequences of N consecutive CRLF pairs, however, are translated into
N-1 actual line breaks. This permits long lines of data to be represented in a natural-
looking manner despite the frequency of line-wrapping in Internet mailers. When
preparing the data for mail transport, isolated line breaks should be inserted wherever
necessary to keep each line shorter than 80 characters. When preparing such data for
presentation to the user, isolated line breaks should be replaced by a single SPACE
character, and N consecutive CRLF pairs should be presented to the user as N-1 line
breaks.

Thus text/enriched data that looks like this:

Borenstein [Page 2]

RFC 1563 A text/enriched type for MIME January 1994

This is
a single
line

This is the
next line.

This is the
next paragraph.

should be displayed by a text/enriched interpreter as follows:

This is a single line
This is the next line.

This is the next paragraph.

The formatting commands, not all of which will be implemented by all implementations,
are described in the following sections.

Formatting Commands

The text/enriched formatting commands all begin with <commandname> and end with
</commandname>, affecting the formatting of the text between those two tokens. The
commands are described here, grouped according to type.

Font-Alteration Commands

The following formatting commands are intended to alter the font in which text is
displayed, but not to alter the indentation or justification state of the text:

Bold -- causes the affected text to be in a bold font. Nested bold commands have
the same effect as a single bold command.

Italic -- causes the affected text to be in an italic font. Nested italic commands
have the same effect as a single italic command.

Fixed -- causes the affected text to be in a fixed width font. Nested fixed
commands have the same effect as a single fixed command.

Smaller -- causes the affected text to be in a smaller font. It is recommended that
the font size be changed by two points, but other amounts may be more
appropriate in some environments. Nested smaller commands produce
ever-smaller fonts, to the limits of the implementation’s capacity to
reasonably display them, after which further smaller commands have no
incremental effect.

Borenstein [Page 3]

RFC 1563 A text/enriched type for MIME January 1994

Bigger -- causes the affected text to be in a bigger font. It is recommended that
the font size be changed by two points, but other amounts may be more
appropriate in some environments. Nested bigger commands produce
ever-bigger fonts, to the limits of the implementation’s capacity to
reasonably display them, after which further bigger commands have no
incremental effect.

Underline -- causes the affected text to be underlined. Nested underline
commands have the same effect as a single underline command.

While the "bigger" and "smaller" operators are effectively inverses, it is not
recommended, for example, that "<smaller>" be used to end the effect of "<bigger>".
This is properly done with "</bigger>".

Fill/Justification Commands

Initially, text/enriched text is intended to be displayed fully filled with appropriate
kerning and letter-tracking as suits the capabilities of the receiving user agent software.
Actual line width is left to the discretion of the receiver, which is expected to fold lines
intelligently (preferring soft line breaks) to the best of its ability.

The following commands alter that state. Each of these commands force a line break
before and after the formatting environment if there is not otherwise a line break. For
example, if one of these commands occurs anywhere other than the beginning of a line of
text as presented, a new line is begun.

Center -- causes the affected text to be centered.
FlushLeft -- causes the affected text to be left-justified with a ragged right

margin.
FlushRight -- causes the affected text to be right-justified with a ragged left

margin.
FlushBoth -- causes the affected text to be filled and padded so as to create

smooth left and right margins, i.e., to be fully justified.
Nofill -- causes the affected text to be displayed without filling or justification.

The center, flushleft, flushright, and flushboth commands are mutually exclusive, and,
when nested, the inner command takes precedence.

Whether or not text is justified by default (that is, whether the default environment is
flushleft, flushright, or flushboth) is unspecified, and depends on the preferences of the
user, the capabilities of the local software and hardware, and the nature of the character
set in use. On systems where justification is considered undesirable, the flushboth
environment may be identical to the default environment. Note that justification should
never be performed inside of center, flushleft, flushright, or nofill environments. Note
also that for some non-ASCII character sets, full justification may be fundamentally
inappropriate.

Borenstein [Page 4]

RFC 1563 A text/enriched type for MIME January 1994

Indentation Commands

Initially, text/enriched text is displayed using the maximum available margins. Two
formatting commands may be used to affect the margins.

Indent -- causes the running left margin to be moved to the right. The
recommended indentation change is the width of four characters, but this
may differ among implementations.

IndentRight -- causes the running right margin to be moved to the left. The
recommended indentation change is the width of four characters, but this
may differ among implementations.

A line break is NOT forced by a change of the margin, to permit the description of
"hanging" text. Thus for example the following text:

Now <indent> is the time for all good horses to come to the
aid of their stable, assuming that </indent> any stable is
really stable.

would be displayed in a 40-character-wide window as follows:

Now is the time for all good horses to
come to the aid of their stable,
assuming that any stable is

really stable.

Miscellaneous Commands

Excerpt -- causes the affected text to be interpreted as a textual excerpt from
another source, probably a message being responded to. Typically this
will be displayed using indentation and an alternate font, or by indenting
lines and preceding them with "> ", but such decisions are up to the
implementation. (Note that this is the only truly declarative markup
construct in text/enriched, and as such doesn’t fit very well with the other
facilities, but it describes a type of markup that is very commonly used in
email and has no procedural analogue.) Note that as with the justification
commands, the excerpt command implicitly begins and ends with a line
break if one is not already there.

Param -- Marks the affected text as command parameters, to be interpreted or
ignored by the text/enriched interpreter, but NOT to be shown to the
reader. The syntax of the parameter data (whatever appears between the
initial "<param>" and the terminating "</param>") is left undefined by
this memo, to be defined by text/enriched extensions in the future.
However, the format of such data must NOT contain nested <param>
commands, and either must NOT use the "<" character or must use it in a
way that is compatible with text/enriched parsing. That is, the end of the

Borenstein [Page 5]

RFC 1563 A text/enriched type for MIME January 1994

parameter data should be recognizable with EITHER of two algorithms:
simply searching for the first occurence of "</param>" or parsing until a
balanced "</param>" command is found. In either case, however, the
parameter data should NOT be shown to the human reader.

Balancing and Nesting of Formatting Commands

Pairs of formatting commands must be properly balanced and nested. Thus, a proper
way to describe text in bold italics is:

<bold><italic>the-text</italic></bold>

or, alternately,

<italic><bold>the-text</bold></italic>

but, in particular, the following is illegal text/enriched:

<bold><italic>the-text</bold></italic>

The nesting requirement for formatting commands imposes a slightly higher burden upon
the composers of text/enriched bodies, but potentially simplifies text/enriched displayers
by allowing them to be stack-based. The main goal of text/enriched is to be simple
enough to make multifont, formatted email widely readable, so that those with the
capability of sending it will be able to do so with confidence. Thus slightly increased
complexity in the composing software was deemed a reasonable tradeoff for simplified
reading software. Nonetheless, implementors of text/enriched readers are encouraged to
follow the general Internet guidelines of being conservative in what you send and liberal
in what you accept. Those implementations that can do so are encouraged to deal
reasonably with improperly nested text/enriched data.

Unrecognized formatting commands

Implementations must regard any unrecognized formatting command as "no-op"
commands, that is, as commands having no effect, thus facilitating future extensions to
"text/enriched". Private extensions may be defined using formatting commands that
begin with "X-", by analogy to Internet mail header field names.

In order to formally define extended commands, a new Internet document should be
published.

White Space in Text/enriched Data

No special behavior is required for the SPACE or TAB (HT) character. It is
recommended, however, that, at least when fixed-width fonts are in use, the common
semantics of the TAB (HT) character should be observed, namely that it moves to the

Borenstein [Page 6]

RFC 1563 A text/enriched type for MIME January 1994

next column position that is a multiple of 8. (In other words, if a TAB (HT) occurs in
column n, where the leftmost column is column 0, then that TAB (HT) should be
replaced by 8-(n mod 8) SPACE characters.) It should also be noted that some mail
gateways are notorious for losing (or, less commonly, adding) white space at the end of
lines, so reliance on SPACE or TAB characters at the end of a line is not recommended.

Initial State of a text/enriched interpreter

Text/enriched is assumed to begin with filled text in a variable-width font in a normal
typeface and a size that is average for the current display and user. The left and right
margins are assumed to be maximal, that is, at the leftmost and rightmost acceptable
positions.

Non-ASCII character sets

If the character set specified by the charset parameter on the Content-type line is
anything other than "US-ASCII", this means that the text being described by
text/enriched formatting commands is in a non-ASCII character set. However, the
commands themselves are still the same ASCII commands that are defined in this
document. This creates an ambiguity only with reference to the "<" character, the octet
with numeric value 60. In single byte character sets, such as the ISO-8859 family, this is
not a problem; the octet 60 can be quoted by including it twice, just as for ASCII. The
problem is more complicated, however, in the case of multi-byte character sets, where
the octet 60 might appear at any point in the byte sequence for any of several characters.

In practice, however, most multibyte character sets address this problem internally. For
example, the ISO-2022 family of character sets can switch back into ASCII at any
moment. Therefore it is specified that, before text/enriched formatting commands, the
prevailing character set should be "switched back" into ASCII, and that only those
characters which would be interpreted as "<" in plain text should be interpreted as token
delimiters in text/enriched.

The question of what to do for hypothetical future character sets that do NOT subsume
ASCII is not addressed in this memo.

Minimal text/enriched conformance

A minimal text/enriched implementation is one that converts "<<" to "<", removes
everything between a <param> command and the next balancing </param> command,
removes all other formatting commands (all text enclosed in angle brackets), and, outside
of <nofill> environments, converts any series of n CRLFs to n-1 CRLFs, and converts
any lone CRLF pairs to SPACE.

Borenstein [Page 7]

RFC 1563 A text/enriched type for MIME January 1994

Notes for Implementors

It is recognized that implementors of future mail systems will want rich text functionality
far beyond that currently defined for text/enriched. The intent of text/enriched is to
provide a common format for expressing that functionality in a form in which much of it,
at least, will be understood by interoperating software. Thus, in particular, software with
a richer notion of formatted text than text/enriched can still use text/enriched as its basic
representation, but can extend it with new formatting commands and by hiding
information specific to that software system in text/enriched <param> constructs. As
such systems evolve, it is expected that the definition of text/enriched will be further
refined by future published specifications, but text/enriched as defined here provides a
platform on which evolutionary refinements can be based.

An expected common way that sophisticated mail programs will generate text/enriched
data is as part of a multipart/alternative construct. For example, a mail agent that can
generate enriched mail in ODA format can generate that mail in a more widely
interoperable form by generating both text/enriched and ODA versions of the same data,
e.g.:

Content-type: multipart/alternative; boundary=foo

--foo
Content-type: text/enriched

[text/enriched version of data]
--foo
Content-type: application/oda

[ODA version of data]
--foo--

If such a message is read using a MIME-conformant mail reader that understands ODA,
the ODA version will be displayed; otherwise, the text/enriched version will be shown.

In some environments, it might be impossible to combine certain text/enriched
formatting commands, whereas in others they might be combined easily. For example,
the combination of <bold> and <italic> might produce bold italics on systems that
support such fonts, but there exist systems that can make text bold or italicized, but not
both. In such cases, the most recently issued (innermost) recognized formatting
command should be preferred.

One of the major goals in the design of text/enriched was to make it so simple that even
text-only mailers will implement enriched-to-plain-text translators, thus increasing the
likelihood that enriched text will become "safe" to use very widely. To demonstrate this
simplicity, an extremely simple C program that converts text/enriched input into plain
text output is included in Appendix A.

Borenstein [Page 8]

RFC 1563 A text/enriched type for MIME January 1994

Extensions to text/enriched

It is expected that various mail system authors will desire extensions to text/enriched.
The simple syntax of text/enriched, and the specification that unrecognized formatting
commands should simply be ignored, are intend to promote such extensions.

Beyond simply defining new formatting commands, however, it may sometimes be
necessary to define formatting commands that can take arguments. This is the intended
use of the <param> construct. In particular, software that wished to extend text/enriched
to include colored text might define an "x-color" environment which always began with a
color name parameter, to indicate the desired color for the affected text.

An Example

Putting all this together, the following "text/enriched" body fragment:

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>
Content-type: text/enriched

<bold>Now</bold> is the time for <italic>all</italic>
good men
<smaller>(and <<women>)</smaller> to
<ignoreme>come</ignoreme>

to the aid of their

<x-color><param>red</param>beloved</x-color>
country.

By the way, I think that <<smaller>

should

REALLY be called

<<tinier>
and that I am always right.

-- the end

represents the following formatted text (which will, no doubt, look somewhat cryptic in
the text-only version of this document):

Now is the time for all good men (and <women>) to come
to the aid of their

beloved country.

Borenstein [Page 9]

RFC 1563 A text/enriched type for MIME January 1994

By the way, I think that <smaller>
should
REALLY be called
<tinier>
and that I am always right.
-- the end

where the word "beloved" would be in red on a color display if the receiving software
implemented the "x-color" extension.

Security Considerations

Security issues are not discussed in this memo, as the mechanism raises no security
issues.

Author’s Address

For more information, the author of this document may be contacted via Internet mail:

Nathaniel S. Borenstein
MRE 2D-296, Bellcore

445 South St.
Morristown, NJ 07962-1910

Phone: +1 201 829 4270
Fax: +1 201 829 5963

Email: nsb@bellcore.com

Acknowledgements

This document reflects the input of many contributors, readers, and implementors of the
original MIME specification, RFC 1341. It also reflects particular contributions and
comments from Terry Crowley, Rhys Weatherley, and John LoVerso.

References

[RFC-1341] Borenstein, N., and N. Freed, "MIME (Multipurpose Internet Mail
Extensions): Mechanisms for Specifying and Describing the Format of Internet Message
Bodies", RFC 1341, Bellcore, Innosoft, June, 1992.

[RFC-1521] Borenstein, N., and N. Freed, "MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet
Message Bodies", RFC 1521, Bellcore, Innosoft, September, 1993.

Borenstein [Page 10]

RFC 1563 A text/enriched type for MIME January 1994

Appendix A -- A Simple enriched-to-plain Translator in C

One of the major goals in the design of the text/enriched subtype of the text Content-
Type is to make formatted text so simple that even text-only mailers will implement
enriched-to-plain-text translators, thus increasing the likelihood that multifont text will
become "safe" to use very widely. To demonstrate this simplicity, what follows is a
simple C program that converts text/enriched input into plain text output. Note that the
local newline convention (the single character represented by "\n") is assumed by this
program, but that special CRLF handling might be necessary on some systems..

#include <stdio.h>
#include <ctype.h>

main() {
int c, i, paramct=0, newlinect=0, nofill=0;
char token[62], *p;

while ((c=getc(stdin)) != EOF) {
if (c == ’<’) {

if (newlinect == 1) putc(’ ’, stdout);
newlinect = 0;
c = getc(stdin);
if (c == ’<’) {

if (paramct <= 0) putc(c, stdout);
} else {

ungetc(c, stdin);
for (i=0, p=token; (c=getc(stdin)) != EOF && c != ’>’; i++) {

if (i < sizeof(token)-1) *p++ = isupper(c) ? tolower(c) : c;
}
*p = ’\0’;
if (c == EOF) break;
if (strcmp(token, "param") == 0)

paramct++;
else if (strcmp(token, "nofill") == 0)

nofill++;
else if (strcmp(token, "/param") == 0)

paramct--;
else if (strcmp(token, "/nofill") == 0)

nofill--;

}
} else {

if (paramct > 0)
; /* ignore params */

else if (c == ’\n’ && nofill <= 0) {
if (++newlinect > 1) putc(c, stdout);

} else {
if (newlinect == 1) putc(’ ’, stdout);
newlinect = 0;
putc(c, stdout);

}
}

}
/* The following line is only needed with line-buffering */
putc(’\n’, stdout);
exit(0);

}

Borenstein [Page 11]

RFC 1563 A text/enriched type for MIME January 1994

It should be noted that one can do considerably better than this in displaying
text/enriched data on a dumb terminal. In particular, one can replace font information
such as "bold" with textual emphasis (like *this* or _T_H_I_S_). One can also
properly handle the text/enriched formatting commands regarding indentation,
justification, and others. However, the above program is all that is necessary in order to
present text/enriched on a dumb terminal without showing the user any formatting
artifacts.

Appendix B -- Differences from RFC 1341 text/richtext

Text/enriched is a clarification, simplification, and refinement of the type defined as
text/richtext in RFC 1341. For the benefit of those who are already familiar with
text/richtext, or for those who want to exploit the similarities to be able to display
text/richtext data with their text/enriched software, the differences between the two are
summarized here. Note, however, that text/enriched is intended to make text/richtext
obsolete, so it is not recommended that new software generate text/richtext.

0. The name "richtext" was changed to "enriched", both to differentiate the two versions
and because "richtext" created widespread confusion with Microsoft’s Rich Text Format
(RTF).

1. Clarifications. Many things were ambiguous or unspecified in the text/richtext
definition, particularly the initial state and the semantics of richtext with multibyte
character sets. However, such differences are OPERATIONALLY irrelevant, since the
clarifications offered in this document are at least reasonable interpretations of the
text/richtext specification.

2. Newline semantics have changed. In text/richtext, all CRLFs were mapped to spaces,
and line breaks were indicated by "<nl>". This has been replaced by the "n-1" rule for
CRLFs.

3. The representation of a literal "<" character was "<lt>" in text/richtext, but is "<<" in
text/enriched.

4. The "nofill" command did not exist in text/richtext.

5. The "param" command did not exist in text/richtext.

6. The following commands from text/richtext have been REMOVED from
text/enriched: <COMMENT>, <OUTDENT>, <OUTDENTRIGHT>, <SAMEPAGE>,
<SUBSCRIPT>, <SUPERSCRIPT>, <HEADING>, <FOOTING>, <ISO-8859-[1-9]>,
<US-ASCII>, <PARAGRAPH>, <SIGNATURE>, <NO-OP>, <LT>, <NL>, and <NP>.

7. All claims of SGML compatibility have been dropped. However, with the possible
exceptions of the new semantics for CRLF and "<<" can be implemented, text/enriched
should be no less SGML-friendly than text/richtext was.

Borenstein [Page 12]

RFC 1563 A text/enriched type for MIME January 1994

8. In text/richtext, there were three commands (<NL>, <NP>, and <LT>) that did not use
balanced closing delimiters. Since all of these have been eliminated, there are NO
exceptions to the nesting/balancing rules in text/enriched.

9. The limit on the size of formatting tokens has been increased from 40 to 60
characters.

Borenstein [Page 13]

RFC 1563 A text/enriched type for MIME January 1994

Table of Contents

Status of this Memo ... 1

Abstract .. 1

The Text/enriched MIME type .. 1

Formatting Commands .. 3
Font-Alteration Commands ... 3
Fill/Justification Commands .. 4
Indentation Commands .. 5
Miscellaneous Commands ... 5
Balancing and Nesting of Formatting Commands... 6
Unrecognized formatting commands... 6

White Space in Text/enriched Data ... 6

Initial State of a text/enriched interpreter .. 7

Non-ASCII character sets .. 7

Minimal text/enriched conformance.. 7

Notes for Implementors ... 8

Extensions to text/enriched.. 9

An Example ... 9

Security Considerations ... 10

Author’s Address ... 10

Acknowledgements.. 10

References.. 10

Appendix A -- A Simple enriched-to-plain Translator in C.. 11

Appendix B -- Differences from RFC 1341 text/richtext .. 12

Borenstein [Page 14]

