

Network Working Group P. Deutsch
Request for Comments: 1952 Aladdin Enterprises
Category: Informational May 1996

GZIP file format specification version 4.3

Status of This Memo

This memo provides information for the Internet community. This memo does not specify an Internet stan-
dard of any kind. Distribution of this memo is unlimited.

IESG Note:

The IESG takes no position on the validity of any Intellectual Property Rights statements contained in this
document.

Notices

Copyright c 1996 L. Peter Deutsch

Permission is granted to copy and distribute this document for any purpose and without charge, including
translations into other languages and incorporation into compilations, provided that the copyright notice and
this notice are preserved, and that any substantive changes or deletions from the original are clearly marked.

A pointer to the latest version of this and related documentation in HTML format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.

Abstract

This specification defines a lossless compressed data format that is compatible with the widely used GZIP
utility. The format includes a cyclic redundancy check value for detecting data corruption. The format
presently uses the DEFLATE method of compression but can be easily extended to use other compression
methods. The format can be implemented readily in a manner not covered by patents.

Deutsch Informational [Page 1]

RFC 1952 GZIP File Format Specification May 1996

Contents

1 Introduction . 2
1.1 Purpose . 2
1.2 Intended audience . 2
1.3 Scope . 2
1.4 Compliance . 3
1.5 Definitions of terms and conventions used . 3
1.6 Changes from previous versions . 3

2 Detailed specification . 3
2.1 Overall conventions . 3
2.2 File format . 4
2.3 Member format . 4

2.3.1 Member header and trailer . 5
Extra field . 7
Compliance . 8

3 References . 8
4 Security Considerations . 8
5 Acknowledgements . 9
6 Author’s Address . 9
7 Appendix: Jean-Loup Gailly’s gzip utility . 9
8 Appendix: Sample CRC Code . 10

1 Introduction

1.1 Purpose

The purpose of this specification is to define a lossless compressed data format that:

� Is independent of CPU type, operating system, file system, and character set, and hence can be used
for interchange;

� Can compress or decompress a data stream (as opposed to a randomly accessible file) to produce an-
other data stream, using only an a priori bounded amount of intermediate storage, and hence can be
used in data communications or similar structures such as Unix filters;

� Compresses data with efficiency comparable to the best currently available general-purpose compres-
sion methods, and in particular considerably better than the “compress” program;

� Can be implemented readily in a manner not covered by patents, and hence can be practiced freely;

� Is compatible with the file format produced by the current widely used gzip utility, in that conforming
decompressors will be able to read data produced by the existing gzip compressor.

The data format defined by this specification does not attempt to:

Deutsch Informational [Page 2]

RFC 1952 GZIP File Format Specification May 1996

� Provide random access to compressed data;

� Compress specialized data (e.g., raster graphics) as well as the best currently available specialized al-
gorithms.

1.2 Intended audience

This specification is intended for use by implementors of software to compress data into gzip format and/or
decompress data from gzip format.

The text of the specification assumes a basic background in programming at the level of bits and other prim-
itive data representations.

1.3 Scope

The specification specifies a compression method and a file format (the latter assuming only that a file can
store a sequence of arbitrary bytes). It does not specify any particular interface to a file system or anything
about character sets or encodings (except for file names and comments, which are optional).

1.4 Compliance

Unless otherwise indicated below, a compliant decompressor must be able to accept and decompress any file
that conforms to all the specifications presented here; a compliant compressor must produce files that conform
to all the specifications presented here. The material in the appendices is not part of the specification per se
and is not relevant to compliance.

1.5 Definitions of terms and conventions used

byte: 8 bits stored or transmitted as a unit (same as an octet). (For this specification, a byte is exactly 8 bits,
even on machines which store a character on a number of bits different from 8.) See below for the numbering
of bits within a byte.

1.6 Changes from previous versions

There have been no technical changes to the gzip format since version 4.1 of this specification. In version
4.2, some terminology was changed, and the sample CRC code was rewritten for clarity and to eliminate the
requirement for the caller to do pre- and post-conditioning. Version 4.3 is a conversion of the specification
to RFC style.

Deutsch Informational [Page 3]

RFC 1952 GZIP File Format Specification May 1996

2 Detailed specification

2.1 Overall conventions

In the diagrams below, a box like this:

+---+
| | <-- the vertical bars might be missing
+---+

represents one byte; a box like this:

+==============+
| |
+==============+

represents a variable number of bytes.

Bytes stored within a computer do not have a “bit order”, since they are always treated as a unit. However,
a byte considered as an integer between 0 and 255 does have a most- and least-significant bit, and since we
write numbers with the most-significant digit on the left, we also write bytes with the most-significant bit on
the left. In the diagrams below, we number the bits of a byte so that bit 0 is the least-significant bit, i.e., the
bits are numbered:

+--------+
|76543210|
+--------+

This document does not address the issue of the order in which bits of a byte are transmitted on a bit-sequential
medium, since the data format described here is byte- rather than bit-oriented.

Within a computer, a number may occupy multiple bytes. All multi-byte numbers in the format described
here are stored with the least-significant byte first (at the lower memory address). For example, the decimal
number 520 is stored as:

0 1
+--------+--------+
|00001000|00000010|
+--------+--------+
ˆ ˆ
| |
| + more significant byte = 2 x 256
+ less significant byte = 8

Deutsch Informational [Page 4]

RFC 1952 GZIP File Format Specification May 1996

2.2 File format

A gzip file consists of a series of “members” (compressed data sets). The format of each member is spec-
ified in the following section. The members simply appear one after another in the file, with no additional
information before, between, or after them.

2.3 Member format

Each member has the following structure:

+---+---+---+---+---+---+---+---+---+---+
|ID1|ID2|CM |FLG| MTIME |XFL|OS | (more-->)
+---+---+---+---+---+---+---+---+---+---+

(if FLG.FEXTRA set)

+---+---+=================================+
| XLEN |...XLEN bytes of "extra field"...| (more-->)
+---+---+=================================+

(if FLG.FNAME set)

+===+
|...original file name, zero-terminated...| (more-->)
+===+

(if FLG.FCOMMENT set)

+===================================+
|...file comment, zero-terminated...| (more-->)
+===================================+

(if FLG.FHCRC set)

+---+---+
| CRC16 |
+---+---+

+=======================+
|...compressed blocks...| (more-->)
+=======================+

0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| CRC32 | ISIZE |
+---+---+---+---+---+---+---+---+

Deutsch Informational [Page 5]

RFC 1952 GZIP File Format Specification May 1996

2.3.1 Member header and trailer

ID1 (IDentification 1)

ID2 (IDentification 2)

These have the fixed values ID1 = 31 (0x1f,\037), ID2 = 139 (0x8b,\213), to identify the file as being
in gzip format.

CM (Compression Method)

This identifies the compression method used in the file. CM = 0-7 are reserved. CM = 8 denotes the
“deflate” compression method, which is the one customarily used by gzip and which is documented
elsewhere.

FLG (FLaGs)

This flag byte is divided into individual bits as follows:

bit 0 FTEXT
bit 1 FHCRC
bit 2 FEXTRA
bit 3 FNAME
bit 4 FCOMMENT
bit 5 reserved
bit 6 reserved
bit 7 reserved

If FTEXT is set, the file is probably ASCII text. This is an optional indication, which the compressor
may set by checking a small amount of the input data to see whether any non-ASCII characters are
present. In case of doubt, FTEXT is cleared, indicating binary data. For systems which have different
file formats for ascii text and binary data, the decompressor can use FTEXT to choose the appropriate
format. We deliberately do not specify the algorithm used to set this bit, since a compressor always
has the option of leaving it cleared and a decompressor always has the option of ignoring it and letting
some other program handle issues of data conversion.

If FHCRC is set, a CRC16 for the gzip header is present, immediately before the compressed data.
The CRC16 consists of the two least significant bytes of the CRC32 for all bytes of the gzip header up
to and not including the CRC16. [The FHCRC bit was never set by versions of gzip up to 1.2.4, even
though it was documented with a different meaning in gzip 1.2.4.]

If FEXTRA is set, optional extra fields are present, as described in a following section.

If FNAME is set, an original file name is present, terminated by a zero byte. The name must consist of
ISO 8859-1 (LATIN-1) characters; on operating systems using EBCDIC or any other character set for
file names, the name must be translated to the ISO LATIN-1 character set. This is the original name of
the file being compressed, with any directory components removed, and, if the file being compressed
is on a file system with case insensitive names, forced to lower case. There is no original file name if
the data was compressed from a source other than a named file; for example, if the source was stdin
on a Unix system, there is no file name.

Deutsch Informational [Page 6]

RFC 1952 GZIP File Format Specification May 1996

If FCOMMENT is set, a zero-terminated file comment is present. This comment is not interpreted; it
is only intended for human consumption. The comment must consist of ISO 8859-1 (LATIN-1) char-
acters. Line breaks should be denoted by a single line feed character (10 decimal).

Reserved FLG bits must be zero.

MTIME (Modification TIME)

This gives the most recent modification time of the original file being compressed. The time is in Unix
format, i.e., seconds since 00:00:00 GMT, Jan. 1, 1970. (Note that this may cause problems for MS-
DOS and other systems that use local rather than Universal time.) If the compressed data did not come
from a file, MTIME is set to the time at which compression started. MTIME = 0 means no time stamp
is available.

XFL (eXtra FLags)

These flags are available for use by specific compression methods. The “deflate” method (CM = 8)
sets these flags as follows:

XFL = 2 - compressor used maximum compression,
slowest algorithm

XFL = 4 - compressor used fastest algorithm

OS (Operating System)

This identifies the type of file system on which compression took place. This may be useful in deter-
mining end-of-line convention for text files. The currently defined values are as follows:

0 - FAT filesystem (MS-DOS, OS/2, NT/Win32)
1 - Amiga
2 - VMS (or OpenVMS)
3 - Unix
4 - VM/CMS
5 - Atari TOS
6 - HPFS filesystem (OS/2, NT)
7 - Macintosh
8 - Z-System
9 - CP/M
10 - TOPS-20
11 - NTFS filesystem (NT)
12 - QDOS
13 - Acorn RISCOS
255 - unknown

XLEN (eXtra LENgth)

If FLG.FEXTRA is set, this gives the length of the optional extra field. See below for details.

CRC32 (CRC-32)

This contains a Cyclic Redundancy Check value of the uncompressed data computed according to
CRC-32 algorithm used in the ISO 3309 standard and in section 8.1.1.6.2 of ITU-T recommendation

Deutsch Informational [Page 7]

RFC 1952 GZIP File Format Specification May 1996

V.42. (See http://www.iso.ch for ordering ISO documents. See gopher://info.itu.ch for an online ver-
sion of ITU-T V.42.)

ISIZE (Input SIZE)

This contains the size of the original (uncompressed) input data modulo 2ˆ32.

Extra field If the FLG.FEXTRA bit is set, an “extra field” is present in the header, with total length XLEN
bytes. It consists of a series of subfields, each of the form:

+---+---+---+---+==================================+
|SI1|SI2| LEN |... LEN bytes of subfield data ...|
+---+---+---+---+==================================+

SI1 and SI2 provide a subfield ID, typically two ASCII letters with some mnemonic value. Jean-Loup Gailly
<gzip@prep.ai.mit.edu> is maintaining a registry of subfield IDs; please send him any subfield ID you wish
to use. Subfield IDs with SI2 = 0 are reserved for future use. The following IDs are currently defined:

SI1 SI2 Data
---------- ---------- ----
0x41 (’A’) 0x70 (’P’) Apollo file type information

LEN gives the length of the subfield data, excluding the 4 initial bytes.

Compliance A compliant compressor must produce files with correct ID1, ID2, CM, CRC32, and ISIZE,
but may set all the other fields in the fixed-length part of the header to default values (255 for OS, 0 for all
others). The compressor must set all reserved bits to zero.

A compliant decompressor must check ID1, ID2, and CM, and provide an error indication if any of these
have incorrect values. It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC at least so
it can skip over the optional fields if they are present. It need not examine any other part of the header or
trailer; in particular, a decompressor may ignore FTEXT and OS and always produce binary output, and
still be compliant. A compliant decompressor must give an error indication if any reserved bit is non-zero,
since such a bit could indicate the presence of a new field that would cause subsequent data to be interpreted
incorrectly.

3 References

[1] “Information Processing - 8-bit single-byte coded graphic character sets - Part 1: Latin alphabet No.1”
(ISO 8859-1:1987). The ISO 8859-1 (Latin-1) character set is a superset of 7-bit ASCII. Files defining this
character set are available as iso 8859-1.* in ftp://ftp.uu.net/graphics/png/documents/

[2] ISO 3309

Deutsch Informational [Page 8]

RFC 1952 GZIP File Format Specification May 1996

[3] ITU-T recommendation V.42

[4] Deutsch, L.P.,“DEFLATE Compressed Data Format Specification”, available in ftp://ftp.uu.net/pub/
archiving/zip/doc/

[5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/

[6] Sarwate, D.V., “Computation of Cyclic Redundancy Checks via Table Look-Up”, Communications of
the ACM, 31(8), pp.1008-1013.

[7] Schwaderer, W.D., “CRC Calculation”, April 85 PC Tech Journal, pp.118-133.

[8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc v3.txt, describing the CRC concept.

4 Security Considerations

Any data compression method involves the reduction of redundancy in the data. Consequently, any corrup-
tion of the data is likely to have severe effects and be difficult to correct. Uncompressed text, on the other
hand, will probably still be readable despite the presence of some corrupted bytes.

It is recommended that systems using this data format provide some means of validating the integrity of the
compressed data, such as by setting and checking the CRC-32 check value.

5 Acknowledgements

Trademarks cited in this document are the property of their respective owners.

Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler, the related software described in this
specification. Glenn Randers-Pehrson converted this document to RFC and HTML format.

6 Author’s Address

L. Peter Deutsch

Aladdin Enterprises
203 Santa Margarita Ave.
Menlo Park, CA 94025

Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMail: <ghost@aladdin.com>

Questions about the technical content of this specification can be sent by email to:

Deutsch Informational [Page 9]

RFC 1952 GZIP File Format Specification May 1996

Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>

Editorial comments on this specification can be sent by email to:

L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>

7 Appendix: Jean-Loup Gailly’s gzip utility

The most widely used implementation of gzip compression, and the original documentation on which this
specification is based, were created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since this implementa-
tion is a de facto standard, we mention some more of its features here. Again, the material in this section is
not part of the specification per se, and implementations need not follow it to be compliant.

When compressing or decompressing a file, gzip preserves the protection, ownership, and modification time
attributes on the local file system, since there is no provision for representing protection attributes in the
gzip file format itself. Since the file format includes a modification time, the gzip decompressor provides a
command line switch that assigns the modification time from the file, rather than the local modification time
of the compressed input, to the decompressed output.

8 Appendix: Sample CRC Code

The following sample code represents a practical implementation of the CRC (Cyclic Redundancy Check).
(See also ISO 3309 and ITU-T V.42 for a formal specification.)

The sample code is in the ANSI C programming language. Non C users may find it easier to read with these
hints:

& Bitwise AND operator.
ˆ Bitwise exclusive-OR operator.
>> Bitwise right shift operator. When applied to an

unsigned quantity, as here, right shift inserts zero
bit(s) at the left.

! Logical NOT operator.
++ "n++" increments the variable n.
0xNNN 0x introduces a hexadecimal (base 16) constant.

Suffix L indicates a long value (at least 32 bits).

/* Table of CRCs of all 8-bit messages. */
unsigned long crc table[256];

/* Flag: has the table been computed? Initially false. */
int crc table computed = 0;

Deutsch Informational [Page 10]

RFC 1952 GZIP File Format Specification May 1996

/* Make the table for a fast CRC. */
void make crc table(void)
f
unsigned long c;
int n, k;

for (n = 0; n < 256; n++) f
c = (unsigned long) n;
for (k = 0; k < 8; k++) f
if (c & 1) f
c = 0xedb88320L ˆ (c >> 1);

g else f
c = c >> 1;

g
g
crc table[n] = c;

g
crc table computed = 1;

g

/*
Update a running crc with the bytes buf[0..len-1] and return

the updated crc. The crc should be initialized to zero. Pre- and
post-conditioning (one’s complement) is performed within this
function so it shouldn’t be done by the caller. Usage example:

unsigned long crc = 0L;

while (read buffer(buffer, length) != EOF) f
crc = update crc(crc, buffer, length);

g
if (crc != original crc) error();

*/
unsigned long update crc(unsigned long crc,

unsigned char *buf, int len)
f
unsigned long c = crc ˆ 0xffffffffL;
int n;

if (!crc table computed)
make crc table();

for (n = 0; n < len; n++) f
c = crc table[(c ˆ buf[n]) & 0xff] ˆ (c >> 8);

g
return c ˆ 0xffffffffL;

g

Deutsch Informational [Page 11]

RFC 1952 GZIP File Format Specification May 1996

/* Return the CRC of the bytes buf[0..len-1]. */
unsigned long crc(unsigned char *buf, int len)
f
return update crc(0L, buf, len);

g

Deutsch Informational [Page 12]

