

N~/ Rf C Ii 71 L J E: D 2 7 - t' t. B- 7 6 18 ~ 2 :> 3 4 5 86
~ Uistriouted Capability Computi ng SysLem (DCCS)

DRAF'l i a

PREPkl N1 UCRL-77800 1 0

A Dlstricuted Capaoility Computing System (OCCS) lc

.James E. ucnne I Le y 1d

february o , 1976 Ie

This paper was prepared for SUbmission to the International
Conference on Computer Communication, lCCC-76, Auqust 3, 1976,
Tor on t o , Canada. It

nlis is a oreprint of a paper intended for pUblication in a
journal or proceedinqs. Since chanqes may be maoe before
pUblication, this preprint is made available witn tne
understandinG that it will not be cited without the permission of
the a u t no r ,

The work reported in this paper was supported in pa r t under
contract #EPA-IAG-D5-E:6BI-OB witn the Environmental Protection
Agency and in part under contract II UlAJ 7b-12 wi t n the Department
Of Transportation. f oe report was prepared for the U. S. Energy
Research and Developmerlt Aqencv under contract ~ W-74U5-~nq-48. In

19

~ WGjR~C~ 712 JED 27-f~B-76 18:~5 3458b
-A ui§tributed Capability Computing System (aCeS)

A Distributed Capability Computinq System lUCeS) 11

rhis pap e r des c rib esad1 s t rio ute d C 0 IT! put i nq s vs t em. .1 11 e fir s t
portion introduces an idealized operating system called CCS
(Capability Computino System). In the second portion, the DCCS
protocols are defined ana trle processes necessary to support the
DCC::; on a CCS ale oe s c r Loe c , rrie r e me i nde r ot t he paper discusses
utilizinq tne UCCS protocol 1n a computer network involvinq
heteroqeneous systems ana presents some applications. The
applications presented are to optimallY solve the sinqle COpy
problem tor distributed data bases ana to construct a transparent
netNork resource oPtimization mechanism. lj

Keywords: Oistrlbuted, Capability. NetworK, Protocol lk

1

NiIJG/Rrcn '11 '2 JED 27-'(" B- 7 tJ Ib: 25 34 58b
- A Ui~triouted Capability Computing system COCeS)

Tii e Cap a 0 i 1 i tv CoIT! put. i nq SYs t e m (CeS) '2

The CCS, t.nou gn not exactly like anY existlnq operatinq syste m,
is m~cn liKe some of the existing capability list (C-list)
operatinq systems aescribed in the literature 11-7). Many ot the
teatures of the CC~ corne from a proposed modification to the RATS
op e r a t i no svs t e m (1-3J. 2a

In tne documentation tor most computer systems there are many
references to different types ot ob1ects. Typical ooiects
disc~ssed are: f iles, processes, jobS, accounts, semaphores,
taSKS, words, devices, forKS, events, etc. etc •• Une of the
intents ot C-list systems is to provide a uniform methoa of
access to all s ucn objects. Havinq all ces objects accessed
throuqh a uniform mechanism allows the OCCS to be implemented in
a type independent wanner. 2b

The ecs is a mUltiprocessing system supportinq an active element
called a process. for most purposes, the reader's intuitive
notion of what a process is should suttice. A process is capable
of executinq instructions like those in co mmercially available
computers. It has a flIemory area associated with it and hds some
status indicators like "kUflJ lI and "v-JAl l'''. ln C-list systems,
no we ve r , a process also ria s a c ao ac i Li t y list (C-list). r ru s list
is an area in wn I cn pointers to tile objects that the process is
allowed to access are maintained. The s e pointers are protected by

- the system. The process itself is only allo~ed to use its C-llst
as a source ot capabilities to access and as a repository tor
capabilities that it has been grantea. figure 1. diaqrams some
typical processes that are discussed later. In tne diaqra ms, the
left half ot a process bOX is the C-list and the riqht halt is
the memory. ~ c

The Key to the uniform access method in the CCS is the invocation
mechanism. This is the meChanism by whicn a process makes a
request on a capaoilicy in its C-list. An lrlvocation is closel y
analogous to a sUbroutine call on Most computer syste ms. ~ n e n a
request is made, the InvoKinu process passes so me parameters to a
service routine and receives some parameters in return. 2d

The r e are, ho wever, several ma jor o Lr r e r e r.c e s bet ween t rie
invocatIon meChanIs m and the usual SUbroutine callina mechanis ms.
f ne first difference is that the service routine called is
generallY not in the process's me mory space. The serVice routine
is pointed to bY the protected ca~ability and can be irr,plemented
in hara~are, microcode, system kernel code, in another arbitrar y
process, or, as we shall see in the OCCS, in another computer

2

NWG/RfC# 712 J ED 27- FEB-76 18 :2 5 34 58 6
· A OI~tributed Capability Computing System (DCeS)

system. In Flg. 1. for example, the serving process is servicing
an invocation on tne semaphore r e oue s t o r , 2e

A second difference is t ne t , wn e n invoking a c ao ao i t I tv • o t rie r
capabilities can oe passed and returned along witn strictly da t a
parameters. In trle aces, capabilities and data can also be passed
tnrouqh a communication network. 2 t

TIle tinal important distinction of the invocation mec han i sm can
best be illustrated bY considerinq the analogy to tne outside
teller windows often seen at banks. These windows usually cOl1tain
a drawer that can bE:! opened bY the customer or bY the teller, but
not by both. Except tor tnis drawer, the custo mer and teller are
onvs Lce i i v Ls o t a t e c , In tile case of t ne Lnvo ca t i on me cnan i s m, the
invOKing process explicitlY passes certain capabilities and
information to toe service routine and designates C-list
lac at ionsand me nl0 r y are a s tor the ret urn par am e t e r s , Exc e p t for
these parameters, the invoking process and the serving routine
are isolated. In tne DCCS, tnis protection mechanism is extended
throuqnout a network of systems. ~g

In t ne CCS, a nv ox Lno a capability is the only way that a process
can pass or receive information or capaoilities. All of What are
often referred to as system calls on a typical o~erating system
are invocations on appropriate capabilities in the ecs. ACeS
e-list envelopes its process. Ihis fact is needed in order to
transparentlv move processes as described in the second
ap~lication on net work optimization tpage 23).

CCS Capabilitles

To build the DCCS, we will assume certain primitive capabilities
in the CCS. The invocations below are presented for simplicity
ratner tnan tor efficiency or practicality. In practice,
capabilities generally nave more hiqhly optimized invocations
witn various error returns, etc •• To characterize a capability,
it suftices to desc ribe What it returns as a function of What it
is passed. In the notation used oelow, the passed parameter list
is followed by a ,,>" and tnen the returned parameter list. In
eaCh parameter list the data parameters are followed by a "i" and
then the capability parameters. 3a

1. file capability 3a1

a. IIRead", index; > data;

3

3

~WG/RfC# IlL JED ~7-f~b-76 18:25 34586
· A Distributed Capability Computing System (\;CCS)

"Read" the data at t he specified index. " Reaa" and toe
index are passed. Data is returned.

b. "write", index, data; >

write the data into tne area at the specified index.
"Write", the inaex, alld the os t e are passed. No t h i no 1S

returned.

2. Directorv capability 3a2

a. " TaKe", index; > ; capability

" Ta ke " t he cap a b i 11 t y fro In the s pe c i fie din de x i n t h e
directory. "Take" and the index are passed. the
capability is returned.

b. "Give", index; c ap ao Lr Ltv >

"Give" the capability to the directory at the index
s p e c i fie d. "Gi ve" a na ttl e inde x are pas sed in for mat ion.
fhe capability is also passed. Nothinq is returned.

c. " Find"; capability> result, index;

A directory, like a processes C-list, is a repository
for capabilities. The first two invocations are
analoqous to the two tile invocations presented except
toat they involve capability parameters moved bet ween
directory and C-list instead of bet.een tile ana memory.
The last invocation searches the directory for the
passed capability. If an identical capability is iound,
u:x:es" and HIe smallest index o r such a capability are
returned. Otherwise "i'IO" and 0 are returned.

3. Nil capability 3a3

Whe n d directory is initially created, it contains only Nil
c ao e oLr i t Les , Nil always returns "Empt y";.

4. Process capability 3a4

d. "Head", index; > data;

D. "write", index, data; »

c. "'I'3.k.e", index; > : capability

4

NWGiRFC# 712 J Eu 27-rEe-76 18:25 34586
. A or s t r Lo ut e o Capability COITIPuting sv s t eui (OCeS)

d. "Give", index; capability> ;

e. "Find ll ; capability> result, index;

f. "st art"; > :

q . "Stop"; > ;

I'hea. and b. i nv0 cat ion s got 0 ttl e proc e S S • 5 me m0 r y spac e •
C., d., and e. go to its C-list. f ', and g. start and stop
process execution. '

The CCS Extension Mechanism

l he r e is one more baS1C capaoility mechanism needed for the ecs
implementation ot tne DeeS. This me c nan Lsm allows p r oc e s s e s to
set themselves UP to create new capabilities that they can
service. Such mechanisms differ wi de l y on exist ing C-list
systems. A workabie mechanism is descrIbed. Another primitIve
capability is needed to start thinos off; 4a

5. Server ca pability 4a 1

d. IICreate requestor", re questor nu mber; > ; requestor

b. " hY requestor?"; capability> a ns wer, reques tor nu moer;

c. " riait"; > reason, requestor number, PD; request

TwO capabilities we r e introduced above besides the server, the
requestor and request capabilIties. lhese capabilities will be
descrioed as the invocations on a server are describe d. 4b

Tne first invocation creates and returns a requestor ca pability.
The number that is passed is associated with the re questor. The
requestor capability is the new capability being created. An y
sort of invocation can be performed on a requestor. This is tneir
whole reason for eXistence. A pr oc e s s With a server capaDllit y
can mak e a req uestor look like any kind of capab il it y. 4c

'1he" iv}y r e QueStor? I' in v0 cat io n can be use a to de t e r In i ne i f a
capability is a requestor on t he invoked server. It returns
eitner: 4d

" Yes", reauestor nu mber; or" No",O: 4d l

The last invocation "wait"s until something that requires t he

5

4

NWG/RfCI 712 J ED 27-f EH-76 Ib: 2S 345 86
. A Ui~tributed Capability Computing sYstem (DCCS)

server's attention 11-3ppens. There are two important events r ns t
service routine needs to be notified aeout. It the last
cap3bility to a requestor is over~ritten so that the requestor
cannot aqain De invoked until a new one is created, the "Wait"
returns:

a

4e

"Oeleted", requestor number, 0; J ~il 4el

Tile last two parameters, 0 and Nil, are just tiller for t ne
ret urn e d PDan d r e Q uest t s e e 5 c). When a "~I a it" ret urn s
"Deleted", tile service routine can recycle any resources beiny
used to serVIce tne numoered requestor (e.g. the requestor
numoer). 4f

Tne most ilfiportant event that
one of the requestors for tne
server returns:

causes
server

a "vlait" to
is invokea.

return is when
1n this case the

4g

"lnvokea", requestor number, PUi request 4g1

The third parameter, labeled PD, standS tor Parameter De s c r i p t o r .
It describes the)lUmDer of each kind ot parameter paSSlnq each
wa y duri ng a requestor invocation. Specifically, it consists of
tour numbers: Uata bits passed, capabilit ies pa s s e d , data b i t s
requested, and ca pabilities r e cue s t e o , 'in

The last parameter received, the request capability, is used
the servinq process to retrieve the passed parameters and to
return tile requested parameters to the r e que s t Lnc process.
Accordinqly, it has the followinq invocations:

oy

4i

6. Request capabilit y 4i1

a . "Read parameters"; > {lhe passed pa r a me t e r s

b. "Return", {The return parameters}>;

l he
the

"Return" invocation has
requesting process.

the aaditional effect ot restarting
4 j

One ttl! nq t hat 5h0 u1d ben 0 ted abo u t t ne s e r ve r me c han ism i s t nat
invocations on a server's requestors are queued until the server
is " wait"ed upon. Th i s is one reason that a request is given a
separate capability. The serving process can, i f it chooses, g i ve
tne request to so me other process tor servicinq, Whi l e it qOe5
ba c k dnd waits on its server for more requests. l he corresponDin g
s ituation in the outside bank Window analogy wo ul D be the case

6

NWG/RFC# 71 2 J ED 27-F ~b-76 18:25 3458b
A urs t.r i o u t e o Capauil.ity Computing System (LJCCS)

where the teller qives the request to someone else for service so
that the teller can return to waitinq customers. The request
capability points oaCk to the requesting process so tnat the
return can be properly Etfected.

A sample service, tnat of the well known semaphore l8J, is qiven.
The semaphore service routine Keeps a taule containinq the
semaphore values for each semaphore that it is servicing. It also
keeps a list of Queued requests that represent the processes that
become nunq in the semaphore by "P"ing the semaphore When it has
a value less than or equal to zero. ihe invocations on a
s e maono r e are:

7. Semaphore

a. "PH; >

b. "V": >

A diaqram and flow cndrt for the semaphore serving process is
given in FiGures 1. and 2. The flow charts that are given include
most of the basjc capability invocations, bu t do not include
detailed descriptions of table searches. The table structure for
the semapnore service routine includes entries tor each supported
semaphore. t:acCl entry contains the semaphore value ana a link
into a list of pointers to the requests hung in the se maphore (it
any).

The most important feature of the server mechanism is tnat, by
using It, the functioninq of any capability can be emUlated.

This property, similar to the insertion property discussea in
19J, is the cornerstone of the DCCS. The basic idea of the
emu1 a t I 011 i S to tiaye ttl e 5 e r ve r a it" for r e Ques t sano pas SUIe m II ~~

on to the capability beinq emulatea. Such emulation of a sinqle
capability is tlow charted in Figure 3. The emUlation flo w
charted 15 an overview t ne t doesn't handle all s I t ua t i.cn s
correctly. For example, a capability may not return to
invocatlons in the same order that they are received. These
situations also appear in the DCC5, so their handlinq wi l l be
discussed tnere ratner than here. It is important to note tnat,
except for de l a ys due to Plocessinq and communication, the
e mu I e t Lon done in t ne UCCS is exact.

4k

41

411

4m

4n

40

"1

NWGiRrCn 7i2 J ED 27- F~d- 76 1 8~L~ 3 4~86

A Dfstributed Capability Computing System (DCCS)

The DCCS Implementation ~

The DCCS will initiallY be descrioea on a network of CCS systems.
we Nill assume tnat tnere exists a network capaoility: 5a

8. ~etworK capability Sal

d. " Input": > Host no., message;

b. "Du t p u t t' , Host no , , me s s ac e s > ;

It is assumed that t he "Output" invocation returns
immediatelY after queueing the message for output an d t ha t
the "Input" invocation waits until a messaqe is availablE.

-f o r pedaqoqical purposes, the oescription of the DCCS wi l l oe
brOKen into two parts. first a brIef overview of the important
mechanisms will be g i ve n . Tne overview will qloss over some
important issues that will be resolved individUally in the more
cQmplete description that follows the overview. 5b

The intent at the DCCS is to allow capabilities on one host to be
referenced bv processes on other hosts having tne appropriate
capabilities. 10 ao this, each host keeps a list of capaoilities
that it supports for use by other hosts. Each host also supports
a server which qives out requestors that are made to appear as it
they we r e t ne c o r r e s oonc i nc capability su pported by the remote
host. wnen one of tnese emulated requestors is invoked, its
parameters are passed by the emulating host through the network
to the supportinG tlOst. The supporting host then sees to it that
the proper capaoility is invoked and passed the parameters. wne n
the inVoked capaoility on the supporting host returns, the return
parameters are passed back throuqh the network to tne emulating
n05t. The emulatirlq host then retu~ns the return para~eters to
the requesting process. 5c

f o r example, let us take tne IlBead" request on a tile diagrammed
in tiqure 4. When the emulated tile (8 requestor) is invokea, the
emulatinG process receives "invoke", requestor number, PD;
request. The re questor number tnat is returned is actually a
descriPtor consistinq ot two numbers: Host number, capability
numDer. The s e descriptors are called Remote CapabilIty
Descriptors (RCDs). An ReD identifies a host and a capability in
the list of capabilities supported by tnat host. After receiving
a request., the emulatlnq process reads the parameters passed b y
the r e ou e sting or oc es s and sends t ne m along wit h the Par arne te r
uescriptor to the remote host i n an "1 n voke " messaqe. 5ci

8

NWGJR~"C . 712 JE D 27-F"E8-76 18:25 34586
A Di'stributed Ceoab i Li t v c omcut Lno System (OCCSJ

when the remote host receives this information, it passes the
parameters to the supported file capability by invoKing it and
specifies the proper returrl parameters as notea in the Parameter
DescriPtor. Wnen the invoked file returns, the returned oata is
passed back through the network to the emulating host in a
"Return" 'message. The returned data is then returned to ttle
requestinq process bY performing a "Return" invocation on the
r e Ques t capobi lityin i t i a 11 y r e c e i ve a by the e 111 U1a tin 9 bo s t. VJt"1e II

the requesting process is a wakened by the return, it will appear
to lt exactlv as if a local tile had been invoked. 5e

Tn i s works fine when the parameters being passed and returned
consist simply ot information, but what happens when there are
capaoiilties involved? In this case the routines use the existing
remote capabilitv access mechanism and pass the appropriate
descriptors. As an example, the "TaKe" invocation on a airectory
is diagrammed in figure 5. 'rtle only essential difference is tile
fact tnat a capability has to be returnee. Wne n tne capability is
returned ov the invoked directory (or Whatever it really is). toe
supporting nost allocates a new Slot in its supported capability
list for the capability and returns a new descriptor to the
emulating host. wrlen tile e mu La t Lno host receives t he descriptor,
it creates a new requestor ~ith the returned descriptor as its
r e que s tor n umbe rand ret urn s t nereque s tor t 0 ttl e i nv0 king
process. rhe requestor so returned acts as the capability taKe~

from the remotelv accessed directory and can be inVoked exactly
as if it were the real capability. 5f

One important thIng to notice about this mechanism is that
neither the emulatinq host nor the supporting host need have any
idea what kind of capabilities they arE supportirlg. 1he mechanlsm
is independent of tneir type. Also important is the fact that
neither nost need trust the otller host with anvthing more than
the capaoilitles that it has been rigntfully granted. ~ven tne
OCCS processes themselves need only be trusted witn the network
capaoilities and .itn the supported capabilities. finally, note
that no secret passwordS whict) might be disclosed are needed tor
security. The DCCS directly extends the CCS protection
mecnanisms. 5g

A more more complete description of the DCCS will now be given.
To avoid unnecessary complication, however, several issues such
as error indications, system restart and recovery, network
malfunctions, message size llmitations, resource ~roDlems, etc.
are not discussed. These issues are not unique to the DCCS and
their solutions are not pertinent here. 5il

9

51

NWG/ NfC# 11 ~ J ED 2 7 - f ~ b - 7 o 18:25 34586
A 0~striDuted Capability Computing Sy&t~ m (DCCS)

As noted earlier, tne complete DCCS must address several issues

that were qlossed over in the initial overview. As these 1ssue5

are discussea, several messaGe types are introducea be yond t he

"I nvoKe" a nd " Re t ur n " me s s ace s discussed in the overvi ew. Tr:e

formats for all the 0CCS messages are summarized in tiqure 6.

A. T i mi nq - 5 j

invocations can take a very lona time to complete. ~ e saw an
example in the sema phore capability earlier. An even more
graphic example mlgnt be a clock capabllity thaL was requested
to return nothinq AfH.. k 100 years l"laci passed. ClearlY we don't
want to nave the emulating process wait until it receives a
"Return ll messaqe trom the remote host before servicinq more
invocdtions. 5jl

Wnat is done in the emulating host is to add the request
capability to a list ot pendinq requests after sending the
".l n voke " messaqe to the supporting host (this is somewhat like
the seOlapnore exa mple earlier). The emulator can then gO ba c k
and wait tor more local requests. 5 j2

there is a similar problem on the supporting side. ~e don't
want the process waitin~ on the network input capaoility to
simpl Y invoke the supported capability and wa i t for return.
Wha t it must do is to set up an invocation process (0 actually
invoke the supported capability so that pe nd i ng net work input
can be promptly serviced. The invoking p r oc e s s must t hen
return the parameters after it receives them. 5j3

The s e additional mechanisms add the complication ot multiple
requests active bet ween hosts. These requests are identifiea
by a Remote Request Number (R RN). The RRN is an inaex into the
llst of pending requests. 5j4

B. Loops - 5k

I f nost A passes a capability to host S, and B is requested to
pass the requestor that 1S beinq used to e mulate the
capability back to host A, should H simply add the requestor
to its support list and alloW A to access it remotely? It it
did, wrl e n tne rie w r equestor wa s invoked on A, t n e parameters
wo ul d be passea to B wnere tney wo ul d be passed to the
re questor oy the invOKing process. Invoking the requestor
woDlti cause the pa l a me t e r s to be passed ba c k throuqh tne
network to A where the real capaoility wou l d finally be
in v0 ked. Ttl e n t nere t urn par a met e r s w0 u1 a I) a vet. 0 q 0 t h r 0 uqn

10

NwG/R f Cn 112 J ~D 27-fE B-7b 10:25 3q 58 6
A Dtstributed Capabilit y Computinq System (DCCSl

the
not

reverse procedure to qet
dn optimal mechanism.

back to A via B. fhis is clearly
Sk1

r he solution to this proble m maKes use of the "My requestor?"
i n v0 cat ion 0 n a s e r ve rcapa b i 11 t y des c rib edin 5 b. VI t1 e 11 B

c he c k s ac d pa b 111 t y t hat i s t 0 be ret urn edt 0 A "IIi t h t nell Iv1y
requestor?1I invocation and tines that the capability is one ot
its re qoestors wi t h a requestor number indicatlnq that lt is
supporte d on A, it can sim ply return the requestor number
(recall that this is rea lly a Remote Capability De s c r i p t o r ,
RCD) to A containing the fact that the capability specifie d is
one t na t is local to A a nc giving A the index to the
capabilit y in its sup ported capability l ist. 5k2

C • se c ur i t v - 5 1

th e mecnanlsm presentee in B. brings up something of a
security issue. I f b tries to invoke a capab ility in A's
supportee list, should A allo w B access wi t hou t question ? 1f
it did, any host on t he network could maliciouslY i n voke an y
capab ilit y supporte d by an y other hos t. To allo w access onl y
if it ha s been o r an t e o t n r o ucn t he standard invocation
me c han i sm, eac h nost can maintain a bi t vector indicatinq
~l hi C 11 nos t s ha ve a c c esst 0 a g i ven cap a b i 1 i t v , 1tar. 0 s t a oe s
rece ive an i nva l i d request, it is an erro r cond ition. 511

D. Indirection - s m

Tne r e i s an additional twist on the Loop pro blem no ted in B••
TIi i s va ria t ion corne sup when A Jj ass esaca pa b i 1 i t y to B WhO
then wa n t s to pass j t to C. He r e again B ma v unam b i cuo us r v
s pecif y wn i c h capability is to be passed b y si mply sendinq th e
Remot e Cdoauil it y Descriptor (RCD) t hat it kno ws it by. The
RCD indicates that t he capability is supported on A. It C then
tries to invoke the capabilit y, however, A wo ul d p r ob ab lY not
be lieve t ha t C snould ha ve access to it. 5ml

i:l must te ll A, Il l, WI10 have access to your i "t n ca pability,
wa n t to Gr a n t it to host CII. 1 0 do t m s , another message t ype
is used. The " Give ll messaqe speci fies the supporte d capability
an d the host that it shOUld be q i ve n to (refer to f i gu r e 6).
here aaain, aivinq a way a capability that yOU don't have is a n
error co nd ltion. 5m2

E. Ac know l e dq e me n t - 5n

There is one last proble m with the II Give" messaqe. It B sen ds

11

I\H~ G'IRFCIi "7 12 J I:.; IJ 2 1• f Eb - 76 18 : 2 5 34 5 86
A Distriouted Capability Computiny System (UCCS)

the "G1ve" rnessaqe to A and then continues to send the Remote
Capabil1tv Descriptor (RCD) to C, C may try to use the RCD
Detore the "Give" is received bv A. f o r this reason, B must
wa i tun til A has "ACK " nowled9 e d ttl e "Gi ve " me s sag e be for e
sending the HCD to C. This me c ha n i s m requires that hosts queue
un"AC K"no wled qed "Give"s. The format tor an "ACi<" is q i ve n in
fi qure o. This queueing ma y be avoi ded f o r most "Give"s after
the first tor a oLve n RCU, b u t only at the cost of n uc r:
additional memo r y and o r oe oc as t j no "Delete"s (See r ; be l ow) . 5n1

f . Deletion - 50

I f all the requestors on A tor
B are delete d, A may tell B so

a given capability
that B may :

suP Porte d on
501

a. Delete A's validation
specitied capabllity and

bit in the bit vector for the

b. If there are no hosts left that require support 0 1 the
g i ve n capability, the capability may be deleted from t he
supported capability list.

This function requires a ne Vi "Delete" me s s a ge . 50 2

figure 6 is a summary of the message formats. f i g ur e s 7- 11
crrar t toe complete DCCS . In tile f l ow charts, abbreviations
used to in dicate tne d irectories:

flo w
a re

5p

CSL - Capability Support List 5p 1

RRL - Re mo t e Request List 5p 2

IPL - Invocation Process List 5p 3

Th e table manlpulatioll is not giVEn in detail. Thr e e tables ar e
neede d. The first is associate d with the CSL an d contains the oit
vectors indicatlng access as noted in C. above. The second table '
is associated Wi t h t ne RRL. It contains 0 nost nu mber f o r e ac n
act i ve r e Que st. An a L t e lit pte d ret urn 0 n are que s t by a h0 s tother
than the requested host 1S an error. toe tinal toble is a message
butter containing the p e nd i nq "InvoKe" and "Return" requests. 5q

In order to avoid hazards in referencing the CSL and its table,
semaphore callea the CSLS is used. A message buffe r semaphore,
MB S , is si milarly usea to lock the messa ge buffer. f o r tne ~ RL

and l~L no locks a re needed witn the algorithms given.

a

5r

1~

NwG/ RFCa 712 J iD 27-~ E~-1b 18:25 3 4 ~ 8 b
A ur s t r Lout e c Capability Comp u t i nc Sys t e m l DCCS)

Ge ne r a l i z a t i on and App l i c a t i on b

To implemerlt tne l)CCS, we assumea a network ot CCS systems. 1 he
specifications of the CCS were, however, very loose. for example,
no mention was made of instruction sets. Any CCS-like
implementation coula use the mechanisms described hereIn to snare
tneir objects. A process passed to a system With a different
instruction set, for example, could be used as an efficient
emUlator. 6a

The most important ge ne r a l i za t l on of the UCCS is to note that a
qiven implementation nas no idea what kina ot host it is talking
to over tne network. Any sort of host could implement a protocol
using the messaqes given. ~or example, a sinqle user system mi gh t
allow its user to perform arbitrary invocations on re mote
capabilitIes and kee~ a table of returned capabilities. SuCh a
system miqtlt also support some kina of stanaard terminal
capability tnat could ce given to remote processes. On a
mUlti-user system, similar functions coule be performed tor each
user. bb

10 some sense, any s v s t em LmcLeme n t Lno t ne DCCS protocol becomes
a C-list system. Tne sinale user system COUld, for example, set
up remote processes servicinq remote server capabilities givinq
out requestors to tne sinqle user system or any other systems.
Returns trom invocations could app e a r on t ne s i nc Le user's
terminal bY remote invocation ot the terminal capability, etc •• be

I mplementinG the DeCS on non-C-list systems is similar in some
respects to wnat ha~pened witll some host to host protocol
implementations on ttle Department Of Defense's AR PA network [1 0J.
Tne ARPA net work host to host protocol allows a process on one
system to communicate wittl a process on another. Ma ny of the ARPA
net protOCol implementations had tne effect of intro ducing local
process to process c om muni c e t i on in hosts t na t for merly na d no ne. bd

APplications be

1. Sinqle COpy bel

Ine first application is a solution to what 1 have aubbed
tne single COpy problem tor i!lformatlon resources. Whe ne ve r
a process receives information from dn information
resource, it can only receive a local COp y of the
information. r ru s fact is apparent whe n the Lnr or me t Lon
comes from a distributed data base, but is also true in
t Loti t Lv couple d virtual me mor y situations wnere infor matio n

13

NwG/RfC# 112 JtD 27-FEB-76 18:~5 34586
. A Oi~triouted CapabilIty Computing Sys t e m (DCCS)

from shared memory must be copied into local registers tor
processinq. Once a process has a local COpy of some
i n for mat ion, i t IT. i q t) t 11 keta try t 0 ins uret hat t !l e
information remains current, i.e. that It is the single
COpY.

The traditional solution to this problem is to lOCK tne
information resource witel a semaphore before maKinq a local
COpy and then invalidate the local COpy before unlockinq
tne resource. This SOlution sUffers from the fact that,
even thoUqh other processes may not be requestinq the
copied aata, the data must be unlockeo quiCkly j us t in
case. This can result in many needless copies being made.

What is needed is a mechanism for invalidating local copies
exactly When requests by other processes woula torce
invali~ation. 10 otter such a mechanism, an information
resource can have, in aooition to the usual reading and
writinq invocations, the fOjlowing:

" \~ r 1 tel 0 c KII, oor t ion; > : Vir i ten 0 t i f v

"R\-'J 1 0 c k ", po r t Ion; > ; F: W not i t v

The important invocation on the notify capabilities IS:

"wait for notIfIcation"; > reason;

The basic idea is to allow a process to request that it be
notified if an attempt is belnq made to invalidate its
cOPY. 1 f ttl e c opY I 5 use d for rea din9 0 n 1 y, t ne proc e s s
need only request notification of attempted mo diticatlons
of the aata (" Write lock"). When a process is so notified,
it is expected to invalidate its copy alld delete its wr i t e
notify capability to inform the information resource server
that the pending write access may proceed.

1n the read write lOCK case, the Rw notify capability ma y
also oe used tor reading and writing the portion. Any other
access to toe portion wi l l cause notitication. whe n
notified, the process with toe RW notify capability is
expected to write back the latest copy ot t he intormation
before deletinq its RW notifY capability.

Space does not permit presenting more details for this
mechanislIl. The important fact to notice is that it permits
dO information resource to be Sharea in such a way that,

14

NWG/RfC~ 112 JSD 27-fE B-7b 16:25 3 4~ob
A Di~triouted Capdbilitv Computing System (UCCS)

thouqh the information may be widely distributed, it 1s
made to appear as a s i nc i e COpy. Thi s me c ne n i s m nos
important apPlications to disLrlbuted data bases.

11. Network resource optimization 6e2

The application that probably best dernonstrate& the
usefulness of the DCCS is the sort ot net~ork optimization
tnat it faciliLates. To illustrate, let's first introduce a
capaoility that can be usea to create at least tne
pr i mi t i ve cap a b i lit i esin t rod uc e d ear 1 I e r :

9. Account capability

a. "Create", type; > ; capaoility

The passed type parameter coula at least be any of:
"File", "Directory", "process", or "server". The
appropriate type of capability would be returneo. The
resources usea for the capaoility are charqed to the
partlcular account.

Now suppose that a user on one CCS system within a DCCS
networK nas remote access to account capabilities on
several other CCS systems. This user could create what
miqht ee called a super account capability to optimize use
ot nis network resources. The super account capability
would actually be a requestor serviced by a process with
tne user's real account capaeililies. The Kind of
optimization desired would be completely under user
control, but some of the more obvious examples are
presented:

1. static oeject creation optimization

a. when a new file is requestea, create it on the
system with the fastest access or the least cost per
bit.

o. When a process is requested, create it on the
s ys t e ill \'i i t h the f a s t € S t cur r en t res p0 nsea r wit I) t 11 e
least cost per in~truction.

2. Dynamic optimization.

To 00 dynamic optImization, the super account woula
not qlVe the requestinq process the capability tnat

15

NwG / RFCij 712 J ED 2 7 - ~E B - 7 b 18: 25 34586
- A Distributed Capability Computing System lDCC Sl

i t r e c e i ve d fro rn ttl ere rn 0 teac c 0 untat t e r its s tat i c
optimization, but waula give out a requestor that it
would make function like the actual capability exce pt
optimized.

a. \IIJhe n net work conditions or user needs crian c e ,
til esc an be m0 vedt0 m0 r e e t tee t i ve s ys t e In s •
Changes in cost conditions mi qh t result in file
movement. Cfianges in reliability conditions mi gh t
result in movement ot files and/or in addition or
deletlon of multiple copies.

o. If system loaa conditions or CPU charges
c han ge , i t III i q lJ t bee i f e c t i vet 0 r e 10 cat e a
process. 'Ine su~er account service process COUld:
create a new process on a more effective system,
stop the old process, move the old C- list and
memory to the new process and start the new
process UP. The emulated process qiven to toe user
wo ul d never appear to change.

c. Sindlar optimizations can be done on an y other
capabilities.

Such a super account can automatically optimize a
user's net.ork resources to suit the user's needS
without c ne nc i nc the t unc t I'o na I cn a r ac t e r i s t Lc s of
t ne oo i e c t s being optimized.

f i na l No t e

The DCC~ mec ha n i s ms deflnea in this paper are currently beinG
i mplemented OIl a Digital Equi pme n t Corporation PU P-l1/45 co mputer
for use as an experimental protocol on the ARPA computer net work
llOJ. rhe OCCS protocol will also for m the basis for a gat e way
between the ARPA networK and lnerqy Besearch and Development
Agency's CTR network L11l. it is the authors hope tnat the DC CS
meChanism will nasten the approach of the kind ot net works that
are needea to create a truly free market in computational
resources. 7a

16

7

8

N ~ G / RfC . 112 JtD 27-fE B-76 18: 25 3458 b
· A Distrioutea Capaoility Computing Sy s t e m lDCeS)

Acknowledgements

Tne s o t no r W0 U 1d 1ike tot han it.. the a ami n i s t rat 0 r 5 and s tat tot
the Computer Researcll Pr o i e c t at the Lawrence Livermore
Laboratory for creatinq the kInd of environment conducive to tne
ideas presented in t his paDer. Special thanKs are due to Cha ~ l E S
Landau tor many o f toe (- l i s t ideas as i mple mentea in the current
RA I'S system. 8a

17

NWG/ RfCij 71~ J~D 27-fEB-76 18: 25 34~8b

. A o i,5t rib u t e d cap a 0 i lit Y CoIT! put in y Svs t em (DC CS)

References 9

1. C. R. Landau, The RATS Uperatina System, Lawrence Livermore
Laoo r a t o r v , Report UCfH,-77378 (1975) 9a

2. C. R. Landdu, An Introduction to RA1S (RISOS/ARPA Terminal
System): An Operating Sys t e m tor tne D~C PUP-11/45, LaWrence
Livermore Laboratory, Report UCRL-51582 (IY/4) 9b

3. J. ~. Donnelley, Notes on RATS ana Capability List Ope r a t i ng
Systems, Lawrence Livermore Laooratory, Report UCID-16902 (1975) 9c

4. B. W. Lampson, "On Reliable ano Ext e ndab l e Operating Systems",
Techniques in Software Engineering, NATO Sci Comm. Wor ks hop
Material, Vol. 11 (1969) 9d

5. W. WUlf, e t , al., "HYDRA: T!le Kernel of a (vlu l t i p r oc e s s o r
Operatinq system", Communications of the ACM 17 6 (1974) ge

6. P. Ne uman n e t , al., "On the Design ot a ProvablY Secure
Uperating System'l, international Wo r ks hop on Protection in
Operating Systems, lRlA (1974) 9 £

7. R. S. F' a b r y , "Capability-Based Addressing", CACtv'l 17 7 (197 4) 9g

8. E. ~. ut t x s t r s , "Co op e r a ti nq Sequential Processes," publist1ed
in Pr oqr amm Lnc Languages, f. Genuys, e o I tor, Ac e oe n.t c 'l-J r e s s , PP.
43-112 (1968) 9h

9. F. A. Akxo v un l u , e t , a L; , ",some Constraints and 'l r a a e o t t s i n
the Design of Network Communications", Proceedinqs Ot the Fi t t h
Symposium on Operating System Principles, Vol. 9 No . 5 PP. 67-74
(1975) 91

10. L. G. Roberts and b. U. We s s l e r , "Computer ~et~ork

Development to Acnieve Resource Sharing," AflP$ Conference
Proceedinqs 36, PP . 543-549 l1970) 9j

11. "National CTR Computer Center", Lawrence Livermore Laboratory
Energy and Technology Re vI e w, La'rence Livermore Laboratory
UCRL-52000-75-1 2, December (1975) 9k

18-'

1 0

N WG/BFC~ 712 J~ D 2 7- fEB-7b 18 :25 3q5 8b
- A Di~tributea capability Computing Syste m (DCC S)

Tne fiqures are not included in the online version. Interested
reaaers can obtain a ne r cc oov version' ot t rie document rnci uc Lnc
the fiqures hy requestinq a copy o f UC FL-77800 from: lOa

Te c hn i c a l Intormation Department
Lawrence Livermore Laboratory
University of California Livermore, Caliiornia 9 455 0 I Uo

vuestions or comments would be a ppreciated an d should be directed
to tne au t no r r I Oc

tnr ou cn the U. S . mail: t oc r

J a me s E. Donne l l e y
Lawrence LIver more LdboratoI'y L-3 07
P. O. Bo x 808

Livermore, California 94550

By tel e ptl 0 ne : 10c 2

(415) 4 47-1100 ext. 3406

Via ARPA net mail: I Oc3

J E [) @i;B N

"This report was prepared as an account of work sponsored by the
United states Government. Neither the United states nor the
~nited States Enerqy ~ e s e a r c h & Development Administration, nor
any of their employees, nor any of their contractors,
subcontractors or their employees, makes any wa r r a n t y , ex press or
ilfiPlied, or assumes an y leQal liability or responsicility for toe
accuracy, completeness or usefulness of any infor mation,
apparatus, product or process dIsclosed, or re presents that Its
use woul d not infrinqe privately-owned rights." 10d

1 9

< GJU Uk NAL, 3il5 1H).IILS;1, >, 27- F'El:\-7b 2 1 : 3 4 XXX ;;;; Title:

A 11 tho r (5): Jamest... (J E,D) Do n n e 11 e Y / J r.D ; oi 5 t ributi 0 n : / J BP ([11 f U- UIH, Y

J) JAK E(l I NF O- UNL Y J) ; S Ub - Cu l l e c t l o n s : N ~ G NIC ; RfC # 71 2; Cler k:
JAKt..; ur r c i n ; < NE: l1 NF O, RF C7 1 2 . 1'lLS ; L. , >, 2 7- fEB-76 18: 2 2 JA Kt:,;
; ; ; ; R R" ff ;

